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DOCUMENTA MATH. 1

PREFACE

Over four decades, Andrei Suslin has conducted inspirational research at St. Pe-
tersburg University (LOMI) and Northwestern University. Andrei’s impact on
algebraic K-theory, motivic cohomology, central simple algebras, cohomology of
groups, and representation theory have fundamentally changed these subjects.
Many of the best results in these areas are due to Andrei, many more were
achieved using his ideas and guidance. Andrei’s influence extends beyond his
published achievements, for he has been most generous in sharing his ideas and
insights. With great admiration, this volume of DOCUMENTA MATHEMATICA
is dedicated to him.

ST. PETERSBURG MEMORIES, SASHA MERKURJEV

The Boarding School # 45 was a unique special place. It collected talented
pupils in the North-West region of the Soviet Union. It was the only way
into mathematics for many people living outside of big cities. Suslin taught at
this school during 3 years when he was an undergraduate student. His style
made a tremendous impact on me that I have never experienced later. Not
only on me — for example, I just recently met my class-mate Sasha Koldobskiy
(he is professor at the University of Missouri) and he shares the same feelings.
Needless to say that already at that time I decided to study algebra. Such early
decisions were not exceptional: Nikita Karpenko asked me to be his advisor
when he was a 9t" year student at the School # 45.

Andrei’s passion for mathematics and his systematic approach were a model
for us. We saw him reading algebra books like Bourbaki commutative algebra
in a bus or metro. During short breaks between lessons he draw complicated
diagrams in the notebook (standard thin 2 kopeks notebooks where Andrei
used to record all his math) — that time Andrei was working on a problem in
finite geometry and combinatorics. I guess that work was not successful and at
the beginning of the senior year Andrei realized that he has nothing yet done
for the diploma work to be completed in 9 months. That is how he turned to
Serre’s conjecture concerning modules over polynomial rings.

During boring meetings we had to sit at, Andrei would ask me to give him
problems to solve from recent mathematical olympiads, and often my list ended
before the meeting was over. Andrei was a winner of the International Mathe-
matical Olympiad in 1967.

The “olympiad spirit” has an interesting consequence: Andrei considers every
mathematical problem as a personal challenge. That is why there are not so
many Suslin’s conjectures: by making a conjecture Andrei admits that he failed
to prove it himself.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010)



2 PREFACE

Andrei’s impact of mathematicians has been tremendous, not only his own
graduate students but on many others fortunate to be around him. I remember
spontaneous seminars (for many hours) Andrei started when people randomly
get together in his room at LOMI. I remember his lectures on the foundations
of motivic cohomology in the late 80’s, when it was rather an improvisation at
the board than lectures. Two of Andrei’s graduate students, Vanya Panin and
Serge Yagunov, are organizers of this birthday celebration; other people who
can call Andrei an informal advisor include Sasha Smirnov, Sasha Nenashev,
myself, ... During these seminars Andrei generously shared his ideas. (Markus
Rost is another personality of this type.)

Immediately after his graduation, Andrei was hired as an assistant professor
at the University (so he has never been a graduate student). He worked on
Serre’s conjecture and tried to hide from the rest of the university world — at
least he did not propose themes for students’ work, and I was not able to get
him as thesis advisor.

Andrei liked to work at night — this habit comes from the time when he lived
in an apartment shared by several families (with one bathroom and kitchen),
so he could only work in the kitchen after midnight.

The most funny story about Andrei (unfortunately not for publishing) is that
once he was a member of the Congress of the Young Communist League (he
was the only doctor of sciences in the country younger 28) and he was given a
speech to read about Brezhnev helping him to prove Serre’s Conjecture. As an
exchange he was promised a separate apartment but it did not work out.

PERSPECTIVE OF A FRIEND AND COLLEAGUE, ERIC FRIEDLANDER

Andrei has been my close friend for many years. We first met in Oberwolfach
in the late 1970’s. Andrei’s English was perfect; not only did he speak and
understand the language, but he understood subtle nuances which astonished
me. We talked mathematics, but also about many other matters. This was the
time his mathematical legend was already being established.

Perhaps few remember that Andrei was an “all Leningrad” gymnast. This
showed when he lectured, for he seemed more poised at the blackboard. Some
of us have never learned, despite much trying, to imitate his style of speaking
slowly, writing very large symbols on the blackboard, all the while conveying
elegantly and efficiently the essence of his mathematics.

A few years later, Andrei and I both visited University of Paris 7. An early
memory of that year followed Andrei’s talk and gold medal at the College de
France. We wandered around Paris at 7:30pm looking for dinner. All restau-
rants were empty, but all were reserved for the night, just as had been the case of
restaurants in the USSR. One morning Andrei called me to say that during the
night he proved the Quillen-Lichtenbaum Conjecture for algebraically closed
fields of positive characteristic and asked if I would photocopy his manuscript
at THES. Andrei stood at the entrance of the peripherique on the fringe of

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010)



PREFACE 3

Paris, handing through my car window his coffee-stained manuscript as the car
briefly paused before quickly merging into traffic. What did this Russian to
American exchange look like to an observer? When he first talked about this
result in a Paris seminar, the audience broke tradition to give him an ovation.
The 1986 ICM in Berkeley was the “Mathematical Congress of Absent Rus-
sians”. The world mathematical community eagerly anticipated the remark-
able, almost mythical creators of so much new mathematics. Sadly, Andrei
was among those not allowed to attend, but I was given a manuscript of his
plenary address. This manuscript consisted of page after page of new results
on algebraic K-theory. After spending time with Andrei in Paris, I had the
privilege of visiting the Suslin family in their St. Petersburg apartment; my
achievement was explaining the colloquial English in a popular cartoon series,
not quite equal to Andrei’s explanations of mathematical lectures given in Rus-
sian which we attended in Novosibirsk. Food memories include the delicious
"Russian salad” and the rich soup of cepes (from the woods near the Suslin
dacha) prepared by Olga Suslina. A measure of time passing has been watching
Andrei’s daughters Olga and Maria grow from young girls to successful adults
with children of their own.

Andrei visited M.I.T. and the University of Chicago in the early 1990’s. To
my overwhelming delight and benefit, Andrei decided to join the Northwestern
faculty in 1995. A frequent image which comes to mine is of Andrei pacing
outside my office ignoring whatever weather Chicago was throwing us, while I
stayed warm and dry by scribbling on a blackboard. The best of those times
was our extended effort to prove finite generation of certain cohomology rings;
this was a question that I had thought about for years, and the most important
step I took towards its solution was to consult Andrei. Vladimir Voevodsky
was briefly our colleague at Northwestern. Indeed, a few years earlier, I had
arranged for Andrei to meet Vladimir, recognizing that their different styles
and powerful mathematical talents could be blended together in a very fruitful
manner.

So many mathematicians over the years have benefited from Andrei’s insights
and confidence. If someone mentioned a result, then typically Andrei would
say he is sure it is right. On the other hand, should he need the result he
would produce his own proof — typically improving the statement as well as
the proof — or find a counter-example. With me, perhaps Andrei was a bit
more relaxed for he would occasionally tell me something was nonsense and
even occasionally admit after extended discussion that he was wrong. Those
interactions are among my best memories of our days together at Northwestern.
Andrei’s generosity extended to looking after me on the ski slopes, willingness
to drive to the airport at an awful hour, and other matters of daily life. Our
friendship has been the most remarkable aspect of my mathematical career.

I. Fesenko, E. Friedlander, A. Merkurjev, U. Rehmann

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010)
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INFINITESIMAL DEFORMATIONS AND THE ¢-INVARIANT
TO ANDREI ALEXANDROVICH SUSLIN, FOR HIS 60TH BIRTHDAY
DENIS BENOIS

Received: November 11, 2009
Revised: January 22, 2010

ABSTRACT. We give a formula for the generalized Greenberg’s /-invariant
which was constructed in [Ben2| in terms of derivatives of eigenvalues of
Frobenius.

2000 Mathematics Subject Classification: 11R23, 11F80, 11525, 11G40,
14F30
Keywords and Phrases: p-adic representation, (¢, ')-module, L-function

INTRODUCTION

0.1. Let M be a pure motive over Q with coefficients in a number field F.
Assume that the L-function L(M,s) is well defined. Fixinig an embedding
t : E < C we can consider it as a complex-valued Dirichlet series L(M,s) =

o0
> apn~* which converges for s > 0 and is expected to admit a meromorphic
n=0

continuation to C with a functional equation of the form
D(M,s) L(M,s) = e(M,s)D(M"(1), —s) L(M"(1), —s)

where I'(M, s) is the product of some I'-factors and the e-factor has the form
e(M,s) = ab®.

Assume that M is critical and that L(M,0) # 0. Fix a finite place A|p of F
and assume that the A-adic realization M) of M is semistable in the sense
of Fontaine [Fo3]. The (¢, N)-module Dg (M) ) associated to M) is a finite
dimensional E\-vector space equipped with an exhaustive decreasing filtration
Fil'Dg; (M, ), a Ex-linear bijective frobenius ¢ : Dg(My) — Dy (M,) and
a nilpotent monodromy operator N such that Ny = pp N. We say that a
(¢, N)-submodule D of D (M) is regular if

Dy (My) = D @ Fil®Dg (M)

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 5-31



6 DENIS BENOIS

as F)-vector spaces. The theory of Perrin-Riou [PR] suggests that to any reg-
ular D one can associate a p-adic L-function Lp(M , D, s) interpolating rational
parts of special values of L(M,s). In particular, the interpolation formula at
s = 0 should have the form

L(M,0)
Qoo (M)

L,(M,D,0) = £(M, D)

where Qo (M) is the Deligne period of M and £(M, D) is a certain product of
Euler-like factors. Therefore one can expect that Lp(M ,D,0) =0 if and only
if £(M, D) = 0 and in this case one says that L,(M, D, s) has a trivial zero at
s =0.

0.2. According to the conjectures of Bloch and Kato [BK], the FEj-adic
representation M, should have the following properties:

C1) The Selmer groups H}(My) and H} (M5 (1)) are zero.

C2) H°(M,) = H°(M;(1)) = 0 where we write H* for the global Galois
cohomology.

Moreover one expects that

C3) ¢ : Dy (M) — Dg (M) is semisimple (semisimplicity conjecture).

We also make the following assumption which is a direct generalization of the
hypothesis U) from [G].
C4) The (p,T')-module DIig(MA) has no saturated subquotients of the form
Upn.n where Uy, , is the unique crystalline (¢, I')-module sitting in a non split
exact sequence

0— Re(|z|lz™) = Uppn — Re(z™") =0, L=E)\
(see §1 for unexplained notations).

In [Ben2], we extended the theory of Greenberg [G] to L-adic pseudo geometric
representations which are semistable at p and satisfy C1-4). Namely to any
regular D C Dg (V) of a reasonably behaved representation V' we associated
an integer e > 0 and an element £(V,D) € L which can be seen as a vast
generalization of the L-invariants constructed in [Mr] and [G]. If V' = M) we
set L(M,D) = L(My, D). A natural formulation of the trivial zero conjecture
states as follows:

CONJECTURE. Lp(M, D, s) has a zero of order e at s =0 and

(0.1) lim L,1.D,s) = &Y(M, D) L(M*(1),D*)

5—0 s€

L(M,0)
Qoo (M)’

where £T(M, D) is the subproduct of £(M, D) obtained by ”excluding zero
factors” and D* = Hom(Dg(V)/D,Dg(L(1))) is the dual regular module

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 5-31



THE ¢-INVARIANT 7

(see [Ben2| for more details). We refer to this statement as Greenberg’s
conjecture because if M, is ordinary at p it coincides with the conjecture
formulated in [G], p.166. Remark that if M) is crystalline at p, Greenberg’s
conjecture is compatible with Perrin-Riou’s theory of p-adic L-functions [Ben3].

o0
0.3. Consider the motive M/ attached to a normalized newform f = > a,q"
n=1

of weight 2k on I'o(Np) with (IV,p) = 1. The complex L-function of My is
o0
L(f,s) = > apn~*. The twisted motive My (k) is critical. The eigenvalues of ¢

n=1

acting on Dy (M \(k)) are « = p~*a, and 8 = p' ~*a,, with v,(a,) = k—1. The
unique regular submodule of D (M (k) is D = Exd where ¢(d) = ad and
L,(Mys(k),D,s) = Ly(f, s+k) where L,(f,s) is the classical p-adic L-function
associated to a, via the theory of modular symbols [Mn], [AV]. If a, = p*~!,
the function L,(f, s) vanishes at s = k. In this case several constructions of the
L-invariant based on different ideas were proposed (see [Col], [Tm], [Mr], [O],
[Br]). Thanks to the work of many people it is known that they are all equal and
we refer to [Cz3] and [BDI] for further information. As M (k) is self-dual (i.e.
My (k) ~ M;(1—k)) one has L(M}(1—k), D*) = L(M¢(k), D) (see also section
0.4 below). Moreover it is not difficult to prove that £L(My(k), D) coincides with
the L-invariant of Fontaine-Mazur Lpam(f) [Mr] ([Ben2], Proposition 2.3.7) and
(0.1) takes the form of the Mazur-Tate-Teitelbaum conjecture

L(f,k)
Qoo (f)

where we write £(f) for an unspecified L-invariant and Q. (f) for the Shimura
period of f [MTT]. This conjecture was first proved by Greenberg and Stevens
in the weight two case [GS1] [GS2]. In the unpublished note [St], Stevens
generalized this approach to the higher weights. Other proofs were found by
Kato, Kurihara and Tsuji (unpublished but see [Cz2]), Orton [O], Emerton
[E] and by Bertolini, Darmon and Iovita [BDI]. The approach of Greenberg
and Stevens is based on the study of families of modular forms and their p-
adic L-functions. Namely, Hida (in the ordinary case) and Coleman [Col] (in

Ly, (f. k) = L(f)

general) constructed an analytic family f, = Y an(z)¢" of p-adic modular
n=1

forms for x € C, passing through f with f = for. Next, Panchishkin [Pa]

and independently Stevens (unpublished) constructed a two-variable p-adic L-

function L-function L,(z, s) satisfying the following properties:

o L,(2k,5) = Ly(f.5).

o Ly(z,x—5)=—(N)""Ly(z,s).

o Ly(z, k) = (1—pFtay(x)~") L*(x) where L}(z) is a p-adic analytic function

such that Ly(2k) = L(f, k)/Qeo(f)-

From these properties it follows easily that

h

(/)
Qoo(f)’

L,(f, k) = —2dlogay(2k)

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 5-31



8 DENIS BENOIS

)1 day(z)

where dloga,(z) = ap(z . Thus the Mazur-Tate-Teitelbaum conjec-

ture is equivalent to the assertion that
(0.2) L(f) = —2dlogap(2k).

This formula was first proved for weight two by Greenberg and Stevens. In the
higher weight case several proofs of (0.2) have been proposed:

1. By Stevens [St], working with Coleman’s L-invariant L¢/(f) defined in [Col].
2. By Colmez [Cz5], working with the Fontaine-Mazur’s L-invariant Lpn (f)
defined in [Mr].

3. By Colmez [Cz6], working with Breuil’s L-invariant Lp,(f) defined in [Br].
4. By Bertolini, Darmon and Iovita [BDI|, working with Teitelbaum’s £L-
invariant L1 (f) [Tm] and Orton’s L-invariant Lo(f) [O].

0.4. In this paper, working with the £-invariant defined in [Ben2] we generalize
(0.2) to some infinitesimal deformations of pseudo geometric representations.
Our result is purely algebraic and is a direct generalization of Theorem 2.3.4
of [GS2] using the cohomology of (¢, T')-modules instead Galois cohomology.
Let V be a pseudo-geometric representation with coefficients in L/Q,, which
satisfies C1-4). Fix a regular submodule D. In view of (0.1) it is convenient
to set
LV,D) = L(V*(1),D").

Suppose that e = 1. Conjecturally this means that the p-adic L-function has
a simple trivial zero. Then either D?=P"" or (D”‘)‘P:pf1 has dimension 1 over
L. To fix ideas, assume that dimp, De=P " = 1. Otherwise, as one expects
a functional equation relating L,(M,D,s) and L,(M*(1), D*,—s) one can
consider V*(1) and D* instead V and D. We distinguish two cases. In each
case one can express £(V, D) directly in terms of V and D.

e The crystalline case: DY NN (Dgt(V)?=1) = {0}. Let Dzig(V) be the
(p,T')-module over the Robba ring Ry associated to V [Berl], [Czl]. Set
D1 =(1-pty™HD and Dy = D. The two step filtration D_; C Dy C
Dg: (V) induces a filtration

F_D! (V) c F,DL, (V) c D!

rig rig rig

V)

such that grODIig(V) ~ R (9) is the (¢,T')-module of rank 1 associated to a
character 0 : Qp — L* of the form 6(x) = [z[z™ with m > 1. The cohomology
of (¢,T')-modules of rank 1 is studied in details in [Cz4]. Let n : Q — L* be
a continuous character. Colmez proved that H'(R(n)) is a one dimensional
L-vector space except for n(z) = |z|z™ with m > 1 and n(z) = =™ with
n < 0. In the exceptional cases H'(R(n)) has dimension 2 and can be canon-
ically decomposed into direct sum of one dimensional subspaces

(0.3) H'(Rp(n) = Hy(Rp(n) & He (R (n), n(x) = |z|2™ or n(z) = 27"

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 5-31



THE ¢-INVARIANT 9

([Ben2], Theorem 1.5.7). The condition C1) implies that

Hl(lev)
0.4 HYV) ~ 2 \b V)
04) V)= 0.
for a finite set of primes S. This isomorphism defines a one dimensional
subspace H'(D,V) of H(V) together with an injective localisation map
kp : HYD,V) — H'(RL(5)). Then ¢(V,D) is the slope of Im(kp) with
respect to the decomposition of H'(R(d)) into direct sum (0.3). Let

0=V —=>V,—-L—=0

be an extension in the category of global Galois representations such that
cl(z) € HY(D, V) is non zero. We equip DY, (V) with a canonical filtration

rig
{0} F—lDIig(V;«‘) c FODIig(VJC) C FIDIig(VCC) - Dl]:ig(VIC)
such that FZ-DLg(Vm) = EDLg(V) for i = —1,0 and grlDLg(Vz) ~ Ry. Let

V4, be an infinitesimal deformation of V,, over A = L[T]/(T?) endowed with
a filtration F;Df (V4,z) such that ED! (V)= FZ-DLg(VA,z) ®a4 L. Write

rig rig

groDl,(Vas) = Ra(0az),  er1Dl,(Vas) ~ Ra(Was)
With 64,0, Y. 0 Q) — A*.

d(64 07 ) (u
THEOREM 1. Assume that M #0 foru=1 (mod p?). Then
T T—0
dlog(0a,ay
dlog(da,z¢4 ) (u) [7—0

(note that the right hand side does not depend on the choice of ).

o The semistable case: D?=P"" C N (Dgt(V)¥=") . Set D_; = (1 —p~ Lo 1)D,
1

Do =D and D; = N=}(D¥=P ") N Dg(V)?=1. The filtration
D_1 C Dy C Dy C Dg (V)
induces a filtration
F_,D! (V) c B{D! (V) c DL (V)c D! (V)

rig rig rig rig
Then groDLg(V) ~ R () and grlDIig(V) ~ R (¢) where the characters §
and ¢ are such that §(z) = |z|z™ and ¢¥(z) = ™™ for some m > 1 and

n > 0.Set M = FlDiig(V)/F_lDIig(V) and consider the map kp : H*(M) —
HY(R(¢)) induced by the projection M — Ry (¢)). The image of kp is a one
dimensional L-subspace of H!(R (1)) and ¢(V, D) is the slope of Im(xp) with
respect to (0.3).

Assume that V4 is an infinitesimal deformation of V' equipped with a filtration
FD[ (V4) such that F;D[ (V) = EDJ (Va) ®a L. Write groDJ,(Va) ~
Ra(64) and gryD!. (V) ~ Ra(¥a).

rig
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10 DENIS BENOIS

THEOREM 2. Assume that

d(dap; ) (u)

(0.5) =

£0 foru=1 (mod p?).
T=0

Then
dlog(6a¥; ") (w) g

Remark that in the semistable case {(V, D) = L(V, D).

((V, D) = —log(u)

For classical modular forms the existence of deformations having the above
properties follows from the theory of Coleman-Mazur [CM)] together with deep
results of Saito and Kisin [Sa], [Ki]. Applying Theorem 2 to the representation
My 2 (k) we obtain a new proof of (0.2) with the Fontaine-Mazur L-invariant.
Remark that the local parameter T corresponds to the weight of a p-adic
modular form and (0.5) holds automatically. In the general case the existence
of deformations satisfying the above conditions should follow from properties
of eigenvarieties of reductive groups [BC].

The formulations of Theorems 1 and 2 look very similar and the proof is
essentially the same in the both cases. The main difference is that in the
crystalline case the f-invariant is global and contains information about the
localisation map H'(V) — H*(Q,, V). In the proof of Theorem 1 we consider
V, as a representation of the local Galois group but the construction of V,
depends on the isomorphism (0.4). In the semistable case the definition of
£(V, D) is purely local and the hypothesis C1-2) can be omitted. However
C1-2) are essential for the formulation of Greenberg conjecture because (0.1)
is meaningless if L(M,0) = 0. One can compare our results with Hida’s paper
[Hi] where the case of ordinary representations over totally real ground field is
studued.

Here goes the organization of this paper. The §1 contains some background
material. In section 1.1 we review the theory of (¢, I')-modules and in section
1.2 recall the definition of the ¢-invariant following [Ben2]. The crystalline and
semistable cases of trivial zeros are treated in §2 and §3 respectively. I would
like to thank Pierre Parent for several very valuable discussions which helped
me with the formulation of Theorem 1 and the referee for pointing out several
inaccuracies in the first version of this paper.

It is a great pleasure to dedicate this paper to Andrei Alexandrovich Suslin on
the occasion of his 60th birthday.
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81. THE {-INVARIANT

1.1. (¢,T')-MoODULES. ([Fol], [Berl], [Cz1])

1.1.1. Let p be a prime number. Fix an algebraic closure @p of Q, and set
Gg, = Gal(Q,/Q,). We denote by C, the p-adic completion of Q, and write
| -] for the absolute value on C, normalized by |p| = 1/p. For any 0 < r < 1 set

B(r,1) ={2€C, |p~ /" < |z| < 1}.

Let x : Gq, — Z, denote the cyclotomic character. Set Hg, = ker(x) and
I' = Gg,/Hg,. The character x will be often considered as an isomorphism
x: IS5 Z;. Let L be a finite extension of Q,. For any 0 < r < 1 we denote

by BTﬂ“

yig.r. the ring of p-adic functions f(mr) = S axm® (ar € L) which are
keL

holomorphic on the annulus B(r, 1). The Robba ring over L is defined as Ry, =

UBL’; - Recall that R is equipped with commuting, L-linear, continuous

T
actions of I' and a frobenius ¢ which are defined by

V(@) = F(L+m)X —1),  qeT,
p(f(m) = F(L+m)P —1).

0 n
Set t =log(l+m) = Z(—l)”_l%. Remark that v(¢) = x(v) t and ¢(t) = pt.
n=1
A finitely generated free Rp-module D is said to be a (p,T')-module if it
is equipped with commuting semilinear actions of I' and ¢ and such that
Rre(D) = D. The last condition means simply that ¢(e1),...,p(eq) is a
basis of D if eq,... ,eq is.
Let 0 : Q; — L™ be a continuous character. We will write R (5) for the
(p,T')-module Rpes of rank 1 defined by

p(es) = 0(p) es, v(es) =d(x(v))es, ~eT.

For any D we let D(x) denote the ¢-module D endowed with the action of T’
twisted by the cyclotomic character x.

Fix a topological generator v € T'. For any (¢,I')-module D we denote by
Cy,~(D) the complex

0=DLDeD LD 0

with £(2) = (6 — D, (v — 1)) and g(y, 2) = (v — Dy — (p— 1) ([H1], [Cz4]).
We shall write H*(D) for the cohomology of Cy (D). The main properties of
these groups are the following
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12 DENIS BENOIS

1) Long cohomology sequence. A short exact sequence of (o, ')-modules
0—-D —-—D—D"—0

gives rise to an exact sequence
0/ 0 0 A% 1y 2
0—H(D')— HD)—-H' D) — H (D) —---— HD") —0.

2) Euler-Poincaré characteristic. H'(D) are finite dimensional L-vector spaces

and
2

x(D) = Z(_nidimL HYD) = —rg(D).

(see [H1] and [Li]).
3) Computation of the Brauer group. The map

cl(z) — — (1 - %) ) (log x (7)) *res(zdt)

is well defined and induces an isomorphism inv : H2(Rp(x)) = L (see [H2]
[Benl] and [Li]).

4) The cup-products. Let D and M be two (p,T')-modules. For all ¢ and j
such that ¢ + j < 2 define a bilinear map

U: HY (D) x H(M) — H™"(D ® M)

cl(z) Uel(y) = cl(z ® y) ifi=35=0,

cl(x) Uel(yr,y2) = cl(z @ y1, 2 ® y2) ifi=0,5=1,

cl(zi,z2) Ucl(yr, y2) = cl(z2 @ v(y1) —21 @ p(y2))  ifi=1j=1,
cl(z) Uel(y) = cl(z @ y) ifi=0,j=2.

These maps commute with connecting homomorphisms in the usual sense.
5) Duality. Let D* = Homg, (D,Ry). For i = 0,1, 2 the cup product

(1.1) H'(D) x H*™'(D*(x)) = H*(Rr(x)) ~ L
is a perfect pairing ([H2], [Li]).

1.1.2. Recall that a filtered (¢, N)-module with coefficients in L is a finite
dimensional L-vector space M equipped with an exhausitive decreasing filtra-
tion Fil’M, a linear bijective map ¢ : M — M and a nilpotent operator
N : M — M such that ¢N = ppN. Filtered (¢, N)-modules form a ®-
category which we denote by MF#. A filtered (p, N)-module M is said to
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be a Dieudonné module if N = 0 on M. Filtered Dieudonné modules form
a full subcategory MF¥ of MF#" . It is not difficult to see that the series
log(¢(m)/7P) and log(y(m)/7) (v € T') converge in Ry, Let log 7 be a transcen-
dental element over the field of fractions of R, equipped with actions of ¢ and
I" given by

W(Z)) . A(log) =log + log (@> '

s

o(logm) = plogm + log (

Thus the ring Ry 10 = Rillogn] is equipped with natural actions of ¢ and

-1
1 d
I' and the monodromy operator N = — (1 — —
P dlogm

. For any (¢,T)-

module D set
Dst(D) = (D Ry, RL,log[l/t])F

with ¢ = log(1+7). Then Dy (D) is a finite dimensional L-vector space equipped
with natural actions of ¢ and N such that Ny = p ¢ N. Moreover, it is equipped
with a canonical exhaustive decreasing filtration Fil*Dg (D) which is induced
by the embeddings ¢, : BL’;L — Loo[[t]], n > 0 constructed in [Berl] (see
[Ber2] for more details). Set

Dcris(D) = Dst(D)N:0 = (D[l/t])F

Then
dimy, Deyis(D) < dimy, Dt (D) < rg(D)

and one says that D is semistable (resp. crystalline) if dimy, Deyis(D) = rg(D)
(resp. if dimy, Dg(D) = rg(D)). If D is semistable, the jumps of the filtration
Fil'Dg; (D) are called the Hodge-Tate weights of D and the tangent space of D
is defined as tp(L) = Dst(D)/Fil’Dg (D).

We let denote by Mgs’tr and Mfr’il; the categories of semistable and crystalline
representations respectively. In [Ber2] Berger proved that the functors

(1.2) Dy : M7y — MF#Y, Deris : MZ1L — MF¥

are equivalences of ®-categories.

1.1.3. As usually, H'(D) can be interpreted in terms of extensions. Namely,
to any cocycle a = (a,b) € Z*(C, (D)) one associates the extension

0—=D—=Dy—Rr—0
such that D, = D @ Rre with ¢(e) = e+ a and 7(e) = e 4+ b. This defines a
canonical isomorphism

H'(D) ~ Ext' (R, D).
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14 DENIS BENOIS

We say that cl(a) € HY(D) is crystalline if dimy, Deis(Do) = dimy, Deis(D)+1
and define

H;(D) = {cl(c) € H'(D) | cl(v) is crystalline }.
It is easy to see that H}(D) is a subspace of H'(D). If D is semistable (even
potentially semistable), one has

H°(D) = Fil’ Dy (D)*=1 V=0,

(1.3) dimy H}(D) = dimy, tp(L) + dim; H°(D)
(see [Ben2], Proposition 1.4.4 and Corollary 1.4.5). Moreover, H}(D) and

H}(D*(x)) are orthogonal complements to each other under duality (1.1)
([Ben2], Corollary 1.4.10).

1.1.4. Let D be semistable (o, I')-module of rank d. Assume that Dy (D)?=1 =
D4t (D) and that the all Hodge-Tate weights of D are > 0. Since Ny = ppN this
implies that N = 0 on Dg (D) and D is crystalline. The results of this section
are proved in [Ben2] (see Proposition 1.5.9 and section 1.5.10). The canonical
map DI — D,is(D) is an isomorphism and therefore H*(D) =~ De,;s(D) = D
has dimension d over L. The Euler-Poincaré characteristic formula gives
dim; H(D) = d + dimy, H°(D) + dim; H°(D*(x)) = 2d.
On the other hand dimy H}(D) = d by (1.3). The group H'(D) has the
following explicit description. The map
Z.D : Dcris(D) 7] Dcris(D) — HI(D)a

in(z,y) = cl(=z, log x(7) y)
is an isomorphism. (Remark that the sign —1 and log x(y) are normalizing
factors.) We let denote ip ¢ and ip . the restrictions of ip on the first and
second summand respectively. Then Im(ip ;) = H}(D) and we set H:(D) =
Im(ip ). Thus we have a canonical decomposition

H'(D) ~ H{(D) ® H!(D)

([Ben2], Proposition 1.5.9).
Now consider the dual module D*(y). It is crystalline, Deyis(D*(x))¥= =
Deris(D*(x)) and the all Hodge-Tate weights of D*(x) are < 0. Let

[, ]p t Deris(D*(X)) X Deris(D) — L
denote the canonical pairing. Define

iD*(x) * Deris(D*(X)) ® Deris(D*(x)) — H' (D*(x))
by
ip*(x) (@, B) Uin(z,y) = [B,z]p — [, Y]p.

As before, let ip,(y), ; and ip«(y),. denote the restrictions of ip on the first
and second summand respectively. From H} (D*(x)) = H} (D)* it follows that
Im(ip-«(y), f) = Hp(D*(x)) and we set HZ(D*(x)) = Im(ip-(y),¢)-

d
Write 9 for the differential operator (1 + 7T)d—
7r
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PROPOSITION 1.1.5. Let R (|z|z™) be the (¢,T')-module Rres associated to
the character 6(x) = |z|z™ (m > 1). Then

1) Deris(Ri(|z|z™)) is the one-dimensional L-vector space generated by
t=mes. Moreover Deis(RL(|2|2™)) = Deris(Ry(|x2™))#=F " and the unique
Hodge-Tate weight of Ry, (|xz]|x™) is —m.

i) HY(Rp(|z|z™)) = 0 and HY(Rp(|z|z™)) is the two-dimensional

1
L-vector space generated by of, = -— (1—) c(ay,) and B, =
b

(1 - %) log x(v) cl(Bs) where
_ (71)m—1 m— 1 1
= () @

with a € R} = Ry N L[[x]] such that (1 —¢)a = (1 —x(7)7) (l + l) and

T 2
_1\ym—1
= (12)

1
with b € Ry, such that (1—¢) | — | = (1—x(v)7)b. Moreover in, (1) = o, and
f m
0

im,c(1) = B, where i, denotes the map i defined in 1.1.4 for Ry (|x|z™). In
particular, H; (R (|x[z™)) is generated by oy, and H (R (|z|z™)) is generated
by By
i) Let z = cl(u,v) € HY(RL(|z|]z™)). Then
x =acl(am) + bcl(Bm)

with a = res(ut™ 1dt) and b = res(vt™1dt).
iv) The map

Resy, @ Ri(|z]z™) — L,

e
Resp, (o) = — (1 - —) (log (7)) 'res (at™'dt)
b
induces an isomorphism inv,, : H*(Ry(|z|x™)) ~ L. Moreover

invy, (wy,) =1 where w,, = (—1)™ (1 - %) % c (0™ (1/m))

Proof. The assertions i) and ii) are proved in [Cz4], sections 2.3-2.5 and [Ben2],
Theorem 1.5.7 and (16). The assertions iii) and iv) are proved in [Ben2],

Proposition 1.5.4 iii) Corollary 1.5.5.
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16 DENIS BENOIS

1.1.6. In [Fol], Fontaine worked out a general approach to the classification
of p-adic representations in terms of (¢,I')-modules. Thanks to the work of
Cherbonnier-Colmez [CC] and Kedlaya [Ke] this approach allows to construct
an equivalence

T

D, : Rep.(Gg,) — M,

between the category of L-adic representations of Gg, and the category Me‘iot’F
of étale (p,T")-modules in the sense of [Ke|. If V' is a L-adic representation of
G, define

Dst(v) = l)st(D'r (V))a Dcris(v) = 1)cms(DJr (V))

rig rig

Then Dy and Dg,is are canonically isomorphic to classical Fontaine’s func-
tors [Fo2], [Fo3] defined using the rings By and Beyis ([Berl], Theorem 0.2).
The continuous Galois cohomology H*(Q,, V) = H},((Gq,,V) is functorially

isomorphic to i|). and under this isomorphism
isomorphic to H*(D];,(V)) ([H1], [Li]). and under this isomorphi

where H(Q,, V) = ker(H'(Qp, V) — H'(Qp, V @ Beyis)) is Hj of Bloch and
Kato [BK].

1.2. THE (-INVARIANT.

1.2.1. The results of this section are proved in [Ben2], 2.1-2.2. Denote by
Q) /Q the maximal Galois extension of Q unramified outside S U {oo} and
set Gg = Gal(Q®)/Q). If V is a L-adic representation of Gg we write H*(V)
for the continuous cohomology of Gg with coefficients in V. If V is potentially
semistable at p, set

H! 1/mnnr .
H}(@l,v): ker( (Q, V) — HY QM V) .1fl7ép7

The Selmer group of Bloch and Kato is defined by
Hl
H}(V):ker< - Do @,V )
les f Qla

Assume that V satisfies the condition C1-4) of 0.2.
The Poitou-Tate exact sequence together with C1) gives an isomorphism

- @I

les
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Recall that a (¢, N)-submodule D of D (V) is said to be regular if the canon-
ical projection D — ¢y(L) is an isomorphism. To any regular D we associate
a filtration on Dg (V)

{0} € D_1 C Dy C D1 C Dg(V)

setting
(1—-p~te=Y)Y D+ N(D?=1) ifi =—1,
D; =< D ifi =0,
D+Dy(V)?='AN-YD#=r" ") ifi=1.

By (1.2) this filtration induces a filtration on D!

1ig(V) by saturated (¢, T)-
submodules

(V) c DL_(V).

rig

{0} c F,,D! (V) c F{,D! (V) c F,D.

rig rig rig

Set W = FlDiig(V)/F_lDIig(V). In [Ben2], Proposition 2.1.7 we proved that

(1.5) W~ Woa Wy & M,

where Wy and W; are direct summands of gry (Diig(V)) and grq (Diig(V)> of

ranks dimz, H°(W*(x)) and dimz, H°(W) respectively. Moreover M seats in a
non split exact sequence

0— My LM% M —0

with rg(Mo) = rg(My), gro (DIig(V)> = Mo @ Wy and gry (Djig(v)) =M &
Wl. Set

e = rg(Wo) + rg(W1) + rg(Mo).

Generalizing [G] we expect that the p-adic L-function L,(V, D, s) has a zero of
order e at s = 0.

If Wy = 0, the main construction of [Ben2| associates to V' and D an ele-
ment L£(V,D) € L which can be viewed as a generalization of Greenberg’s
L-invariant to semistable representations. Now assume that W; = 0. Let
D* = Hom(Dg(V)/D, Dg(Qp(1))) be the dual regular space. As the decom-
positions (1.5) for the pairs (V, D) and (V*(1), D*) are dual to each other, one
can define

L(V,D) = L(V*(1),D").

In this paper we do not review the construction of the L-invariant but give a
direct description of ¢(V, D) in terms of V and D in two important particular
cases.
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1.2.2. THE CRYSTALLINE CASE: W = W, (see [Ben2], 2.2.6-2.2.7 and 2.3.3).
In this case W is crystalline, W; = M =0 and FODLg(V) = FlDLg(V). From
the decomposition (1.5) it is not difficult to obtain the following description of
H} (Qp, V) in the spirit of Greenberg’s local conditions:

(1.6) H}(Qp’v) = ker <H1(FODIig(V)) - Hl(W)) .

Hp(W)

Let HY(D,V) denote the inverse image of Hl(FODLg(V))/H}(Qp, V) under

the isomorphism (1.4). Thus one has a commutative diagram

(1.7) HY(D,V) — H'(F,D!_(V))

rig

|

HY(DL, (V)

where the vertical map is injective ([Ben2], section 2.2.1). From (1.6) it follows
that the composition map
kp : HY(D,V) — HY(FyD!_(V)) — H*(W)

rig

is injective. By construction, Deis(W) = D/D_1 = D¥=P ' As D is regular,
the Hodge-Tate weights of W are < 0. Thus one has a decomposition

iw ¢ Dexis (W) & Deris (W) ~ Hp (W) @ HE (W) ~ H' (W).

Denote by pp,f and pp . the projection of H' (W) on the first and the second
direct summand respectively. We have a diagram

Dcris (W)

where pp . is an isomorphism. Then

UV, D) = detr (pp.s © Pl | Dexis(W))
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1.2.3. THE SEMISTABLE CASE: W = M (see [Ben2|, 2.2.3-2.2.4 and 2.3.3). In
this case W is semistable , Wy = W; = 0 and

(1.8) H} (@, V) = ker (H' (D, (V) — H'(M1))
Let HY(D,V) be the inverse image of Hl(FlDLg(V))/H}(@p,V) under the
isomorphism (1.4). Consider the exact sequence

hi(f)

Hl (MO) hi(g)

(M) —2% g1 (M) —2 > H2(My) — 0.

Hl
HY(D,V)

By (1.8), the map Rp is injective and it is not difficult to prove that the
image of H(D, V) in H!(M;) coincides with Im(h1(g)) ([Ben2], section 2.2.3).
Thus in the semistable case the position of H1(D, V) in H(M;) is completely
determined by the the restriction of V' on the decomposition group at p. By
construction, Dg;(M;) = D1/D where (D1/D)?=! = D;/D and the Hodge-
Tate weights of M7 are > 0. Again, one has an isomorphism

iMl : Deris (Ml) ® Deris (Ml) = H} (Ml) 52 I{C1 (Ml) >~ I{1 (Ml)

which allows to construct a diagram

Then
(1.9) UV, D) = L(V,D) = det;, (prf o pp | Dst(Ml)) .

From (1.5) it is clear that if e = 1 then either W = Wy with rg(Wy) = 1 or
W = M with rg(Mp) = rg(M1) = 1. We consider these cases separately in the
rest of the paper.
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82. THE CRYSTALLINE CASE

2.1. Let A = L[T]/(T?) and let V4 be a free finitely generated A-module
equipped with a A-linear action of Gg. One says that V4 is an infinitesimal
deformation of a p-adic representation V if V.~ Vy®4 L. Write R4 = AQr R,
and extend the actions of ¢ and I' to R4 by linearity. A (¢,I')-module over
R4 is a free finitely generated R4-module D4 equipped with commuting
semilinear actions of ¢ and T" and such that R4p(D ) = D 4. We say that D 4
is an infinitesimal deformation of a (¢,T')-module D over Ry if D =D4®4 L.

2.2. Let V be a p-adic representation of Gg which satisfies the conditions C1-
4) and such that W = Wj. Moreover we assume that rg(W) = 1. Thus W is
a crystalline (¢, I')-module of rank 1 with De,is(W) = Dcris(VV)*":]f1 and such
that Fil%De,;s(W) = 0. This implies that

(2.1) W ~Rp(6) with 6(z) =|z|z™, m>1.

(see for example [Ben2], Proposition 1.5.8). Note that the Hodge-Tate weight
of W is —m. The L-vector space H!(D,V) is one dimensional. Fix a basis
cl(z) € HY(D,V). We can associate to cl(z) a non trivial extension

00—V -V, —-L—0.
This gives an exact sequence of (¢, T')-modules

0— D! (V) — D!

rig rig

From (1.7) it follows that there exists an extension in the category of (¢,I")-
modules

0— FD, (V) =D, =Ry —0

which is inserted in a commutative diagram

Define a filtration

{0} c F_,D! _(V,) c D! (V,) c F,D (V,) c DL (V)

rig rig rig rig

by F,DI_(V,) = FDL_(V) for i = —1,0 and FyD!_(V,) = D,. Set

rig rig rig
W, = FiD!._(V,)/F_1D!_(V,).

rig rig
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Thus one has a diagram

0 — FyDL, (V) D, RL 0
0 W W, Ri 0.

2.3. Let V4, be an infinitesimal deformation of V,. Assume that DIig(VA,x)
is equipped with a filtration by saturated (y,I')-modules over R 4:

{0} € F.iD; (Vas) € FoD};,(Va ) € FADY,(Vae) € DL, (Vi)

rig rig rig
such that FiDLg(VA,x)Q@AL ~ FiDLg(Vx) for all . The quotients grODIig(VA,x)
and grlDIig(VA,x) are (¢,T')-modules of rank 1 over R4 and by [BC], Propo-
sition 2.3.1 there exists unique characters d4 5,%a,, : (@; — A* such that

groDLg(VAym) ~ R4(04,) and grlDLg(VAym) ~ Ra(hag). It is clear that 04 4
(mod T') =0 and 94, (mod T) = 1. One has a diagram

0 — FyDJ,(Va) — FiD}, (Va,) —> Ra(tha) —>0

| | X

0 Wy Wae ——Ra(pa) —=0

with Wa = groD};,(Va.e) and Wa o = FiD{ (Va.)/F_1D};,(Va.,). Assume
that .
d(0a,204 ) (1)

_ 2
o7 # 0, u=1 (mod p°)

T=0

(as the multiplicative group 1 + p2Zp is procyclic it is enough to assume that
this holds for u = 1 + p?.)

THEOREM 1. Let V4 , be an infinitesimal deformation of V,, which satisfies the
above conditions. Then

B dlog(5A,x¢Z,lz)(p)
((V, D) = —logx(7) dlog(6a,a¥4 ) (X(7)) lr=0’

This theorem will be proved in section 2.5. We start with an auxiliary result
which plays a key role in the proof. Set §(x) = |z|z™ (m > 1) and fix a
character 4 : Q — A such that 4 (mod T') = 4. Consider the exact
sequence

0— RL((S) — RA((SA) — RL((S) — 0

and denote by B% the connecting maps H* (R (8)) — H'T' (R (5)).
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PROPOSITION 2.4. One has

invy, (Bj(as,)) = (log x(v)) " dlogda(x(7))] ;—_p-
vy, (B11§ (B:n)) = dlog(SA (p) |T:O'

Proof. a) Recall that

e (D) R () )

Let e,5 be a generator of R 4(d4) such that es = €45 (mod T'). Directly from
the definition of the connecting map

B = - (1-2) S a (% (-0 (o (24 5 eaa) -
— (p=1) (0" Ha)eay))) -

Write

(=1 (077 (245 ) eas) — (0= D@ @eas) =

1

-m m—1 1
= (x(m) ™ ™dalx(7) ~1) 0 (; + 5) eas+ 2

where

z=(y—x(y)™m) ot (% + %) Sa(x(7)eas — (6a(p)p —1) 0™ (a)eas.

Since 4 (x (7)) = x(7)™ (mod T'), from the definition of a it follows that z = 0
(mod T). On the other hand, as a € R} and

(v=x(y)™)om ! (% + %) ER]

we obtain that z/T € R es. Thus the class of z/T in H*(R(4)) is zero. On
the other hand, writing d4 in the form

dd 4 (u)

dalu) =u™+T T

T=0

one finds that

X(7)""0alx(y)) = 1
T

= dlog 5A(X(7))‘T:0
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and the first formula follows from Proposition 1.1.5 iv).
b) By the definition of B}

B};(ﬂ:n) _ (1 B l) (—1)m—1 10gX(’7) cl (l (("}/ B 1) (8m_1(b)e,4,,;) _

P (m—1)!

As
da(p) (¢ =0(p)~") (0" (1/7)) = (6(x(7))y — 1) 9™ L(b)
we can write
(v=1) (0" (beas) — (¢ — 1) (0™ (1/m)eas) =
=—(0(p) "oalp) — 1) 0™ M (1/7) + w

where
w=(6a(x(7))7 = 1) @ b)eas +

Remark that

da(p)
(p)

(B(x(M)) 7= 1) (0™ 'b)eas.

5(p)~téalp) — 1
% = 7d10g5A(p)‘T=0
On the other hand

res (0™ 1 (b)t™1dt) =0
(see [Ben2], proof of Corollary 1.5.6). As res ((x()™y — 1) 0™~ 1(b) t™1dt) =
0, this implies that res (7(0™'b) t™~dt) = 0 and we obtain that Res,, (w) = 0.
Thus

inv,,(B§(8;,)) = —dlogda(p) |T:0Resm (W) = dlog da(p) |T:O
and the Proposition is proved.
2.5. We pass to the proof of Theorem 1. By Proposition 1.1.5, H(W) is a two

dimensional L-vector space generated by «;, and 3,. One has a commutative
diagram with exact rows

0 0 0
0 w Wa Rr 0
0 Wa Wa Ra(Waqz) —=0
0 w Wy RrL 0
0 0 0
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Twisting the middle row by 1/’2,195 and taking into account that ¥4, = 1
(mod T') we obtain

(2.2) 0 0 0

0 0 0

The connecting map A° : HY(Rp) — H*(W) sends 1 to y = sp(cl(z)) and
we can write
y =aaqa), +b0,

with a,b € L. Directly from the definition of the ¢-invariant one has
(2.3) ¢{V,D) =b""a.

The diagram (2.2) gives rise to a commutative diagram

HO(R) 2> HY(W)

| Jot

HY(Rp) -2 H2(W).

Since the rightmost vertical row of (2.2) splits, the connecting map BY is zero
and

aByy (a7,) + bBiy (57,) = Biy(y) = 0.

As WAWZ}@) ~ RA((SA,wa}x), Proposition 2.4 gives

inv,, (Bly (o)) = (log(x(7)) " dlog(da.s¥1 %) (X(9)] o
inv, (Bly (85,)) = d1og(64,004 %) (P)| 1y

Together with (2.3) this gives the Theorem.

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME SUSLIN (2010) 5-31



THE ¢-INVARIANT 25

§3. THE SEMISTABLE CASE

3.1. In this section we assume that V is a p-adic representation which satisfies
the conditions C1-4) and such that W = M. Thus one has an exact sequence

(3.1) 0— My Lw %M —0

where My and M; are such that e = rg(My) = rg(M;). We will assume that
e =1. Then

My =Rpres ~Rr(6), §(z) = |z|z™, m =1,
My =Rrey ~ Rp(v), Y(E)=2"", nx=0

(see for example [Ben2], Lemma 1.5.2 and Proposition 1.5.8). Thus

{0} c F_,D! (V) c DL (V) c AD! (V) c D!

rig rig rig rig

V)

with groD!. (V) ~ R.(6) and gryD!. (V) ~ Rp(¢). Assume that Vy is an

rig rig

infinitesimal deformation of V and that D!

rig(VA) is equipped with a filtration

by saturated (¢, ')-modules over R 4
{0} € FLiD}, (Va) € FyD,(Va) € FiD],(Va) C D], (Va)
such that
FD}(Va) @ A~ FD(V),  —1<i<1.
Then
groD,(Va) ¥ Ra(0a),  guDl,(Va) ~ Ra(va),

rig
where 64, ¥4 @ Qp — A" aresuch that 64 (mod T') = d and ¢4 (mod T') = 1.
As before, assume that

d(0a3")(u)

0 =1 d p?).
T TZO;E, U (mod p*)

THEOREM 2. Let V4 be an infinitesimal deformation of V' which satisfies the
above conditions. Then

dlog(64¢7" D
(3.2) UV, D) = —logy(y) —1280%a )(p)
dlog(0avy ) (x(7)) lr=o
3.2. PrROOF OF THEOREM 2. The classes x} = —cl(t"ey,0) and y; =

log x(7) cl(0,t"ey) form a basis of H'(M;) and H (M) is generated by zj,
(see section 1.1.4). Consider the long cohomology sequence associated to (3.1):
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We can also consider the dual sequence 0 — M7 (x) — W*(x) — Mg(x) — 0
and write

s HOOME () 5 HY (M () — W () — HN (M () = -+

As M (x) = Rres-1,, is isomorphic to Ry (z'~™), the cohomology H(M;(x))
is the one dimensional L-vector space generated by & = ™ les—1 - Write

Ag(f) = aar*wrl +bﬁ;kz+la

where a1, 8, is the canonical basis of H'(M7(x)) ~ Ry(|z|z"t"). From
the duality it follows that Im(A%) is orthogonal to ker(A!) under the pairing

HY (Rp(|z|2" 1)) x HY(Rp(z™™)) = L
Since
ar*zﬂ U x:z = 6;;+1 U y;kz =0, ar*zﬂ U y:l = -1, 6;;+1 U I:L =1

(see Proposition 1.1.5 ii), we obtain that Im(h(g)) = ker(A) is generated by
axy + byy. By the definition of the L-invariant

(3.3) L(V,D)=b""a.

Set Wy = FlDLg(V)/F_lDLg(V). One has a commutative diagram

0 0 0

0——=Rr(¥'x) —=W*"(x) —=Rr(06"'x) —=0
0—=Ra(y'x) —= Wilx) —=Ra(63'x) —=0

0——=Rr(¢p~tx) —=W*"(x) —=Rr(6"'x) —=0

0 0 0

Now the theorem can be proved either by twisting this diagram by 64x ™! and

applying the argument used in the proof of Theorem 2.3 or by the following
direct computation. One has an anticommutative square

0

0 —1 A* 1 —1
HY(Rp(0~'x) — = H (Rr(¥ ™))

0 1
lelx lelX
Al

HY(RL(07'x)) —= H*(Rr (v~ 'x)).
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Thus
(34) By -1, AY(§) = —AIB3 1 (¢).
From Proposition 2.3 it follows that

(3.5)
iHVn+1(B11p71XA2(§)) = ainVn+1(B11b71X(Oé;+1)) + b(B}bflx( :H—l)) =

= —alog(x(7)) 'dlogpa(x(7)|;—y — bdlogva(p)|,_,-
Fix a generator ey 5-1,, of RA(églx). We can assume that ey 5-1, is a lifting

of es-1, and set £4 = tmfleAV(;le. Directly by the definition of the connecting
map

BY 1, (6) = 7 cl((p— 1) Ea, (7~ 1)) =
= 2030~ 1) €as ()75 (x() — 1) Ea) =

= _Cl(dlog 6A(p) ga leg 6A(X(7)) 5) ‘T:O'
Let € be a lifting of £ in W*(x). Then
ALBY 1 (&) = —cl(dlogba(p) (v — 1) & — dlogsa(x(7)) (¢ — 1) &) | ;-

On the other hand, A%(¢) = cl((¢ — 1) &, (y—1) €) and by Proposition 1.1.5 iii)

Thus,

(3.6) vy (ALBY-1 () =
= bdlogéA(p)|T:O + alog(X(’Y))fldlog5A(X(7))}T=o'

From (3.4), (3.5) and (3.6) we obtain that
a (log x(7)) "' dlog(3av 3 ) (X(7))] p—y = —bdlog(6av4") (P)] -
Together with (3.3) this prove the theorem.

3.4. REMARK. It would be interesting to generalize Theorems 1 and 2 to the
case e > 1. For this one should first understand what kind of filtrations on
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DT

rig(V) appears naturally if V' comes from automorphic forms [BC].

3.5. MODULAR FORMS. Let f be a normalized newform of weight x¢ = 2k
which is split multiplicative at p. Let V' = My \ be the A-adic representation
associated to f by Deligne [D]. The structure of Dy (V') is well known (see for
example [Cz2]) Namely, D (V) = Ld; + Lds with N(d2) = d1, N(dy) = 0,
o(dy) = pFdy and @(dy) = pF~ldy. Thus Dy (V(k)) = Ld® + Ld® with
o(d) = dP | pdP) = p=1d¥) and D = Des(V (k) = Ld™ is the unique
regular subspace of Dy (V (k)). It is clear that D_; = 0, D1 = Dg(V(k))
(V(k)) we have FoDf, (V(k)) = (D ®
RL[l/t])ﬂDIig(V(lﬂ)), FlDLg(V(k:)) = Diig(V(kz)). In [Ben2], Proposition 2.2.6
it is proved that £(V (k), D) coincides with the L-invariant of Fontaine-Mazur
Lem(f)-

In [Co2], Coleman constructed an analytic family of overconvergent modular

and for the associated filtration on Diig

o0
forms f; = > an(2)¢™ on an affinoid disk U containing 2k which satisfies the
n=1

following conditions

e For any x € NN U the form f, is classical.

b fzo = f

Moreover, one can interpolate the p-adic representations associated to classical
forms f, (x € NNU) and construct a two dimensional representation V of Gg
over the Tate algebra O(U) of U such that

e For any integer € N in U the Galois representation V, obtained by spe-
cialization of V at x is isomorphic to the A-adic representation associated to
f= [CM]. In particular, it is semistable with the Hodge-Tate weights (0,2 — 1)
[Fa]. By continuity this implies that for all € U the Hodge-Tate-Sen weights
of V, are (0,z — 1).

o A2V, = L (X (y
and L, is the field of coefficients of V.

. (B“’:“P(””@V)G@” is locally free of rank 1 on U i
y free of rank 1 on U [Sa], [Kil.

cris
Let O,, denote the local ring of U at z¢ and let A = O, /(T?) where T = x—x
is a local parameter at . Then Vi = V®o ) Oq, of V = Vy, is an infinitesimal
deformation of V' = V. It is not difficult to see that

)Qk_‘”) where as usually (x) denotes the projection of x

FoD! (V4) = Ra®p DcriS(DIig(vA))wzap(x)

rig

is a saturated (p,I")-submodule of DLg(VA) ( [BC], Lemma 2.5.2 iii)). We
see immediately that FODLg(VA) >~ Ra(0a) where 64(u) = 1 for u € Z; and
da(p) = ap(2k) + a,(2k)T (mod T?) with a,(2k) = p*~1. Set FlDLg(VA) =

Dl (Va). As

(x(7)) = exp((2k — x)log x(7)) =1 — (log x())T  (mod T?)
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we obtain that

(Yada)(p) =1,  (¥ada)(x(7)) =1—(ogx())T (mod T?)

Thus ¢a(x(y)) = 1 — logx(7)T (mod T?) and dlog¥a(x(1)|,_, =
—log x(). Twisting Va4 by x* we obtain an infinitesimal deformation V4 (k) of

V (k). The formula (3.2) writes
L(V(k),D) = —2dloga,(2k).

In particular we obtain that Lrm(f) = —2dloga,(2k). The first direct proof
of this result was done in [Cz5] using Galois cohomology computations inside
the rings of p-adic periods. Remark that in [Cz6], Colmez used the theory of
(¢, T')-modules to prove this formula with Breuil’s £-invariant. His approach is
based on the local Langlands correspondence for two-dimensional trianguline
representations.
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ABSTRACT. The goal of this paper is to prove that coniveau spectral
sequences are motivically functorial for all cohomology theories that
could be factorized through motives. To this end the motif of a smooth
variety over a countable field k is decomposed (in the sense of Post-
nikov towers) into twisted (co)motives of its points; this is generalized
to arbitrary Voevodsky’s motives. In order to study the functorial-
ity of this construction, we use the formalism of weight structures
(introduced in the previous paper). We also develop this formalism
(for general triangulated categories) further, and relate it with a new
notion of a nice duality (pairing) of (two distinct) triangulated cate-
gories; this piece of homological algebra could be interesting for itself.

We construct a certain Gersten weight structure for a triangulated
category of comotives that contains DM, ge};f as well as (co)motives of
function fields over k. It turns out that the corresponding weight spec-
tral sequences generalize the classical coniveau ones (to cohomology of
arbitrary motives). When a cohomological functor is represented by a
Y € Obj DM , the corresponding coniveau spectral sequences can
be expressed in terms of the (homotopy) ¢-truncations of Y; this ex-
tends to motives the seminal coniveau spectral sequence computations
of Bloch and Ogus.

We also obtain that the comotif of a smooth connected semi-local
scheme is a direct summand of the comotif of its generic point; co-
motives of function fields contain twisted comotives of their residue
fields (for all geometric valuations). Hence similar results hold for any
cohomology of (semi-local) schemes mentioned.
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structure, triangulated category, semi-local scheme, cohomology.
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INTRODUCTION

Let k be our perfect base field.

We recall two very important statements concerning coniveau spectral se-
quences. The first one is the calculation of Es of the coniveau spectral se-
quence for cohomological theories that satisfy certain conditions; see [5] and
[8]. Tt was proved by Voevodsky that these conditions are fulfilled by any the-
ory H represented by a motivic complex C (i.e. an object of DM see [25]);
then the Es-terms of the spectral sequence could be calculated in terms of the
(homotopy t-structure) cohomology of C. This result implies the second one:
H-cohomology of a smooth connected semi-local scheme (in the sense of §4.4
of [26]) injects into the cohomology of its generic point; the latter statement
was extended to all (smooth connected) primitive schemes by M. Walker.

The main goal of the present paper is to construct (motivically) functorial
coniveau spectral sequences converging to cohomology of arbitrary motives;
there should exist a description of these spectral sequences (starting from FEs)
that is similar to the description for the case of cohomology of smooth varieties
(mentioned above).

A related objective is to clarify the nature of the injectivity result mentioned;
it turned our that (in the case of a countable k) the cohomology of a smooth
connected semi-local (more generally, primitive) scheme is actually a direct
summand of the cohomology of its generic point. Moreover, the (twisted) co-
homology of a residue field of a function field K/k (for any geometric valuation
of K) is a direct summand of the cohomology of K. We actually prove more

in §4.3
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Our main homological algebra tool is the theory of weight structures (in trian-
gulated categories; we usually denote a weight structure by w) introduced in
the previous paper [6]. In this article we develop it further; this part of the
paper could be interesting also to readers not acquainted with motives (and
could be read independently from the rest of the paper). In particular, we
study nice dualities (certain pairings) of (two distinct) triangulated categories;
it seems that this subject was not previously considered in the literature at all.
This allows us to generalize the concept of adjacent weight and t-structures (¢)
in a triangulated category (developed in §4.4 of [6]): we introduce the notion
of orthogonal structures in (two possibly distinct) triangulated categories. If ®
is a nice duality of triangulated C, D, X € ObjC, Y € ObjD, t is orthogonal
to w, then the spectral sequence S converging to ®(X,Y) that comes from
the t-truncations of Y is naturally isomorphic (starting from Es) to the weight
spectral sequence T for the functor ®(—,Y"). T comes from weight truncations of
X (note that those generalize stupid truncations for complexes). Our approach
yields an abstract alternative to the method of comparing similar spectral se-
quences using filtered complexes (developed by Deligne and Paranjape, and
used in [22], [I1], and [6]). Note also that we relate t-truncations in D with
virtual t-truncations of cohomological functors on C. Virtual ¢-truncations for
cohomological functors are defined for any (C,w) (we do not need any trian-
gulated ’categories of functors’ or ¢-structures for them here); this notion was
introduced in §2.5 of [6] and is studied further in the current paper.

Now, we explain why we really need a certain new category of comotives (con-
taining Voevodsky’s DM/T), and so the theory of adjacent structures (i.e.
orthogonal structures in the case C = D, ® = C(—, —)) is not sufficient for our
purposes. It was already proved in [6] that weight structures provide a power-
ful tool for constructing spectral sequences; they also relate the cohomology of
objects of triangulated categories with ¢-structures adjacent to them. Unfortu-
nately, a weight structure corresponding to coniveau spectral sequences cannot
exist on DM > DM, oIf since these categories do not contain (any) motives
for function fields over k (as well as motives of other schemes not of finite type
over k; still cf. Remark A.5.4(5)). Yet these motives should generate the heart
of this weight structure (since the objects of this heart should corepresent co-
variant exact functors from the category of homotopy invariant sheaves with
transfers to Ab).

So, we need a category that would contain certain homotopy limits of objects of
DM ;,{If . We succeed in constructing a triangulated category © (of comotives)
that allows us to reach the objectives listed. Unfortunately, in order to control
morphisms between homotopy limits mentioned we have to assume k to be
countable. In this case there exists a large enough triangulated category ®,
(DMg%f C D5 C D) endowed with a certain Gersten weight structure w; its
heart is ’generated’ by comotives of function fields. w is (left) orthogonal to the
homotopy t-structure on DM and (so) is closely connected with coniveau
spectral sequences and Gersten resolutions for sheaves. Note still: we need k
to be countable only in order to construct the Gersten weight structure. So
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those readers who would just want to have a category that contains reasonable
homotopy limits of geometric motives (including comotives of function fields
and of smooth semi-local schemes), and consider cohomology theories for this
category, may freely ignore this restriction. Moreover, for an arbitrary k one
can still pass to a countable homotopy limit in the Gysin distinguished triangle
(as in Proposition B:6.1]). Yet for an uncountable k countable homotopy limits
don’t seem to be interesting; in particular, they definitely do not allow to
construct a Gersten weight structure (in this case).

So, we consider a certain triangulated category © > DM/ that (roughly!)
"consists of’ (covariant) homological functors DMge?f@f — Ab. In particular,
objects of ® define covariant functors SmVar — Ab (whereas another ’big’
motivic category DM defined by Voevodsky is constructed from certain
sheaves i.e. contravariant functors SmVar — Ab; this is also true for all
motivic homotopy categories of Voevodsky and Morel). Besides, DM, ge};f yields
a family of (weak) cocompact cogenerators for ©. This is why we call objects of
D comotives. Yet note that the embedding DM/ — D is covariant (actually,
we invert the arrows in the corresponding ’category of functors’ in order to
make the Yoneda embedding functor covariant), as well as the functor that
sends a smooth scheme U (not necessarily of finite type over k) to its comotif
(which coincides with its motif if U is a smooth variety).

We also recall the Chow weight structure wgy,,,, introduced in [6]; the corre-
sponding Chow-weight spectral sequences are isomorphic to the classical (i.e.
Deligne’s) weight spectral sequences when the latter are defined. wg,,,,, could
be naturally extended to a weight structure wepe, for ©. We always have
a natural comparison morphism from the Chow-weight spectral sequence for
(H, X) to the corresponding coniveau one; it is an isomorphism for any bira-
tional cohomology theory. We consider the category of birational comotives
Dpir 1.€. the localization of © by D(1) (that contains the category of birational
geometric motives introduced in [I5]; though some of the results of this unpub-
lished preprint are erroneous, this makes no difference for the current paper).
It turns our that w and wehew induce the same weight structure wy,,. on Dp;;.
Conversely, starting from wy;,. one can ’glue’ (from slices) the weight structures
induced by w and wehew on ®/D(n) for all n > 0. Moreover, these structures
belong to an interesting family of weight structures indexed by a single integral
parameter! It could be interesting to consider other members of this family. We
relate briefly these observations with those of A. Beilinson (in [3] he proposed
a 'geometric’ characterization of the conjectural motivic ¢-structure).

Now we describe the connection of our results with related results of F. Deglise
(see [9], [10], and [11]; note that the two latter papers are not published at the
moment yet). He considers a certain category of pro-motives whose objects
are naive inverse limits of objects of DM, g%f (this category is not triangulated,
though it is pro-triangulated in a certain sense). This approach allows to ob-
tain (in a universal way) classical coniveau spectral sequences for cohomology
of motives of smooth varieties; Deglise also proves their relation with the homo-
topy t-truncations for cohomology represented by an object of DM <7 Yet for
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cohomology theories not coming from motivic complexes, this method does not
seem to extend to (spectral sequences for cohomology of) arbitrary motives;
motivic functoriality is not obvious also. Moreover, Deglise didn’t prove that
the pro-motif of a (smooth connected) semi-local scheme is a direct summand
of the pro-motif of its generic point (though this is true, at least in the case of
a countable k). We will tell much more about our strategy and on the relation
of our results with those of Deglise in below. Note also that our methods
are much more convenient for studying functoriality (of coniveau spectral se-
quences) than the methods applied by M. Rost in the related context of cycle
modules (see [24] and §4 of [10]).

The author would like to indicate the interdependencies of the parts of this
text (in order to simplify reading for those who are not interested in all of
it). Those readers who are not (very much) interested in (coniveau) spectral
sequences, may avoid most of section 2] and read only §§2.11-2.2 (Remark 2:2.2]
could also be ignored). Moreover, in order to prove our direct summands results
(i.e. Theorem EZT] Corollary 2.2 and Proposition f3.1]) one needs only a
small portion of the theory of weight structures; so a reader very reluctant
to study this theory may try to derive them from the results of §3]’by hand’
without reading §2l at all. Still, for motivic functoriality of coniveau spectral
sequences and filtrations (see Proposition 41| and Remark [£.4.2) one needs
more of weight structures. On the other hand, those readers who are more
interested in the (general) theory of triangulated categories may restrict their
attention to §§T.1 T2 and §2} yet note that the rest of the paper describes in
detail an important (and quite non-trivial) example of a weight structure which
is orthogonal to a t-structure with respect to a nice duality (of triangulated
categories). Moreover, much of section §l could also be extended to a general
setting of a triangulated category satisfying properties similar to those listed
in Proposition B.T.1} yet the author chose not to do this in order to make the
paper somewhat less abstract.

Now we list the contents of the paper. More details could be found at the
beginnings of sections.

We start §1 with the recollection of ¢-structures, idempotent completions, and
Postnikov towers for triangulated categories. We describe a method for extend-
ing cohomological functors from a full triangulated subcategory to the whole
C (after H. Krause). Next we recall some results and definitions for Voevod-
sky’s motives (this includes certain properties of Tate twists for motives and
cohomological functors). Lastly, we define pro-motives (following Deglise) and
compare them with our triangulated category © of comotives. This allows to
explain our strategy step by step.

§2lis dedicated to weight structures. First we remind the basics of this theory
(developed in §[6]). Next we recall that a cohomological functor H from an
(arbitrary triangulated category) C' endowed with a weight structure w could
be ’truncated’ as if it belonged to some triangulated category of functors (from
C) that is endowed with a t-structure; we call the corresponding pieces of H its
virtual t-truncations. We recall the notion of a weight spectral sequence (intro-
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duces in ibid.). We prove that the derived exact couple for a weight spectral
sequence could be described in terms of virtual ¢-truncations. Next we intro-
duce the definition a (nice) duality ® : C°? x D — A (here D is triangulated, A
is abelian), and of orthogonal weight and t-structures (with respect to ®). If w
is orthogonal to ¢, then the virtual ¢-truncations (corresponding to w) of func-
tors of the type ®(—,Y), Y € ObjD, are exactly the functors 'represented via
®’ by the actual ¢-truncations of Y (corresponding to t). Hence if w and ¢ are
orthogonal with respect to a nice duality, the weight spectral sequence converg-
ing to ®(X,Y) (for X € ObjC, Y € ObjD) is naturally isomorphic (starting
from FE5) to the one coming from t-truncations of Y. We also mention some
alternatives and predecessors of our results. Lastly we compare weight decom-
positions, virtual ¢-truncations, and weight spectral sequences corresponding
to distinct weight structures (in possibly distinct triangulated categories).

In §3lwe describe the main properties of ® D DM;{lf. The exact choice of ® is
not important for most of this paper; so we just list the main properties of
(and its certain enhancement ®’) in §3.I1 We construct ® using the formalism
of differential graded modules in §5llater. Next we define comotives for (certain)
schemes and ind-schemes of infinite type over k (we call them pro-schemes). We
recall the notion of a primitive scheme. All (smooth) semi-local pro-schemes
are primitive; primitive schemes have all nice 'motivic’ properties of semi-local
pro-schemes. We prove that there are no ®-morphisms of positive degrees
between comotives of primitive schemes (and also between certain Tate twists
of those). In §3.6] we prove that the Gysin distinguished triangle for motives
of smooth varieties (in DM, ;quf ) could be naturally extended to comotives of
pro-schemes. This allows to construct certain Postnikov towers for comotives
of pro-schemes; these towers are closely related with classical coniveau spectral
sequences for cohomology.

§4] is central in this paper. We introduce a certain Gersten weight structure
for a certain triangulated category D, (DMS/f € ®, € D). We prove that
Postnikov towers constructed in are actually weight Postnikov towers with
respect to w. We deduce our (interesting) results on direct summands of como-
tives of function fields. We translate these results to cohomology in the obvious
way.

Next we prove that weight spectral sequences for the cohomology of X (corre-
sponding to the Gersten weight structure) are naturally isomorphic (starting
from F5) to the classical coniveau spectral sequences if X is the motif of a
smooth variety; so we call these spectral sequence coniveau ones in the general
case also. We also prove that the Gersten weight structure w (on ®) is or-
thogonal to the homotopy t-structure ¢ on DM (with respect to a certain
®). Tt follows that for an arbitrary X € ObjDM?, for a cohomology theory
represented by Y € ObjDM eff (any choice of) the coniveau spectral sequence
that converges to ®(X,Y") could be described in terms of the ¢-truncations of
Y (starting from FEs).

We also define coniveau spectral sequences for cohomology of motives over
uncountable base fields as the limits of the corresponding coniveau spectral
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sequences over countable perfect subfields of definition. This definition is com-
patible with the classical one; so we establish motivic functoriality of coniveau
spectral sequences in this case also.

We also prove that the Chow weight structure for DMgf/ (introduced in §6 of
[6]) could be extended to a weight structure wepew on ®. The corresponding
Chow-weight spectral sequences are isomorphic to the classical (i.e. Deligne’s)
ones when the latter are defined (this was proved in [6] and [7]). We compare
coniveau spectral sequences with Chow-weight ones: we always have a compar-
ison morphism; it is an isomorphism for a birational cohomology theory. We
consider the category of birational comotives Dy;,- i.e. the localization of © by
D(1). w and wenow induce the same weight structure wy;, on Dy,r; one almost
can glue w and wepow from copies of wy,;, (one may say that these weight
structures could almost be glued from the same slices with distinct shifts).

g5l is dedicated to the construction of © and the proof of its properties. We
apply the formalism of differential graded categories, modules over them, and of
the corresponding derived categories. A reader not interested in these details
may skip (most of) this section. In fact, the author is not sure that there
exists only one ® suitable for our purposes; yet the choice of © does not affect
cohomology of (comotives of) pro-schemes and of Voevodsky’s motives.

We also explain how the differential graded modules formalism can be used to
define base change (extension and restriction of scalars) for comotives. This
allows to extend our results on direct summands of comotives (and cohomology)
of function fields to pro-schemes obtained from them via base change. We also
define tensoring of comotives by motives (in particular, this yields Tate twist
for D), as well as a certain cointernal Hom (i.e. the corresponding left adjoint
functor).

g6l is dedicated to properties of comotives that are not (directly) related with
the main results of the paper; we also make several comments. We recall the
definition of the additive category ©9¢" of generic motives (studied in [9]). We
prove that the exact conservative weight complex functor corresponding to w
(that exists by the general theory of weight structures) could be modified to
an exact conservative WC : Dy — K?(D9"). Next we prove that a cofunc-
tor Hw — Ab is representable by a homotopy invariant sheaf with transfers
whenever is converts all products into direct sums.

We also note that our theory could be easily extended to (co)motives with co-
efficients in an arbitrary ring. Next we note (after B. Kahn) that reasonable
motives of pro-schemes with compact support do exist in DM ; this obser-
vation could be used for the construction of an alternative model for ®. Lastly
we describe which parts of our argument do not work (and which do work) in
the case of an uncountable k.

A caution: the notion of a weight structure is quite a general formalism for
triangulated categories. In particular, one triangulated category can support
several distinct weight structures (note that there is a similar situation with
t-structures). In fact, we construct an example for such a situation in this
paper (certainly, much simpler examples exist): we define the Gersten weight
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structure w for ®; and a Chow weight structure wgope, for ®. Moreover, we
show in §4.9] that these weight structures are compatible with certain weight
structures defined on the localizations ©/®(n) (for all n > 0). These two series
of weight structures are definitely distinct: note that w yields coniveau spectral
sequences, whereas wepow vields Chow-weight spectral sequences, that general-
ize Deligne’s weight spectral sequences for étale and mixed Hodge cohomology
(see [6] and [7]). Also, the weight complex functor constructed in [7] and [6]
is quite distinct from the one considered in §6.1] below (even the targets of the
functors mentioned are completely distinct).

The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.
Rovingky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their
interesting remarks. The author gratefully acknowledges the support from
Deligne 2004 Balzan prize in mathematics. The work is also supported by
RFBR (grants no. 08-01-00777a and 10-01-00287a).

NotaTION. For a category C, A, B € ObjC, we denote by C(A, B) the set of
A-morphisms from A into B.
For categories C, D we write C C D if C' is a full subcategory of D.
For additive C, D we denote by AddFun(C, D) the category of additive functors
from C' to D (we will ignore set-theoretic difficulties here since they do not affect
our arguments seriously).
Ab is the category of abelian groups. For an additive B we will denote by B*
the category AddFun(B, Ab) and by B, the category AddFun(B°?, Ab). Note
that both of these are abelian. Besides, Yoneda’s lemma gives full embeddings
of B into B, and of B°? into B* (these send X € ObjB to X, = B(—, X) and
to X* = B(X, —), respectively).
For a category C, X,Y € ObjC, we say that X is a retract of Y if idx could
be factorized through Y. Note that when C is triangulated or abelian then
X is a retract of Y if and only if X is its direct summand. For any D C C
the subcategory D is called Karoubi-closed in C if it contains all retracts of
its objects in C'. We will call the smallest Karoubi-closed subcategory of C
containing D the Karoubization of D in C; sometimes we will use the same
term for the class of objects of the Karoubization of a full subcategory of C
(corresponding to some subclass of Ob;C).
For a category C' we denote by C°P its opposite category.
For an additive C' an object X € ObjC is called cocompact if C(]],c; i, X) =
D, C(Yi, X) for any set I and any Y; € ObjC such that the product exists
(here we don’t need to demand all products to exist, though they actually will
exist below).
For X,Y € ObjC we will write X L Y if C(X,Y) = {0}. For D, E C ObjC we
will write D L Fif X 1 Y forall X € D, Y € E. For D C C we will denote
by D+ the class

{YeObjC: X LY VX € D}.

Sometimes we will denote by D+ the corresponding full subcategory of C.
Dually, + D is the class {Y € ObjC : Y 1 X VX € D}. This convention is
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opposite to the one of §9.1 of [21].

In this paper all complexes will be cohomological i.e. the degree of all differen-
tials is +1; respectively, we will use cohomological notation for their terms.
For an additive category B we denote by C(B) the category of (unbounded)
complexes over it. K(B) will denote the homotopy category of complexes. If
B is also abelian, we will denote by D(B) the derived category of B. We will
also need certain bounded analogues of these categories (i.e. C°(B), K*(B),
D~ (B)).

C and D will usually denote some triangulated categories. We will use the
term ’exact functor’ for a functor of triangulated categories (i.e. for a for a
functor that preserves the structures of triangulated categories).

A will usually denote some abelian category. We will call a covariant additive
functor C — A for an abelian A homological if it converts distinguished tri-
angles into long exact sequences; homological functors C°? — A will be called
cohomological when considered as contravariant functors C — A.

H : C°° — A will always be additive; it will usually be cohomological.

For f € C(X,Y), X,Y € ObjC, we will call the third vertex of (any) distin-

guished triangle X LY 5 Z a cone of f. Note that different choices of cones
are connected by non-unique isomorphisms, cf. IV.1.7 of [13]. Besides, in C'(B)
we have canonical cones of morphisms (see section §II1.3 of ibid.).

We will often specify a distinguished triangle by two of its morphisms.

When dealing with triangulated categories we (mostly) use conventions and
auxiliary statements of [I3]. For a set of objects C; € ObjC, i € I, we will
denote by (C;) the smallest strictly full triangulated subcategory containing all
Cy; for D C C we will write (D) instead of (ObjD).

We will say that C; generate C if C equals (C;). We will say that C; weakly
cogenerate C if for X € ObjC we have C(X,C;i[j]) = {0} Vie I, j € Z =
X =0 (i-e. if {C;[j]} contains only zero objects).

We will call a partially ordered set L a (filtered) projective system if for any
x,y € L there exists some maximum i.e. a z € L such that z > x and z > y. By
abuse of notation, we will identify L with the following category D: ObjD = L;
D(l’,1) is empty whenever I’ < [, and consists of a single morphism otherwise;
the composition of morphisms is the only one possible. If L is a projective
system, C' is some category, X : L — C' is a covariant functor, we will denote
X(1) for I € L by X;. We will write ¥ = lim, X for the limit of this
functor; we will call it the inverse limit of X;. We will denote the colimit of
a contravariant functor Y : L — C by li_n}lE L Y; and call it the direct limit.
Besides, we will sometimes call the categorical image of L with respect to such
an Y an inductive system.

Below I, L will often be projective systems; we will usually require I to be
countable.

A subsystem L’ of L is a partially ordered subset in which maximums exist
(we will also consider the corresponding full subcategory of L). We will call L'
unbounded in L if for any [ € L there exists an I’ € L’ such that I’ > [.
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k will be our perfect base field. Below we will usually demand & to be countable.
Note: this yields that for any variety the set of its closed (or open) subschemes
is countable.

We also list central definitions and main notation of this paper.

First we list the main (general) homological algebra definitions. t-structures, t-
truncations, and Postnikov towers in triangulated categories are defined in §T.11
weight structures, weight decompositions, weight truncations, weight Postnikov
towers, and weight complexes are considered in §.1F virtual ¢-truncations and
nice exact complexes of functors are defined in §2.3t weight spectral sequences
are studied in §24t (nice) dualities and orthogonal weight and ¢-structures are
defined in Definition 2251t right and left weight-exact functors are defined in
Definition X711

Now we list notation (and some definitions) for motives. DM;fnf c DM,
H I and the homotopy t-structure for DM ;quf are defined in §I.3t Tate twists are
considered in §L.4t D"¢ is defined in §L.5} comotives (D and D’) are defined
in §3.T} in §3.2l we discuss pro-schemes and their comotives; in §3.3]we recall the
definition of a primitive scheme; in §4.1] we define the Gersten weight structure
w on a certain triangulated D; we consider Wenow in §ETE Dpsr and wy,,. are
defined in §&0 several differential graded constructions (including extension
and restriction of scalars for comotives) are considered in §5 we define D9°"
and WC : D, — K*(®9") in §6.11

1 SOME PRELIMINARIES ON TRIANGULATED CATEGORIES AND MOTIVES

§T.11 we recall the notion of a t-structure (and introduce some notation for it),
recall the notion of an idempotent completion of an additive category; we also
recall that any small abelian category could be faithfully embedded into Ab (a
well-known result by Mitchell).

In §1T.21 we describe (following H. Krause) a natural method for extending co-
homological functors from a full triangulated C’ c C to C.

In §T.3] we recall some definitions and results of Voevodsky.

In §T.4] we recall the notion of a Tate twist; we study the properties of Tate
twists for motives and homotopy invariant sheaves.

In §T5l we define pro-motives (following [9] and [I0]). These are not necessary
for our main result; yet they allow to explain our methods step by step. We
also describe in detail the relation of our constructions and results with those
of Deglise.

1.1 t-STRUCTURES, POSTNIKOV TOWERS, IDEMPOTENT COMPLETIONS, AND
AN EMBEDDING THEOREM OF MITCHELL

To fix the notation we recall the definition of a ¢-structure.

DEFINITION 1.1.1. A pair of subclasses C'=%, C*=? ¢ Ob;jC for a triangulated
category C will be said to define a t-structure t if (QtZO,QtSO) satisfy the
following conditions:
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(i) 120 00 are strict i.e. contain all objects of C isomorphic to their ele-
ments.

(11) QtZO C QtZO[l], QtSO[l] C QtSO‘

(iii) Orthogonality. C*=<°[1] L C*=°.

(iv) t-decomposition. For any X € ObjC there exists a distinguished triangle

A — X — B[-1]—A[1] (1)
such that A € QtSO,B e 20,
We will need some more notation for ¢-structures.

DEFINITION 1.1.2. 1. A category Ht whose objects are C'=° = ¢*2% 0 C*=?,
Ht(X,Y) = C(X,Y) for X,Y € C'=°, will be called the heart of t. Recall (cf.
Theorem 1.3.6 of [2]) that Ht is abelian (short exact sequences in Ht come
from distinguished triangles in C).

2. O (resp. C'=') will denote C*Z°[—1] (resp. C*="[-1]).

Remark 1.1.3. 1. The axiomatics of t-structures is self-dual: if D = C°? (so
ObjC = ObjD) then one can define the (opposite) weight structure ¢’ on D by
taking Qtlgo = "% and Qt/ZO = C"=Y see part (iii) of Examples 1.3.2 in [2].
2. Recall (cf. Lemma IV.4.5 in [13]) that () defines additive functors C' —
C=0: X 5 Aand C — C*2° . X — B. We will denote 4, B by X*<? and
X*t21, respectively.

3. (@) will be called the t-decomposition of X. If X = Y[i] for some Y € ObjC,
i € Z, then we will denote A by Y*< (it belongs to C*<°) and B by Y*2it1
(it belongs to C'=°), respectively. Sometimes we will denote Ytgi[—i] by t<;Y;
tsiY = Y i+~ —1]. Objects of the type Y*~¢[4] and Y*"[j] (for i, € Z)
will be called t-truncations of Y.

4. We denote by X'=? the i-th cohomology of X with respect to t i.e. (Y*?<%)¢=0
(cf. part 10 of §IV.4 of [13]).

5. The following statements are obvious (and well-known): C'=°
CtZO _ Ctgflj_‘

>
_ J_Qtfl;

Now we recall the notion of idempotent completion.

DEFINITION 1.1.4. An additive category B is said to be idempotent complete
if for any X € ObjB and any idempotent p € B(X, X) there exists a decom-
position X =Y @ Z such that p =i o j, where 7 is the inclusion Y - Y  Z,
Jj is the projection Y @ Z — Y.

Recall that any additive B can be canonically idempotent completed. Its idem-
potent completion is (by definition) the category B’ whose objects are (X, p)
for X € ObjB and p € B(X, X): p? = p; we define

A((X,p), (X)) ={f € BX,X): p'f=fp= [}
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It can be easily checked that this category is additive and idempotent complete,
and for any idempotent complete C' O B we have a natural full embedding
B —C.

The main result of [I] (Theorem 1.5) states that an idempotent completion
of a triangulated category C has a natural triangulation (with distinguished
triangles being all retracts of distinguished triangles of C).

Below we will need the notion of a Postnikov tower in a triangulated category
several times (cf. §IV2 of [13])).

DEFINITION 1.1.5. Let C be a triangulated category.
1. Let I <m € Z.
We will call a bounded Postnikov tower for X € ObjC the following data:
a sequence of C-morphisms (0 =)Y; — Y41 — -+ — Y, = X along with
distinguished triangles

Yi=Yip = X, (2)

for some X; € ObjC; here [ <i < m.

2. An unbounded Postnikov tower for X is a collection of Y; for 7 € Z that
is equipped (for all ¢ € Z) with: connecting arrows Y; — Y;41 (for i € Z),
morphisms Y; — X such that all the corresponding triangles commute, and
distinguished triangles (2)).

In both cases, we will denote X_,[p] by X?; we will call X? the factors of out
Postnikov tower.

Remark 1.1.6. 1. Composing (and shifting) arrows from triangles (@) for two
subsequent ¢ one can construct a complex whose terms are X? (it is easily seen
that this is a complex indeed, cf. Proposition 2.2.2 of [6]). This observation
will be important for us below when we will consider certain weight complex
functors.

2. Certainly, a bounded Postnikov tower could be easily completed to an un-
bounded one. For example, one could take Y; =0 fori < I, Y; = X for i > m;
then X*=0ifi <1 ori>m.

Lastly, we recall the following (well-known) result.

ProroSITION 1.1.7. For any small abelian category A there exists an exact
faithful functor A — Ab.

Proof. By the Freyd-Mitchell’s embedding theorem, any small A could be fully
faithfully embedded into R — mod for some (associative unital) ring R. It
remains to apply the forgetful functor R — mod — Ab. O

Remark 1.1.8. 1. We will need this statement below in order to assume that
objects of A ’have elements’; this will considerably simplify diagram chase.
Note that we can assume the existence of elements for a not necessarily small
A in the case when a reasoning deals only with a finite number of objects of A
at a time.

2. In the proof it suffices to have a faithful embedding A — R — mod; this
weaker assertion was also proved by Mitchell.
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1.2 EXTENDING COHOMOLOGICAL FUNCTORS FROM A TRIANGULATED SUB-
CATEGORY

We describe a method for extending cohomological functors from a full trian-
gulated C’ C C to C (after H. Krause). Note that below we will apply some of
the results of [I7] in the dual form. The construction requires C’ to be skele-
tally small i.e. there should exist a (proper) subset D C ObjC’ such that any
object of C’ is isomorphic to some element of D. For simplicity, we will some-
times (when writing sums over ObjC’) assume that ObjC’ is a set itself. Since
the distinction between small and skeletally small categories will not affect our
arguments and results, we will ignore it in the rest of the paper.

If A is an abelian category, then AddFun(C’°?, A) is abelian also; complexes in
it are exact whenever they are exact componentwisely.

Suppose that A satisfies AB5 i.e. it is closed with respect to all small coprod-
ucts, and filtered direct limits of exact sequences in A are exact.

Let H' € AddFun(C’°?, A) be an additive functor (it will usually be cohomo-
logical).

PROPOSITION 1.2.1. I Let A, H' be fixed.

1. There exists an extension of H' to an additive functor H : C — A. It is
cohomological whenever H is. The correspondence H' — H defines an additive
functor AddFun(C'??, A) — AddFun(C?, A).

2. Moreover, suppose that in C' we have a projective system X;, | € L, equipped
with a compatible system of morphisms X — X;, such that the latter system
for any Y € ObjC’ induces an isomorphism C(X,Y) = @Q(XI,Y). Then
we have H(X) = ligH(Xl).

II Let X € ObjC be fized.

1. One can choose a family of X; € ObjC and f; € C(X,X;) such that (f;)
induce a surjection ®H'(X;) — H(X) for any H', A, and H as in assertion
I1.

2. Let ' L & % H be a (three-term) complex in AddFun(C’°P, A) that
is exact in the middle; suppose that H' is cohomological. Then the complex

F i) GLH (here F,G, H, f,q are the corresponding extensions) is exact in
the middle also.

Proof. T1. Following §1.2 of [17] (and dualizing it), we consider the abelian cat-
egory C' = C'* = AddFun(C’, Ab) (this is Mod C’°P in the notation of Krause).
The definition easily implies that direct limits in C are exactly componentwise
direct limits of functors. We have the Yoneda’s functor ¢’ : C°? — C that sends
X € 0bjC to the functor X* = (Y — C(X,Y), Y € ObjC"); it is obviously
cohomological. We denote by i the restriction of i’ to C’ (i is opposite to a full
embedding).

By Lemma 2.2 of [17] (applied to the category C’°”?) we obtain that there exists
an exact functor G : C' — A that preserves all small coproducts and satisfies
Goi = H’. It is constructed in the following way: if for X € ObjC we have an
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exact sequence (in C)
@jes X; = @rer X > X" =0 (3)
for X;, X, € C’, then we set
G(X) = Coker ®c H'(X;) — e H'(X)). (4)

We define H = G o#'; it was proved in loc.cit. that we obtain a well-defined
functor this way. As was also proved in loc.cit., the correspondence H' — H
yields a functor; H is cohomological if H' is.

2. The proof of loc.cit. shows (and mentions) that G respects (small) filtered
inverse limits. Now note that our assertions imply: X* = ligXl* in C.

IT 1. This is immediate from ().

2. Note that the assertion is obviously valid if X € ObjC’. We reduce the
general statement to this case.

Applying Yoneda’s lemma to (3) is we obtain (canonically) some morphisms
fi: X=X, foralll € Land g;; : X; — X; foralll € L, j € J, such that: for
any | € L almost all g;; are 0; for any j € J almost all g;; is 0; for any j € J
we have » ;. gijo fi = 0.

Now, by Proposition [LT.7] we may assume that A = Ab (see Remark [[LT.g]).
We should check: if for a € G(X) we have g.(a) = 0, then a = f.(b) for some
be F(X).

Using additivity of C’ and C, we can gather finite sets of X; and X into single
objects. Hence we can assume that a = G(fi,)(c) for some ¢ € G(X;) (=
G'(X1)), lo € L and that g.(c) € H(gi,j,)(H(Xj,)) for some jo € J, whereas
9iojo © fio = 0. We complete X;, — X, to a distinguished triangle Y 5

X, "o Xj,; we can assume that B € ObjC’. We obtain that f;, could be
presented as o 3 for some § € C(X,Y). Since H' is cohomological, we obtain
that H(a)(g«(c)) = 0. Since Y € ObjC, the complex F(Y) - G(Y) - H(Y)
is exact in the middle; hence G(«)(c) = f.(d) for some d € F(Y). Then we
can take b = F(8)(d).

O

1.3 SOME DEFINITIONS OF VOEVODSKY: REMINDER

We use much notation from [25]. We recall (some of) it here for the convenience
of the reader, and introduce some notation of our own.

Var D SmVar O SmPrVar will denote the class of all varieties over k, resp.
of smooth varieties, resp. of smooth projective varieties.

We recall that for categories of geometric origin (in particular, for SmCor de-
fined below) the addition of objects is defined via the disjoint union of varieties
operation.

We define the category SmCor of smooth correspondences. ObjSmCor =
SmVar, SmCor(X,Y) = @, Z for all integral closed U C X x Y that are
finite over X and dominant over a connected component of X ; the composition

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



48 M. V. BONDARKO

of correspondences is defined in the usual way via intersections (yet, we do not
need to consider correspondences up to an equivalence relation).

We will write --- — X! = X? - X1 & for X! € SmVar, for the
corresponding complex over SmCor.

PreShv(SmCor) will denote the (abelian) category of additive cofunctors
SmCor — Ab; its objects are usually called presheaves with transfers.
Shv(SmCor) = Shv(SmCor) y,, C PreShv(SmCor) is the abelian category
of additive cofunctors SmCor — Ab that are sheaves in the Nisnevich topology
(when restricted to the category of smooth varieties); these sheaves are usually
called sheaves with transfers.

D= (Shv(SmCor)) will be the bounded above derived -category of
Shv(SmCor).

For Y € SmVar (more generally, for Y € Var, see §4.1 of [25]) we consider
L(Y) = SmCor(—,Y) € Shv(SmCor). For a bounded complex X = (X?)
(as above) we will denote by L(X) the complex --- — L(X*™1) — L(X?) —
LX) — ... € C*(Shv(SmCor)).

S € Shu(SmCor) is called homotopy invariant if for any X € SmVar the
projection A' x X — X gives an isomorphism S(X) — S(A! x X). We will
denote the category of homotopy invariant sheaves (with transfers) by HI; it
is an exact abelian subcategory of SmCor by Proposition 3.1.13 of [25].
DM ¢ D=(Shv(SmCor)) is the full subcategory of complexes whose coho-
mology sheaves are homotopy invariant; it is triangulated by loc.cit. We will
need the homotopy t-structure on DM it is the restriction of the canon-
ical t-structure on D~ (Shv(SmCor)) to DM/ Below (when dealing with
DM®T) we will denote it by just by t. We have Ht = HI.

We recall the following results of [25].

ProposiTiON 1.3.1. 1. There exists an exact functor RC
D~ (Shv(SmCor)) — DM’ right adjoint to the embedding DMT —
D~ (Shv(SmCor)).

2. DM (M, (Y)[=i], F) = H\(F)(Y) (the i-th Nisnevich hypercohomology
of F' computed in'Y ) for any Y € SmVar.

3. Denote RC o L by Mg,,. Then the corresponding functor K®(SmCor) —
DM could be described as a certain localization of K*(SmCor).

Proof. See §3 of [25]. O

Remark 1.3.2. 1. In [25] (Definition 2.1.1) the triangulated category DMS//
(of effective geometric motives) was defined as the idempotent completion of a
certain localization of K?(SmCor). This definition is compatible with a differ-
ential graded enhancement for DM¢ST: cf. §5.3below. Yet in Theorem 3.2.6 of

gm >
[25] it was shown that DMg// is isomorphic to the idempotent completion of

the categorical image) M,,,(C®(SmCor)); this description of DM¢/F will be
g & g gm
sufficient for us till §5
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2. In fact, RC could be described in terms of so-called Suslin complexes (see
loc.cit.). We will not need this below. Instead, we will just note that RC' sends
D~ (Shv(SmCor))'=° to DM Ft<0,

1.4 SOME PROPERTIES OF TATE TWISTS

Tate twisting in DM/ > DMgefnf is given by tensoring by the object Z(1)
(it is often denoted just by —(1)). Tate twist has several descriptions and nice
properties. We will only need a few of them; our main source is §3.2 of [25]; a
more detailed exposition could be found in [20] (see §§8-9).

In order to calculate the tensor product of X,Y € ObjDMﬁff one should take
any preimages X', Y’ of X,Y in Obj D~ (Shuv(SmCor)) with respect to RC' (for
example, one could take X’ = X, Y’ = Y); next one should resolve X,Y by
direct sums of L(Z;) for Z; € SmVar; lastly one should tensor these resolutions
using the identity L(Z)QL(T) = L(ZxT) for Z,T € SmVar, and apply RC to
the result. This tensor product is compatible with the natural tensor product
for K®(SmCor).

We note that any object D‘(Shv(SmCor))tSO has a resolution concentrated
in negative degrees (the canonical resolution of the beginning of §3.2 of [25]).
It follows that DM/ /10 @ pperTt<0 ¢ pprefFt<O (gee Remark [3.2(2); in
fact, there is an equality since Z € ObjHI).

Next, we denote A'\ {0} by G,,. The morphisms pt — G,,, — pt (the point is
mapped to 1 in G,,) induce a splitting Mg (Gm) = Z & Z(1)[1] for a certain
(Tate) motif Z(1); see Definition 3.1 of [20]. For X € ObjDM®// we denote
X ®Z(1) by X(1).

One could also present Z(1) as Cone(pt — Gp,)[—1]; hence the Tate twist
functor X — X (1) is compatible with the functor — ® (Cone(pt — G, )[—1])
on C*(SmCor) via M,,. We also obtain that DM/ /t<0(1) ¢ ppme//e=t,
Now we define certain twists for functors.

DEFINITION 1.4.1. For an G € AddFun(DMg/f, Ab), n > 0, we define
G_n(X) = G(X(n)[n]).

Note that this definition is compatible with those of §3.1 of [26]. Indeed, for
X € SmVar we have G_1(Mgn (X)) = G(Mgnm(X x Gn))/G(Mgn (X)) =
Ker(G(Mgm(X x Gp)) = G(Mgm(X))) (with respect to natural morphisms
X xpt - X x Gy, = X x pt); G_,, for larger n could be defined by iterating
_—

Below we will extend this definition to (co)motives of pro-schemes.

For F € ObjDM®'/ we will denote by F, the functor X — DM (X F) :
DMg%f — Ab.

PROPOSITION 1.4.2. Let X € SmVar, n >0, i € Z.
1. For any F € ObjDM’ we have: Fo (Mg (X)[—1]) is a retract of
HY(F)(X x GX™) (which can be described explicitly).
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2. There exists a t-exact functor T, : DM — DM such that for any
F € ObjDM®' we have F,_,, = (T,(F))..

Proof. 1. Proposition T3 dlalong with our description of Z(1) yields the result.
2. For F represented by a complex of F* € ObjShv(SmCor) (i € Z) we
define T, (F) as the complex of T,(F?), where T, : PreShv(SmCor) —
PreShv(SmCor) is defined similarly to —_,, in Definition [LATl T,,(F") are
sheaves since T, (F;)(X), X € SmVar, is a functorial retract of F;(X x GI).
In order to check that we actually obtain a well-defined a t-exact functor this
way, it suffices to note that the restriction of T, to Shv(SmCor) is an exact
functor by Proposition 3.4.3 of [9].
Now, it suffices to check that T,, defined satisfies the assertion for n = 1. In this
case the statement follows easily from Proposition 4.34 of [26] (note that it is
not important whether we consider Zariski or Nisnevich topology by Theorem
5.7 of ibid.).

O

1.5 PRO-MOTIVES VS. COMOTIVES; THE DESCRIPTION OF OUR STRATEGY

Below we will embed DM ;ﬂlf into a certain triangulated category ® of como-
tives. Its construction (and computations in it) is rather complicated; in fact,
the author is not sure whether the main properties of © (described below)
specify it up to an isomorphism. So, before working with co-motives we will
(following F. Deglise) describe a simpler category of pro-motives. The latter
is not needed for our main results (so the reader may skip this subsection);
yet the comparison of the categories mentioned would clarify the nature of our
methods.

Following §3.1 of [9], we define the category ®"%¥¢ as the additive category
of naive i.e. formal (filtered) pro-objects of DM¢//. This means that for any
X:L—-DMI Y J— DM;{If we define

gm >
:Dname(ll&nleL X, I.&njeJ Y]) = @jeJ(hﬂleL DM;%J”(X;, Y])) (5)

The main disadvantage of ®"%V¢ is that it is not triangulated. Still, one has the
obvious shift for it; following Deglise, one can define pro-distinguished triangles
as (filtered) inverse limits of distinguished triangles in DMg/f. This allows to
construct a certain motivic coniveau exact couple for a motif of a smooth variety
in §4.2 of [10] (see also §5.3 of [9]). This construction is parallel to the classical
construction of coniveau spectral sequences (see §1 of [8]). One starts with
certain ’geometric’ Postnikov towers in DM// (Deglise calls them triangulated
exact couples). For Z € SmVar we consider filtrations @ = Z;41 C Zy C
Zg 1 C -+ C Zg = Z; Z; is everywhere of codimension > ¢ in Z for all i.
Then we have a system of distinguished triangles relating M,,(Z \ Z;) and
Mgm(Z \ Z; — Z \ Zj}1); this yields a Postnikov tower. Then one passes
to the inverse limit of these towers in "¢ (here the connecting morphisms
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are induced by the corresponding open embeddings). Lastly, the functorial
form of the Gysin distinguished triangle for motives allows Deglise to identify
Xi= @(Mgm(Z \ Z; = Z \ Zi;+1)) with the product of shifted Tate twists of
pro-motives of all points of Z of codimension i. Using the results of see §5.2
of [9] (the relation of pro-motives with cycle modules of M. Rost, see [24]) one
can also compute the morphisms that connect X? with X*t1,

Next, for any cohomological H : DM}/ — A, where A is an abelian category
satisfying AB5, one can extend H to ®™%"¢ via the corresponding direct limits.
Applying H to the motivic coniveau exact couple one gets the classical coniveau
spectral sequence (that converges to the H-cohomology of Z). This allows
to extend the seminal results of §6 of [5] to a comprehensive description of
the coniveau spectral sequence in the case when H is represented by Y €
ObjDMiff (in terms of the homotopy ¢-truncations of Y'; see Theorem 6.4 of
[1]).

Now suppose that one wants to apply a similar procedure for an arbitrary

X € ObjDMeLS; say, X = Myn(Z' L 22) for 21,72 € SmVar, f €

m
SmCor(Z*', qu). One would expect that the desired exact couple for X could
be constructed from those for Z7, j = 1,2. This is indeed the case when f satis-
fies certain codimension restrictions; cf. §7.4 of [6]. Yet for a general f it seems
to be quite difficult to relate the filtrations of distinct Z7 (by the corresponding
Z!). On the other hand, the formalism of weight structures and weight spec-
tral sequences (developed in [6]) allows to ’glue’ certain weight Postnikov towers
for objects of a triangulated categories equipped with a weight structure; see

Remark T.2(3) below.

So, we construct a certain triangulated category ® that is somewhat similar
to D¢ Certainly, we want distinguished triangles in ® to be compatible
with inverse limits that come from ’geometry’. A well-known recipe for this is:
one should consider some category ®’ where (certain) cones of morphisms are
functorial and pass to (inverse) limits in ©’; © should be a localization of ©’.
In fact, ®’ constructed in §5.3below could be endowed with a certain (Quillen)
model structure such that © is its homotopy category. We will never use this
fact below; yet we will sometimes call inverse limits coming from ®’ homotopy
limits (in D).

Now, in Proposition [£3.7] below we will prove that cohomological functors
H : DMgI7 — A could be extended to D in a way that is compatible with
homotopy limits (those coming from D’). So one may say that objects of D
have the same cohomology as those of ®"*%¢, On the other hand, we have
to pay the price for © being triangulated: (B) does not compute morphisms
between homotopy limits in ®. The ’difference’ could be described in terms
of certain higher projective limits (of the corresponding morphism groups in
DM gej;f ).

Unfortunately, the author does not know how to control the corresponding
@2 (and higher ones) in the general case; this does not allow to construct
a weight structure on a sufficiently large triangulated subcategory of © if k
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is uncountable (yet see §6.0] especially the last paragraph of it). In the case
of a countable k£ only @1 is non-zero. In this case the morphisms between
homotopy limits in ® are expressed by the formula (28] below. This allows
to prove that there are no morphisms of positive degrees between certain Tate
twists of comotives of function fields (over k). This immediately yields that one
can construct a certain weight structure on the triangulated subcategory ©4 of
® generated by products of Tate twists of comotives of function fields (in fact,
we also idempotent complete D). Now, in order to prove that D, contains
DMgS! it suffices to prove that the motif of any smooth variety X belongs
to 5. To this end it clearly suffices to decompose My, (X) into a Postnikov
tower whose factors are products of Tate twists of comotives of function fields.
So, we lift the motivic coniveau exact couple (constructed in [10]) from Dmewe
to . Since cones in D’ are compatible with inverse limits, we can construct a
tower whose terms are the homotopy limits of the corresponding terms of the
geometric towers mentioned. In fact, this could be done for an uncountable k
also; the difficulty is to identify the analogues of X; in ©. If k is countable,
the homotopy limits corresponding to our tower are countable also. Hence (by
an easy well-known result) the isomorphism classes of these homotopy limits
could be computed in terms of the corresponding objects and morphisms in
DMEJT. This means: it suffices to compute X in D¢ (as was done in [10]);
this yields the result needed. Note that we cannot (completely) compute the
D-morphisms X? — X! yet we know how they act on cohomology.

The most interesting application of the results described is the following one.
We prove that there are no positive D-morphisms between (certain) Tate twists
of comotives of smooth semi-local schemes (or primitive schemes, see below);
this generalizes the corresponding result for function fields. It follows that
these twists belong to the heart of the weight structure on ©,; mentioned.
Therefore comotives of (connected) primitive schemes are retracts of comotives
of their generic points. Hence the same is true for the cohomology of the
comotives mentioned and also for the corresponding pro-motives. Also, the
comotif of a function field contains as retracts twisted comotives of its residue
fields (for all geometric valuations); this also implies the corresponding results
for cohomology and pro-motives.

Remark 1.5.1. In fact, Deglise mostly considers pro-objects for Voevodsky’s
DMy, and of DM ; yet the distinctions are not important since the full
embeddings DM}/ — DMy, and DM, — DM/ obviously extend to full
embedding of the corresponding categories of pro-objects. Still, the embeddings
mentioned allow Deglise to extend several nice results for Voevodsky’s motives
to pro-motives.

2. One of the advantages of the results of Deglise is that he never requires & to
be countable. Besides, our construction of weight Postnikov towers mentioned
heavily relies on the functoriality of the Gysin distinguished triangle for motives
(proved in [10]; see also Proposition 2.4.5 of [9]).

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



CONIVEAU SPECTRAL SEQUENCES FOR MOTIVES 53

2  WEIGHT STRUCTURES: REMINDER, TRUNCATIONS, WEIGHT SPECTRAL SE-
QUENCES, AND DUALITY WITH ¢{-STRUCTURES

In §2.7] we recall basic definitions of the theory of weight structures (it was
developed in [6]; the concept was also independently introduced in [23]). Note
here that weight structures (usually denoted by w) are natural counterparts of ¢-
structures. Weight structures yield weight truncations; those (vastly) generalize
stupid truncations in K (B): in particular, they are not canonical, yet any
morphism of objects could be extended (non-canonically) to a morphism of
their weight truncations. We recall several properties of weight structures in
22

We recall virtual t-truncations for a (cohomological) functor H : C — A (for C
endowed with a weight structure) in §2.3] (these truncations are defined in terms
of weight truncations). Virtual ¢-truncations were introduced in §2.5 of [6];
they yield a way to present H (canonically) as an extension of a cohomological
functor that is positive in a certain sense by a 'negative’ one (as if H belonged
to some triangulated category of functors C — A endowed with a ¢-structure).
We study this notion further here, and prove that virtual ¢-truncations for a
cohomological H could be characterized up to a unique isomorphism by their
properties (see Theorem Z3T(I114)). In order to give some characterization
also for the ’dimension shift’ (connecting the positive and the negative virtual
t-truncations of H), we introduce the notion of a nice (strongly exzact) complex
of functors. We prove that complexes of representable functors coming from
distinguished triangles in C' are nice, as well as those complexes that could be
obtained from nice strongly exact complexes of functors C' — A for some small
triangulated C' C C (via the extension procedure given by Proposition [L2.1]).
In §2.4] we consider weight spectral sequences (introduced in §§2.3-2.4 of [6]).
We prove that the derived exact couple for the weight spectral sequence T'(H)
(for H : C — A) could be naturally described in terms of virtual ¢-truncations
of H. So, one can express T'(H) starting from Fs (as well as the corresponding
filtration of H*) in these terms also. This is an important result, since the basic
definition of T'(H) is given in terms of weight Postnikov towers for objects of C,
whereas the latter are not canonical. In particular, this result yields canonical
functorial spectral sequences in classical situations (considered by Deligne; cf.
Remark 2.4.3 of [6]; note that we do not need rational coefficients here).

In §25] we introduce the definition a (nice) duality ® : C°? x D — A, and
of (left) orthogonal weight and ¢-structures (with respect to ®). The latter
definition generalizes the notion of adjacent structures introduced in §4.4 of
[6] (this is the case C = D, A = Ab, ® = C(—,)). If w is orthogonal to
t then the virtual ¢-truncations (corresponding to w) of functors of the type
®(—,Y), Y € ObjD, are exactly the functors 'represented via ®’ by the actual
t-truncations of Y (corresponding to t). We also prove that (nice) dualities
could be extended from C’ to C (using Proposition [L2.1). Note here that
(to the knowledge of the author) this paper is the first one which considers
‘pairings’ of triangulated categories.
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In §2.6] we prove: if w and ¢ are orthogonal with respect to a nice duality, the
weight spectral sequence converging to ®(X,Y) (for X € ObjC, Y € ObjD) is
naturally isomorphic (starting from Fs) to the one coming from ¢-truncations
of Y. Moreover even when the duality is not nice, all E?¢ for r > 2 and the
filtrations corresponding to these spectral sequences are still canonically iso-
morphic. Here niceness of a duality (defined in §2.7]) is a somewhat technical
condition (defined in terms of nice complexes of functors). Niceness gener-
alizes to pairings (C x D — A) the axiom TR3 (of triangulated categories:
any commutative square in C could be completed to a morphism of distin-
guished triangles; note that this axiom could be described in terms of the func-
tor C(—,—) : CxC — Ab). We also discuss some alternatives and predecessors
of our methods and results.

In §277 we compare weight decompositions, virtual ¢-truncations, and weight
spectral sequences corresponding to distinct weight structures (in possibly dis-
tinct triangulated categories, connected by an exact functor).

2.1 WEIGHT STRUCTURES: BASIC DEFINITIONS

We recall the definition of a weight structure (see [6]; in [23] D. Pauksztello
introduced weight structures independently and called them co-t-structures).

DEFINITION 2.1.1 (Definition of a weight structure). A pair of subclasses
Ccvs0 w20 < ObjC for a triangulated category C will be said to define a
weight structure w for C if they satisfy the following conditions:

(i) ¢v=° =Y are additive and Karoubi-closed (i.e. contain all retracts of
their objects that belong to ObjC).

(ii) "Semi-invariance" with respect to translations.

QU}ZO C Q’UJZO[]-:I; Q’LUSO[]-] C Q’LUSO‘

(iii) Orthogonality.

Q’U}ZO LQwSO[l].

(iv) Weight decomposition.

For any X € ObjC there exists a distinguished triangle

Bl-1]->X—>ALB (6)
such that 4 € C¥<°, B e C%=9.

A simple example of a category with a weight structure is K (B) for any addi-
tive B: positive objects are complexes that are homotopy equivalent to those
concentrated in positive degrees; negative objects are complexes that are homo-
topy equivalent to those concentrated in negative degrees. Here one could also
consider the subcategories of complexes that are bounded from above, below,
or from both sides.

The triangle (@) will be called a weight decomposition of X. A weight de-
composition is (almost) never unique; still we will sometimes denote any pair
(A, B) as in (@) by X*< and X%Z!. Besides, we will call objects of the type
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(X[i])*=C[4] and (X[i])*=[4] (for 4,5 € Z) weight truncations of X. A shift of
the distinguished triangle (6) by [¢] for any i € Z, X € ObjC (as well as any
its rotation) will sometimes be called a shifted weight decomposition.

In K (B) (shifted) weight decompositions come from stupid truncations of com-
plexes.

We will also need the following definitions and notation.

DEFINITION 2.1.2. Let X € ObjC.

1.

10.

11

. We will say that (C,w) is bounded if C* = C

The category Hw C C whose objects are cv=0 = w20 n ngo,
Hw(Z,T) = C(Z,T) for Z, T € C*=°, will be called the heart of the
weight structure w.

. owt (resp. ngl, resp. Qw:l) will denote szo[fl] (resp. ngo[fl],

resp. C=°[—1)).

. We denote C*Z! N C*< by b,
. XSt (resp. X2 will denote (X[1])<? (resp. (X[l —1])¥=1).
. w<; X (resp. w>;X) will denote X*“<![—i] (resp. X*“2i[—i]).

. w will be called non-degenerate if

ﬂlezl = ﬁleSl = {0}

. We consider C° = (uieZQwﬁi) N (UieZszi) and call it the class of

bounded objects of C'.

For X € C” we will usually take w<; X = 0 for i small enough, w>; X = 0
for i large enough.

We will also denote by C° the corresponding full subcategory of C.

. We will call a Postnikov tower for X (see Definition [[LT.5]) a weight Post-

nikov tower if all Y; are some choices for w>;_; X. In this case we will call
the complex whose terms are X? (see Remark [[.T.6) a weight complex for
X.

We will call a weight Postnikov tower for X negative if X € C"<° and
we choose w>; X to be 0 for all j > 0 here.

D C ObjC will be called extension-stable if for any distinguished triangle
A— B—CinC wehave: A,CeD = BeD.

We will also say that the corresponding full subcategory is extension-
stable.

D C ObjC will be called negative if for any < > 0 we have D 1 DJi].
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Remark 2.1.3. 1. One could also dualize our definition of a weight Postnikov
tower i.e. build a tower from w<; X instead of w>;X. Our definition of a
weight Postnikov tower is more convenient for our purposes since in §3.6] below
we will consider Y; = j(Zy \ Z;) instead of = j(Zy \ Z; — Zp)[—1]. Yet this
does not make much difference; see §1.5 of [6] and Theorem Z:ZTYI2) below. In
particular, our definition of the weight complex for X coincides with Definition
2.2.1 of ibid. Note also, that Definition 1.5.8 of ibid (of a weight Postnikov
tower) contained both ’our’ part of the data and the dual part.

2. Weight Postnikov towers for objects of C are far from being unique; their
morphisms (provided by Theorem 22ZI|[I5) below) are not unique also (cf.
Remark 1.5.9 of [6]). Yet the corresponding weight spectral sequences for co-
homology are unique and functorial starting from Fs; see Theorem 2.4.2 of ibid.
and Theorem below for more detail. In particular, all possible choices of
a weight complex for X are homotopy equivalent (see Theorem 3.2.2(II) and
Remark 3.1.7(3) in [6]).

2.2 BASIC PROPERTIES OF WEIGHT STRUCTURES

Now we list some basic properties of notions defined. In the theorem below
we will assume that C' is endowed with a fixed weight structure w everywhere
except in assertions [I8] -

THEOREM 2.2.1. 1. The axiomatics of weight structures is self-dual: if
D = C% (so ObjC = ObjD) then one can define the (opposite) weight
structure w' on D by taking DV <° = C*Z° and DV 20 = Cv=0.

2. We have
QU}SO _ QMZIJ_ (7)

and
CwZO _ J_ngfl. (8)

3. For any i € Z, X € ObjC we have a distinguished triangle w>; 11 X —
X — w<; X (given by a shifted weight decomposition,).

4. Cv<0 20 and C¥=° are extension-stable.

5. All CYS' are closed with respect to arbitrary (small) direct products
(those, which ezist in C); all O and C"=" are additive.

6. For any weight decomposition of X € C=° (see (@) we have A € C*=C.

7. If A — B — C — A[l] is a distinguished triangle and A,C € C"=°, then
B2 AaC.

8. If we have a distinguished triangle A — B — C for B € C*7°, C €
C"="! then A~ B C[-1].
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If X e C¥=°, X[-1] = A L Bisa weight decomposition (of X[—1]),
then Be C¥=°; B~ A& X.

Letl <m € Z, X, X' € ObjC; let weight decompositions of X[m| and
X'[l] be fized. Then any morphism g : X — X' can be completed to a
morphism of distinguished triangles

meHX X c wng
la lg lb (9)
’wzH_le X' d wSlXI

This completion is unique if [ < m.

Consider some completion of a commutative triangle w>p 1 X —
w>i11X — X (that is uniquely determined by the morphisms wspm41 X —
X and w>;41 X — X coming from the corresponding shifted weight de-
compositions; see the previous assertion) to an octahedral diagram:

\/

W41 X

/\

w[lJrl m) w>m+1X

- \

Wi 1,m) X Wemp1 X

w<lX

w<lX

Then wjt1,mX € Q[H'l’m] ; all the distinguished triangles of this octahe-
dron are shifted weight decompositions.

For X, X' € ObsC, ,I!,m,m’ € Z,l <m, ' <m/, I >1', m >m/, con-
sider two octahedral diagrams: (I1l) and a similar one corresponding to
the commutative triangle w>m41 X — w>11 X — X and wsp 41 X' —
wsp 1 X — X (i.e. we fix some choices of these diagrams). Then any
g € C(X,X") could be uniquely extended to a morphism of these dia-
grams. The corresponding morphism h : wyyq ;X — w[l/+17m/]X' s
characterized uniquely by any of the following conditions:
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(i) there exists a C-morphism i that makes the squares

w2l+1X — X

lz‘ lg (10)

w21’+1X/ .4

and
W1 X —— wiprmX
[ [» (1)
w1 X ——— Wy, X
commutative.

(1) there exists a C-morphism j that makes the squares

X — wSmX

lg lj (12)

X — s we X'

and
w[l+17m]X —_— wSmX
lh lj (13)
’LUUIJerI]X/ _— wgm/X/
commautative.

For any choice of w>; X there ezists a weight Postnikov tower for X (see
Definition[Z1.2(%)). For any weight Postnikov tower we have Cone(Y; —
X)eQwsTi Xt e oV,

Conversely, any bounded Postnikov tower (for X ) with X® € Cc* s a
weight Postnikov tower for it.

For X, X' € ObjC and arbitrary weight Postnikov towers for them, any
g € C(X,X’) can be extended to a morphism of Postnikov towers (i.e.
there exist morphisms Y; — Y/, X' — X'*, such that the corresponding
squares commute).

For X, X' € C¥=° suppose that f € C(X,X') can be extended to a
morphism of (some of) their negative Postnikov towers that establishes
an isomorphism X9 — X'°. Suppose also that X' € CV=°. Then f yields
a projection of X onto X' (i.e. X' is a retract of X via f).

17. C° is a Karoubi-closed triangulated subcategory of C. w induces a non-

degenerate weight structure for it, whose heart equals Hw.
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For a triangulated idempotent complete C let D C ObjC be negative.
Then there exists a unique weight structure w on the Karoubization T
of (D) in C such that D C T%=C. Its heart is the Karoubization of the
closure of D in C with respect to (finite) direct sums.

For the weight structure mentioned in the previous assertion, TV<0 is the
Karoubization of the smallest extension-stable subclass of ObjC contain-
ing Ui>oD[i]; T%=C is the Karoubization of the smallest extension-stable
subclass of ObjC containing Ui<oDI[i].

For the weight structure mentioned in two previous assertions we also
have
TS0 = (UicoDli])*; T2 =+ (Usso D).

Proof. 1. Obvious; cf. Remark [[T3of [6] (and Remark 1.1.2 of ibid. for

© 0w N O

10.
11.

12.

more detail).

. These are parts 1 and 2 of Proposition 1.3.3 of ibid.

. Obvious (since [i] is exact up to change of signs of morphisms); cf. Remark

1.2.2 of ibid.

. This is part 3 of Proposition 1.3.3 of ibid.

. Obvious from the definition and parts 4 of loc.cit.

. This is part 6 of Proposition 1.3.3 of ibid.

. This is part 7 of loc.cit.

. It suffices to note that C'(B,C) = 0, hence the triangle splits.

. This is part 8 of loc.cit.

This is Lemma 1.5.1 of ibid.

The only non-trivial statement here is that wjiy X € cli+tm] (it

easily implies: the left hand side of the lower cap in (II)) also yields
a shifted weight decomposition). (Il yields distinguished triangles:
T = ('LUZH-IX — w[l+1,m]X — ’LUZm_HX[l]) and T, = (’LUSZX —
Wi 41,m] X [1] = w<m X[1]). Hence assertion @ yields the result.

By assertion [0 g extends uniquely to a morphism of the following dis-
tinguished triangles: from T3 = (Wsm+1X — X — w<pX) to T§ =
(’LUZm/_HXI - X' — U}SmIX), and from Ty = (wZH-IX —- X — ’LUSZX)
to T) = (wsp+1 X' — X' — w<p X); next we also obtain a unique mor-
phism from T (as defined in the proof of the previous assertion) to its
analogue T7. Putting all of this together: we obtain unique morphisms
of all of the vertices of our octahedra, which are compatible with all
the edges of the octahedra expect (possibly) those that belong to T (as
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defined above). We also obtain that there exists unique ¢ and h that
complete ([0) and () to commutative squares.

Now, the morphism w<; X — w41, X could be decomposed into the
composition of morphisms belonging to 77 and 75. Hence in order to ver-
ify that we have actually constructed a morphism of octahedral diagrams,
it remains to verify the commutativity of the squares

wng —_— wng

lg lj (14)
W< X — w<p X’

and (I3)) i.e. we should check that the two possible compositions of ar-
rows for each of the squares are equal. Now, assertion [I0] implies: the
compositions in question for (I4)) both equal the only morphism ¢ that

makes the square
X — wepX

s Js
X — wgl/X/
commutative. Similarly, the compositions for (I3)) both equal the only

morphism 7 that makes the square

W11 X —— Wp1m X

! I

X' — we X

commutative. Here we use the part of the octahedral axiom that says

that the square
W1 X —— Wp1,m X

! l

X E— wSmX
is commutative (as well as the corresponding square for (X', 1’, m’)).

Lastly, as we have already noted, the condition (i) characterizes h
uniquely; for similar (actually, exactly dual) reasons the same is true
for (ii). Since the morphism w1, X — wpr 41, X’ coming from the
morphism of the octahedra constructed satisfies both of these conditions,
it is characterized by any of them uniquely.

Immediate from part 2 of (Proposition 1.5.6) of loc.cit (and also from
assertion [TT).

Immediate from Remark 1.5.9(2) of ibid.
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Immediate from part 1 (of Remark 1.5.9) of loc.cit.

It suffices to prove that Cone f € C*<~!. Indeed, then the distinguished
triangle X 4y X' 5 Cone f necessarily splits.

We complete the commutative triangle X<~ — X/ws=1  X0(= X'0)
to an octahedral diagram. Then we obtain Cone f = Cone(X%<~! —
X'"<=1)[1]; hence Cone f € C"="" indeed.

This is Proposition 1.3.6 of ibid.

By Theorem 4.3.2(IT1) of ibid., there exists a unique weight structure on
(D) such that D C (D)*=°. Next, Proposition 5.2.2 of ibid. yields that
w can be extended to the whole T'; along with part Theorem 4.3.2(I12)
of loc.cit. it also allows to calculate 7%= in this case.

Immediate from Proposition 5.2.2 of ibid. and the description of (H)*<?

and (H)*Z? in the proof of Theorem 4.3.2(II1) of ibid.

If X € T%<0 then the orthogonality condition for w immediately yields:
Y L X for any Y € U;<oD]i].

Conversely, suppose that for some X € ObjT we have Y 1 X for all
Y € Uij«oDJi]. Then Y L X also for all Y belonging to the smallest
extension-stable subclass of ObjC' containing U;<oD[i]. Hence this is also

true for all Y € T%2! (see the previous assertion). Hence () yields:
X € T%<0 We obtain the first part of the assertion.

The second part of the assertion is dual to the first one (and easy from

@)
O

Remark 2.2.2. 1. In the notation of assertion [I0} for any a (resp. b) such

that the left (resp. right) hand square in (@) commutes there exists some
b (resp. some a) that makes (@) a morphism of distinguished triangles
(this is just axiom TR3 of triangulated categories). Hence for | < m the
left (resp. right) hand side of (@) characterizes a (resp. b) uniquely.

. Assertions [0 and [M2] yield mighty tools for proving that a construction

described in terms of weight decompositions is functorial (in a certain
sense). In particular, the proofs of functoriality of weight filtration and
virtual ¢-truncations for cohomology (we will consider these notions be-
low) in [6] were based on assertion 101

Now we explain what kind of functoriality could be obtained using asser-
tion loc.cit. Actually, such an argument was already used in the proof of
assertion

In the notation of assertion [I0] we will say that a and b are compatible
with ¢g (with respect to the corresponding weight decompositions). Now
suppose that for some X” € ObjC, some n <, ¢’ € C(X',X"), and
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a distinguished triangle wsn,11 X" — X’ — w<, X’ we have morphisms
a wsip1 X = wsp1 X and Vo w X' — w<p X" compatible with
g’. Then a’ oa and b’ o b are compatible with ¢’ o g (with respect to
the corresponding weight decompositions)! Moreover, if n < m then
(@’ oa,b ob) is exactly the (unique!) pair of morphisms compatible with

g og.

3. In the notation of assertion [2 we will (also) say that h : wyyq,,X —
W 41,m X" is compatible with g. Note that h is uniquely characterized
by (i) (or (ii)) of loc.cit.; hence in order to characterize it uniquely it
suffices to fix g and all the rows in (IQ) and (@) (or in [I2)) and ([@3)).
Besides, we obtain that h is functorial in a certain sense (cf. the reasoning
above).

4. Assertion [Il immediately implies: for any I < m the class of all possible
w<; X coincides with the class of possible w<;(w<, X ), whereas the class
of possible w>,, X coincides with those of ws, (w>;X).

Besides, assertion [IT]also allows to construct weight Postnikov towers (cf.
§1.5 of [6]). Hence wy; ;)X is just X#[—i] (forany i € Z, X € ObjC), and a
weight complex for any w11 ,,,) X can be assumed to be the corresponding
stupid truncation of the weight complex of X.

5. Assertions [I0] and [I5] will be generalized in §2.7 below to the situation
when there are two distinct weight structures; this will also clarify the
proofs of these statements. Besides, note that our remarks on functorial-
ity are also actual for this setting.

Some of the proofs in §2.7 may also help to understand the concept of
virtual ¢-truncations (that we will start to study just now) better.

2.3 VIRTUAL ¢-TRUNCATIONS OF (COHOMOLOGICAL) FUNCTORS

Till the end of the section C' will be endowed with a fixed weight structure
w; H: C — A (A is an abelian category) will be a contravariant (usually,
cohomological) functor. We will not consider covariant (homological) functors
here; yet certainly, dualization is absolutely no problem.

Now we recall the results of §2.5 of [6] and develop the theory further.

THEOREM 2.3.1. Let H : C — A be a contravariant functor, k € Z, j > 0.

I The assignments H, = HJ7 : X — Im(H(w<;X) — H(w<p+;X)) and
Hy = HY . X — Im(H (w>x X) = H(wsgy ;X)) define contravariant functors
C — A that do not depend (up to a canonical isomorphism) from the choice of
weight decompositions. We have natural transformations Hy — H — H,.

II Let k' € Z, j' > 0. Then there exist the following natural isomorphisms.

n (H{cj)llc'j/ ~ H{nin(k,k'),max(k+j,k’+j’)—min(k,k’).

kj\k'j’ min(k,k’),max(k+7,k"+;j")—min(k,k")
2. (HMET =~ g .
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3. (Hfj)glj/ = (Hglj/)]fj = Im(H (w1 X) = H(Wikgj,k04,,X)). Here the last
term is defined using the connection morphism w41 X — Wik X that
is compatible with idx in the sense of Remark [ZZ2(3); the last isomorphism
is functorial in the sense described in loc.cit.

III Let H be cohomological, j = 1; let k be fized.

1. H;y (1 =1,2) are also cohomological; the transformations Hy — H — Hy
extend canonically to a long exact sequence of functors

-+« = Hso[l] > H -+ H— Hy— Hyo[-1] — ... (15)

(i.e. the sequence is exact when applied to any X € ObjC).
2. Hy = H whenever H vanishes on C*=F+1,
3. H = Hy whenever H vanishes on ngk.

4. Let H' L HS H bea (three-term) complez of functors exact in the middle
such that:

(i) H', H" are cohomological.

(it) for any X € ObjC we have Coker g(X) = Ker f(X[—1]) (we do not fix
these isomorphisms).

(iii) H' vanishes on C*Z*T1: H" vanishes on CVSF.

Then H' 5 H is canonically isomorphic to Hy — H; H % H" is canonically
isomorphic to H — Ho.

Proof. 1 This is Proposition 2.5.1(III1) of [6].

IT Easily follows from Theorem Z2.1] parts [Tl and [2} see Remark

IIT1. This is Proposition 2.5.1(II12) of [6].

2. If H vanishes on C*Z*¥*1 then for any X we have w>;+1X = 0; hence Hs
vanishes. Therefore in the long exact sequence --- — Hy(X|[1]) - Hy —» H —
Hy(X) — ... given by assertion IT1 we have Hy(X[1]) 2 0 = H3(X); we obtain
H1 =~ H.

Conversely, suppose that H; = H. Let X € ObjC%=*™!; we can assume that
w<kX = 0. Then we have H(X) = H;(X) = Im H(w<xX) = H(w<p+1X)) =
0.

3. It suffices to apply assertion II1 to the dual functor C°? — A°P; note that the
axiomatics of abelian categories, triangulated categories, and weight structures
are self-dual (see Remark [LT3(1) and Theorem Z27TI()).

4. We should check that in the diagram

H, —— H
e
H —— H

g and h are isomorphisms. Then goh ™! will yield the first isomorphism desired,
whereas dualization will yield the remaining half of the statement.
Now, assertion ITI2 yields that g in isomorphism.
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Next, for an X € ObjC we choose some weight decompositions for X[k] and
X[k + 1] and consider the diagram

H'(w<p X)1]) ——— H'(w<pX) —— H(w<pX) —— H'(w<pX)

[ s

H'(wep1 X)[1]) ——— H'(wap1X) —— H(w<p1X) ——— H'(wepp1X).

By our assumptions, H"” ((w<xX)[1]) & H"(w<xX) & H" ((w<xg+1X)[1]) = 0;
hence [ is an isomorphism and m is a monomorphism. Hence the induced map
Ima — Imb is an isomorphism; so h is an isomorphism (since its application
to any X € ObjC is an isomorphism).

O

DEFINITION 2.3.2. [virtual ¢-truncations of H]|

Let k,m € Z. For a (co)homological H we will call H', | = 1,2, k € Z, virtual
t-truncations of H. We will often denote them simply by H;; in this case we
will assume k = 0 unless k is specified explicitly.

We denote the following functors C — A: HF, Hy "' (Hy')H, and X —
(H); ™ (X [K]) by 7<x H, 71 H, Tim+1,5 H, and H™=" respectively. Note that
all of these functors are cohomological if H is.

Remark 2.3.3. 1. Note that H often lies in a certain triangulated ’category of
functors’ D (whose objects are certain cohomological functors C — A). We will
axiomatize this below by introducing the notion of a duality ® : C°?xD — A: if
® is a duality then for any Y € ObjD we have a cohomological functor ®(—,Y) :
C — A. It is also often the case when the virtual ¢-truncations defined are
compatible with actual t-truncations with respect to some t-structure ¢ on D
(see below). Still, it is very amusing that these ¢-truncated functors as well as
their transformations corresponding to t-decompositions (see Definition [[.T.T])
can be described without specifying any D and ®!

2. Below we will need an explicit description of the connecting morphisms in
([@3). We give it here (following the proof of Proposition 2.5.1 of [6]).

The transformation H; — H (resp. H — Hs) for any k, j can be calculated by
applying H to any possible choice either of X — w<, X or of X — w<p; X
(resp. of w>;X — X or of w>x4,; X — X) that comes from any possible choice
the corresponding weight decomposition. The transformation Hy — Hj o [—1]
for 7 =1 is given by applying H to any possible choice either of the morphism
W<p+1X — Ww>k42X[1] or of the morphism w<pX — w>p4+1X[1] that comes
from any possible choice of a weight decomposition of X [k].

Here we use the following trivial observation: for A-morphisms X3 f# Y: and

X EEd Y5 any g : X1 — Xs (resp. h: Y7 — Y>) is compatible with at most one
morphism ¢ : Im f; — Im f5; if such an ¢ exists, we will say that it is induced
by g (resp. by h). Certainly, here f; could be equal to idx, or fo could be
equal to idx,.
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3. For any k,j, and any C-morphism g : X — Y the morphism H;(X) —
H,(Y) (resp. H2(X) — H»(Y)) is induced by any choice of either of the
morphism w<iX — w<iY or of w<p4; X — w<p4+;Y (resp. of the morphism
w>EX — w>kY or of wpy; X — wsp4,;Y) that is compatible with ¢g with
respect to the corresponding weight decomposition (in the sense of Remark
2222)); see the proof of Proposition 2.5.1 of [6].

We would like to extend assertion 1114 of Theorem [2.3.1] to a statement on a
(canonical) isomorphism of long exact sequences of functors. To this end we
need the following definition.

DEFINITION 2.3.4. 1. We will call a sequence of functors C' = --- — H” o

(1] W) g Jog 9 g M g [-1] — ... of contravariant functors C — Ab a
strongly exact complex if H', H, H"” are cohomological and C'(X) is a long exact
sequence for any X € ObjC; here [1](h) is the transformation induced by h.
2. We will also say that a strongly exact complex C'is nice in H if the following
condition is fulfilled:

For any distinguished triangle 7' = A LBl cX A[l] in C the natural
morphism p:

f(4) —H(l) 0
0 9(B) —H”(m))
—H'([=1(n) 0 h(C)

Ker((H'(4) P H(B)P H"(C))
(H(A) P H"(B)EP H'(C[-1]))) 5 Ker((H'(A) €D H(B))

EACOL L ION H(A)) is epimorphic.

(16)

Now we describe the connection of (I8) with truncated realizations; our argu-
ments will also somewhat clarify the meaning of this condition.

THEOREM 2.3.5. 1. Let C be a strongly exact complex of functors that is nice
in H; let H' NNy (a ’piece’ of C) satisfy the conditions of assertion
IIL} of Theorem[Z.31. Then C is canonically isomorphic to (I3).

2. Let X — Y — Z be a distinguished triangle in C. Then C = --- —
C(—,X)—=C(-,Y) = C(—,Z) — ... is a strongly exact complex of functors
C — Ab; it is nice in C(—,Y).

3. Let there exist a (skeletally) small full triangulated C' C C such that the re-
striction of a strongly exact complex C to C' is nice in H. For D € ObjC
we consider the projective system L(D) whose elements are (E,i) : E €
ObjC', i € C(D,E); we set (E,i) > (E',i') if (E,i) = (E'@E",i’ ®i")
for some (E",i") € L(D).

Suppose that for any D € C and for G = H' and G = H we have

lin, , (ImG(i) : G(E) > G(D)) = G(D); (17)
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here we also assume that these limits exist. Then C is nice on C also.

4. Let C' C C be a (skeletally) small triangulated subcategory, let A satisfy
AB5. Let C' = --- - H — H — H” — ... be a strongly exact complex
of functors C' — A. We extend all its terms from C' to C by the method
of Proposition [[L.21] and denote the complex obtained by C; we carry on the
notation for the terms and arrows from C' to C. Then C is a strongly exact
complez also (and its terms are cohomological functors).

It is nice in H whenever C' is.

Proof. 1. Tt suffices to check that the isomorphism provided by Theorem
23TI1114) is compatible with the coboundaries if (6] is fulfilled. We can
assume A = Ab; see Remark [LT.8] Then ({6) transfers into: for any
(x,y): x€ H(A), ye H(B), f(A)(z) = H(l)(y) there exists a

2z € H"(C) such that g(B)(y) = H"(z) and H([-1](n))(z) = h(C)(z). (18)

We should prove: if the images of € Hy(X) and of y € H"(X) in H}(X) co-
incide, w € H1(X[-1]) and t = H(X)(y) € H'(X[—1]) are their coboundaries,
then w and ¢ come from some (single) v € Hj(X[—1]).

We lift = to some ' € H(wsk4+1X). Then (I6) (if we substitute wsg4+1 for A
and X for B in it) implies the existence of some v € H'((w<;X)[—1]) whose
image in H'(X[—1]) (resp. in H(w<kX[—1])) coincides with ¢ (resp. with the
coboundary of z’). Hence we can take u being the image of v (in H{(X[—1])).
2. Since the bi-functor C(—, —) is (co)homological with respect to both argu-
ments, C' is a strongly exact complex indeed. It remains to note: (I6) in this
case just means that any commutative square can be completed to a morphism
of distinguished triangles; so it follows from the corresponding axiom (TR3) of
triangulated categories.

3. First suppose that A = Ab (or any other abelian category equipped with
an exact faithful functor A — Ab that respects small direct limits; note that
below we will only need A = Ab). Then we should check (Ig].

Now note: it suffices to prove that there exist A’, B’ € ObjC’, I' € C(A', B'),
aeC(AA), BeC(B,B), 2 € H(A"), ¢ € H(B’) such that:

v=H'(a)@), y=HPB)Y), lca=pol, f(A)()=HI)(y). (19)

Indeed, denote ¢! = Cone(l’); denote by ~ some element of C(C,C") that

completes
A—— B

Lo

A —— B
to a morphism of triangles. Let 2z’ € H”(C") be some element satisfying the
obvious analogue of ({I8). Then h = H"(vy)(h') is easily seen to satisfy (I8]).

Now we construct A’, B’,... as desired. Note that in this case the assumption
(@) is equivalent to: for any t € G(D) there exist E € ObjC’, s € G(D), and
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r € C(D, E), such that t = G(r)(s) (since C’ is additive). So, we can choose
A € ObjC', a € C(A, A"), 2’ € H'(A’) such that = = H'(a)(2"). We complete
qg=adl e C(AA@B) to a distinguished triangle A — A’ P B p=pLP
D. Since H(q)((— ’( (A")(2"),y)) = 0, there exists an s € H(D) such that
H(p)(s) = (-H'(f(A")(2"),y) (recall that H is cohomological on C). So, we
have H(p2)(s) = y, —H(p1)(s) = f(A')(X"), pzol = —py o

D fits for B if it lies in ObjC’. In the general case using (7)) again, we choose
B’ € 0bjC', § € C(D,B’), g € H(Y), such that s = H(5§)(¢g’). Then it is
easily seen that taking I’ = —d op1, 8 = 0 0 p2, we complete the choice of a set
of data satisfying (I9]).

This argument can be modified to work for a general A. To this end we separate
those parts of the reasoning where we used the fact that H is cohomological
from those where we deal with limits; this allows us to 'work as if A = Ab’.
We denote Ker(H'(A) @ H(B))—H(A)) (with respect to the morphism in (I6)
by S(A, B), and Ker(H'(A) @ H(B) @ H" (C))—H(A) @ H"(B) @ H'(C[-1]) by
T(A, B,C).

Then we have a commutative diagram

limg(Im(T(A', B/, C") = T(A, B, C))) —— lim(Im(S(A", B') —+ 5(A, B)))

T(A,B,C) — S(A, B)
here the first direct limit above is taken with respect to morphisms of triangles
(A= B —C)— (A - B — () for A/,B’,C" € ObjC' (the ordering is
similar to those of (I7)); the second limit is taken similarly with respect to
morphisms (A — B) — (A’ — B’) for A', B’ € ObjC’. Since the restriction of
C to C' is nice in H, for all A’, B’,C’ the morphism T'(A’, B',C") — S(A’, B)
is epimorphic; hence ' is epimorphic. Therefore, it suffices to prove that ¢ is
epimorphic.
Now let us fix A’ = Ay and o = ap. We use the notation introduced above;
denote the preimage of Im(H'(«) : H'(A") — H'(A)) with respect to the
natural morphism S(A, B) — H'(A) by J. Then J equals Im(H'(A")x H(D) —
S(A, B)). Indeed, here we can apply Proposition [L.1.7] (see Remark [[.T.8) and
then apply the reasoning 'with elements’ used above.
In any A we obtain: since ®(D,Y) = li_ng(lm(q)(B’, Y)— ®(D,Y))), we obtain
that G = lim(Im(S (Ao, B, X,Y) — S(A4, B, X,Y))). Here we use the following
fact (valid in any abelian A): if J; C J' € ObjA, h_n;Ji = J (for some projective
system), u : J" — J is an A-epimorphism, then limu(J;) = J.
Now, passing to the limit with respect to (Ag, ag) (using (7)) finishes the
proof.
4. C is a complex indeed since the extension procedure is functorial.
By Proposition [[LZT[(I1), all the terms of C' are cohomological on C. Also, part
IT2 of loc.cit. immediately implies that C' is exact (i.e. C(X) is exact for any
X € 0bjC). Hence C is a strongly exact complex.
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Obviously, if C is nice in H then C’ also is.
Conversely, let C’ be nice in H. Then Proposition [LZI[(II1) implies that H’
and H satisfy (IT) (for all D). Hence C is nice in H by assertion 3.

O

2.4  WEIGHT SPECTRAL SEQUENCES AND FILTRATIONS; RELATION WITH VIR-
TUAL {-TRUNCATIONS

DEFINITION 2.4.1. For an arbitrary (C,w) let H : C'— A be a cohomological
functor (A is any abelian category).
We define Wi(H) : C — A as X — Im(H (w<;X) — H(X)).

By Proposition 2.1.2(2) of [6], W¢(H)(X) does not depend on the the choice
of the weight decomposition of X[i]; it also defines a (canonical) subfunctor of
H(X).

Now recall that Postnikov towers yield spectral sequences for cohomology. We
will denote H (X[—i]) by H(X) (for X € ObjC). We will also use the notation
of Definition

THEOREM 2.4.2. Let k,m € Z.
I1. For any weight Postnikov tower for X (see Definition[Z.1.2(9)) there exists
a spectral sequence T = T(H, X) with EYY(T) = HY(XP) such that the map
EP? — EPTY9 s induced by the morphism X P~' — X P (coming from the
tower). We have T(H,X) = H?*4(X) for any X € C°.

One can construct it using the following exact couple: EY! = H1(X~P), DV =
Hi(Xxwz1-p),

2. T is (covariantly) functorial in H; it is contravariantly C-functorial in X
starting from Es.

3. Denote the step of filtration given by (Ei’m_l : 1> —k) on H"(X) by
F*H™(X). Then F~FH™(X) = (WFH™)(X).

II The derived exact couple for T(H, X) can be naturally calculated in terms of
virtual t-truncations of H in the following way: EY! = EF? = (H9)™="P(X),
DY = DP? = (15,H)(X[1l — p]); the connecting morphisms of the couple
((E%, DY) come from (I3).

mri. F*H™(X) = Im((r<x H™)(X) — H™(X)) (with respect to the connect-
ing morphism mentioned in Theorem [Z.21)(1)).

2. For any r > 2, p,q € Z there exists a functorial isomorphism EP? =

(FP(T—pra—r—ptr—a H))P [ FPYU T pia o pyr oo H)D)P.

Proof. T This is Theorem 2.4.2 of [6]; see also Remark 2.4.1 of ibid. for the
discussion of exact couples.

In fact, assertion 1 follows easily from well known properties of Postnikov towers
and of related spectral sequences.

IT Since virtual ¢-truncations are functorial, the exact couple (Dj, E%) is func-
torial also.
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The definitions of the derived exact couple and of the virtual ¢-truncations
imply immediately that D5? and their connecting maps are exactly D¢ (and
their connecting morphisms) specified in the assertion.

It remains to compare Fy with E), and also the connecting maps of exact
couples starting and ending in FEo with those for Fj. It suffices to consider
p = q = 0. Our strategy is the following one. First we construct an isomorphism
EYY — B our construction depends on some choices. Then we prove that the
isomorphism constructed is actually natural (in particular, it does not depend
on the choices made). Lastly we verify that the isomorphisms of the terms of
the exact couples constructed is compatible with the connecting morphisms of
these couples. Note that in this (last) part of the argument we can make those
choices (of certain weight decompositions) that we like.

By the definition of the derived exact couple we have: ES is the 0-th cohomol-
ogy of the complex (H (X 7)) (for any choice of the weight complex (X?)). £
is the image of H (k) where k € C(wjo1) X, w[—1,0)X) is any morphism that is
compatible with idx with respect to the corresponding weight decompositions
(see see Theorem 23I(T13) and Remark 222.2[3))). So, we should compare a
subfactor of H(X") with a subobject of H (wyg1;X).

Now suppose that we are given an octahedral diagram containing a commu-
tative triangle wp; 1 X — wp 11X — wi_1 )X (see Theorem 2Z2.TIIT)). We
could obtain it as follows: fix some w[_;1;X; then choose certain wjy ) X =
w>o(wi—1,11X) and wp 11X = w>1(wj—1,1)X) (see Remark Z22H)). For any
possible completion of the commutative triangle w 1) X — wyo,1) X — w1 11X
to an octahedral diagram, the remaining vertices of the octahedron are certain
wi_1,00X, w0 X = X°, and w_1 _1)X = X (1] (by Theorem ZZIY(IT)). We

obtain morphisms wyg 1) X 4 X0 2 w_1,00X such that k = j oi. Moreover,
Im(H(X') — H(X")) = Ker H(i). Hence H(i) induces some monomorphism
o H(X°)/Im(H(X") — H(X")) to H(wpX). Besides, Ker(H(X") —
H(X 1Y) = Im H(j); therefore the restriction of a to a~!(Im H(k)) yields an
isomorphism 3 : E® — E0.

Now we verify that the isomorphism constructed is natural.

Note that it actually depends only on wjy ;X = X° and Im H(k) (we used
the remaining data only in order to verify that we actually obtain an iso-
morphism). So, suppose that we have X' € ObjC, g € C(X, X’), and some
choice of w>oX’, w>1X’, and w>»2X’. We have canonical connecting mor-
phisms w>o X’ — w>1 X" — w>2 X' that are compatible with idx- with respect
to the morphisms w>; X’ — X’ (I = 0,1,2). Applying Theorem 2Z2.T([IT]), we

obtain a choice of w1 X’ %, X', We also fix some choice of H(K') (in order
to do this we fix some choice of w< 1 X and of wi_;,gX). Note that all of
these choices are necessarily compatible with some choice of the isomorphism
B EY9(X') — EP(X') constructed as above (see ZZ2([2)).

Now we choose some morphisms ¢; : w>; X — w>; X', for —1 < <2, compat-
ible with g (see Remark 222.2(2))). These choices could be extended to some
morphisms a : wip ;X — wyp 11X’ and b : X°—X'? (by extending morphisms
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of arrows to morphism of distinguished triangles).
Now we verify the commutativity of the diagram

’UJ[OJ]X —’L) XO

J» I
w[o,l]X’ z—/) X’O

It follows from Theorem ZZIKI0) applied to the morphism go : w>eX —
w>oX', I = 1, m = 2 (since both bo ¢ and i’ o a are compatible with go).
Moreover, Remark Z2.23) yields that H(a) sends H(k) to H(k'). We obtain
a commutative diagram

ESO EéOO

l l

EY(H, X') —— B, X)

Since ES°(H, —) and EYV(H, —) are C°P-functorial (and the vertical arrows in
the diagram are exactly those that yield this functoriality; see Remark[2:3.3)3)),
we obtain the naturality in question.

Now it remains to prove that the isomorphisms of terms of exact couples con-
structed above is compatible with the (two remaining) connecting morphisms
of these couples.

First consider the morphisms ES® — DI°. Recall (by the definition of the
derived exact couple) that it is induced by any morphism wsoX — X°
that extends to a weight decomposition of w>oX (here we consider EJ as
a subfactor of H(X?)). On the other hand, the morphism EY° — D0 =
Im(H(w>-1X) = H(w>0X)) is induced by any possible choice of a morphism
w>0X — wip,1)X that yields a weight decomposition of w>oX[1] (by Remark
2331(2); see also Remark Z2Z2B)). Hence it suffices to note that the triangle

w>0X — wio, 1) X KNS CBT necessarily commutative by Remark 2.2.9]

It remains consider the morphism D;ﬁl — E99. Tt is induced by the morphism
X% — w>1 X (that yields a weight decomposition of w>(X). The morphism
D= Im(H (ws1 X)[1]) = H(ws2X)[1])) — EX° is induced by the mor-
phism wy 1jX — w>2X[1]. Hence it suffices to construct a commutative square

w[O,l]X —z> XO

l l

wZQX[l] —_— leX[].]

By applying Theorem 2Z2.TYIT)) to the commutative triangle w>2X — w>1 X —
w>0X we obtain that there exists such a commutative square with a certain i
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instead of i. Note that (by loc.cit.) io yields a weight decomposition of wjy 1) X
It suffices to verify that we may take i( for 7 i.e. that iy could be completed to
an octahedral diagram one of whose faces yields some choice of the commutative
triangle wyy 11X — wpo, 11X — wi_1 1) X. We take wy; )X = Coneig[—1], choose
some wy_1,1]X (coming from the same w<1 X as wy, ;X ). By Remark 22212
we obtain a unique commutative triangle wy; 11X — wp )X — wi_1 1) X that
is compatible with id,,_, x respect to the corresponding weight decompositions.
It remains to apply Theorem Z2.II(IT]).
ITT We can assume k =m = 0.
1. In the notation of Theorem 2.3.1] we consider the morphism of spectral
sequences M : T(Hy,X) — T(H,X) (induced by Hy — H). Part II of loc.cit.
implies: M is an isomorphism on E}? for p > —k and ESY(T(H;,X)) = 0
otherwise. The assertion follows immediately.
2. Similarly to the the previous reasoning, we have natural isomorphisms:
BT (1j9—yp—)H,X) = ES*(T(H, X)) for 2—r < p < r—2 and = 0 otherwise.
It easily follows that EBI(T(Tjo—r,y—g/H, X) = EPU(T(T—pro—r,—ptr—2H, X).
The result follows immediately.

O

Remark 2.4.3. 1. The dual of assertion II is: if we consider the alternative
exact couple for our weight spectral sequence (see Remark 21.3)) then the
derived exact couple can also be described in terms of virtual ¢-truncations (in
a way that is dual in an appropriate sense to that of Theorem [Z4.7]).

2. Possibly, at least a part of (assertion II of) the theorem could be proved by
studying the functoriality of the derived exact couple (and applying Theorem
2.35)1)).

2.5 DUALITIES OF TRIANGULATED CATEGORIES; ORTHOGONAL WEIGHT AND
t-STRUCTURES

Let C, D be triangulated categories. We study certain pairings of triangulated
categories C°? x D — A. In the following definition we consider a general A,
yet below we will mainly need A = Ab.

DEFINITION 2.5.1. 1. We will call a (covariant) bi-functor ® : C? x D — A a
duality if it is bi-additive, homological with respect to both arguments; and is
equipped with a (bi)natural transformation ®(X,Y) = ®(X[1],Y[1]).
2. We will say that ® is nice if for any distinguished triangle X — Y — Z the
corresponding (strongly exact) complex of functors

o (=, X)) = O(—,Y) - (-, 2) EN O([-1](—-), X) — ... (20)
is nice in ®(—,Y) (see Definition 2Z34); here f is obtained from the natu-
ral morphism ®(—, Z)—®(—, X[1]) by applying the (bi)natural transformation
mentioned above.
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3. Suppose that C is endowed with a weight structure w, D is endowed with a
t-structure ¢. Then we will say that w is (left) orthogonal to t with respect to
® if the following orthogonality condition is fulfilled:

(X, Y)=0if: X e C¥"and Y e D'Z', or X e C¥2" and Y € D=1,
(21)
4. If w is defined on C°?, t is defined on D°P; w is left orthogonal to ¢ (with
respect to some duality); then we will say that the corresponding opposite
weight structure on C is right orthogonal to the opposite t-structure for D.

Remark 2.5.2. 1. The axioms of ® immediately imply that (20) is a strongly
exact complex of functors indeed (whether @ is nice or not).

2. Certainly, if ® is nice then (20)) is nice at any term (since we can ’rotate’
distinguished triangles in D).

First we prove a statement that will simplify checking the orthogonality of
weight and t-structures.

PROPOSITION 2.5.3. Let ® : C? x D — A be some duality; let (C,w) be
bounded. Then w is (left) orthogonal to t whenever there exists a D C C"V=°
such that any object of C*=° is a retract of a finite direct sum of elements of
D and

®(X,Y)=0V X eD, YeD=up's1, (22)

Proof. If w is is left orthogonal to ¢, then (22) for D = C"=° follows immedi-
ately from the orthogonality condition.

Conversely, let D satisfy the assumptions of our assertion. Hence we have:
®(X,Y)=0if X € D[i], i >0,Y € D'Z! orif X € D[i], i <0,Y € D71,
Now suppose that for some E, F C ObjC we have: any object of Cc¥<%is a
retract of an object of E, any object of C*¥=" is a retract of an object of F.
Then it obviously suffices to check that ®(X,Y) = 0 if either X € FE and
YeDZ or X e FandY € D71,

Now by Theorem 2ZI(I9)), we can take E being the smallest extension-stable
subcategory of C containing D[i], ¢ > 0; and F being the smallest extension-
stable subcategory of C containing DJi], ¢ < 0. To conclude the proof it remains
to note that for a distinguished triangle X — Y — Zin C, O € ObjD we have:
P(X,0)=0=9(Z,0) = P(Y,0) =0. O

When (weight and t-) structures are orthogonal, virtual ¢-truncations of
®(—,Y) are given by t-truncations in D. We use the notation of Definition
2.0.2

PROPOSITION 2.5.4. 1. Let t be orthogonal to w with respect to ®, k € Z.
For' Y € ObjD denote the functor ®(—,Y) : C — A by H. Then we have
an isomorphism of complezes (< H — H — 7> H) =2 (®(—,t<;Y) — H —
O(—,t>p+1Y)) (where the connecting maps of the second complex are induced
by t-truncations); this isomorphism is natural in Y.
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2. Suppose also that @ is nice. Then the (strongly exact) complex of functors
that sends X to

e 4 (I)(X, tSkY) — (I)(X, Y) — (I)(X, tZkJrlY) — @(X[*l],tSkY) — ...
(23)
(constructed as in the definition of a nice duality) is naturally isomorphic to

(Z3).

Proof. 1. Since t and w orthogonal, ®(—,t<;Y") vanishes on , whereas
®(—,t>p41Y) vanishes on C¥<F. Moreover, [@3) yields that H' = ®(—,t<;Y)
and H” = ®(—,t>,4+1Y) also satisfy the condition (iii) of Theorem [Z3.T(IT14).
Hence the theorem yields the claim.

2. Immediate from the previous assertion and Theorem [2.3.5(1).

CkaJrl

O

Remark 2.5.5. Note that we actually need quite a partial case of the 'niceness
condition’ for ® in order to prove assertion 2. Hence here (and so, in all the
applications below) we will not need the niceness condition in its full generality.
Possibly, the corresponding partial case of the condition is weaker than the
whole assertion; yet checking it does not seem to be much easier.

Also, it seems quite possible that for an arbitrary (not necessarily nice) duality
there exists some isomorphism of (I5) with (23] if we modify the boundary
maps of the second complex. Yet there seems to be no way to choose such a
modification canonically.

‘Natural’ dualities are nice; we will justify this thesis now.

PROPOSITION 2.5.6. 1. If A= Ab, D = C, then ® : (X,Y) —» C(X,Y) is a
nice duality.

2. For some duality ® : C°? x D — A let there exist a (skeletally) small full
triangulated C' C C such that: the restriction of ® to C'°P x D is a nice duality
(of C" with D); for any X € ObjD the functor G = ®(—,X), C? — A,
satisfies (7). Then ® is nice also.

3. For D, C' C C as above, A satisfying AB5, let ' : C'? x D — A be a
duality. For any Y € ObjD we extend the functor ® (—,Y) from C' to C by
the method of Proposition [[Z1; we denote the functor obtained by ®(—,Y).
Then the corresponding bi-functor ® is a duality (C°P x D — A). It is nice
whenever @' is.

Proof. Immediate from parts 2—4 of Theorem [2.3.5]
O

Remark 2.5.7. 1. Proposition 2-5.6(1) yields an important family of nice dual-
ities; this case was thoroughly studied in [6] (in sections 4 and 7). We will say
that w is left (resp. right) adjacent to t if it is left (resp. right) orthogonal to it
with respect to ®(X,Y) = C(X,Y). Note that for w left (resp. right) adjacent
to ¢ with respect to this definition we necessarily have C¥<° = C*<9 (resp.
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Cv20 = C*2% by Theorem ZZI[E) and Remark [CI3I(@); so this definition is
actually compatible with Definition 4.4.1 of [6].

One can generalize this family as in §8.3 of ibid.: for A = Ab and an exact
F : D — C we define (X,Y) = C(X,F(Y)). Certainly, one could also
dualize this construction (in a certain sense) and consider F' : C — D and
(I)(Xa Y) = Q(F(X)7 Y)

2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) of
ibid. All the families of dualities mentioned can be expanded using part 3 of
the proposition.

3. It is also easy to construct a duality that is not nice. To this end one can
start with C = D, ® = C(—, —) and then modify the choice of distinguished
triangles in D (without changing the shift in D, and changing nothing in C)
in a way that would not affect the properties of functors to be cohomological.
The simplest way to do this is to proclaim a triangle X Ly S zn X[1] to
be distinguished in D if X = v =¥ Z =% X[1] is distinguished in C. Certainly,
such a modification is not very ’serious’; in particular, one can 'fix the problem’
by multiplying the isomorphism ®(X,Y) = ®(X[1],Y[1]) by —1.

The author does not know whether any duality can be made nice by modifying
the choice of the class of distinguished triangles (in D), or by modifying the iso-
morphism mentioned. Note also that the question whether there exists a D for
which such a modification can change the ’equivalence class’ of triangulations
is well-known to be open.

2.6 COMPARISON OF WEIGHT SPECTRAL SEQUENCES WITH THOSE COMING
FROM (ORTHOGONAL) t~-TRUNCATIONS

Now we describe the relation of weight spectral sequences with orthogonal
structures.

THEOREM 2.6.1. Let w for C andt for D be orthogonal with respect to a duality
O leti,jeZ, X € ObjC, Y € ObjD.

1. Consider the spectral sequence S coming from the following exact couple:
DY(S) = ®(X,Y*24p — 1]), EYI(S) = ®(X,Y*[p]) (we start S from
Es). It naturally converges to ®(X,Y[p + q]) if X € C°.

2. Let T be the weight spectral sequence given by Theorem [Z.7.] for the
functor H : Z +— ®(Z)Y). Then for all r > 2 we have natu-
ral isomorphisms EPY(T(H, X)) = EP4(S). There is also an equality
F~*"H™(X) = Im(®(X, t<xY[m]) — H™(X)) (here we use the notation
of part I} of loc.cit.) compatible with this isomorphism.

3. Suppose that ® is also nice. Then the isomorphism mentioned in the
previous assertion extends naturally to the isomorphism of of T with S
(starting from Es ).
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4. Let -+ - X771 - X779 — X' — ... denote an arbitrary choice of
the weight complex for X. Then we have a functorial isomorphism

®(X,Y'j]) =

(Ker(®(X 7, YI[i]) = ®(X "7, Y[i])/Im(®(X' 7, Y]i]) — @(X*j,y[i]z;.‘l)

Proof. 1. The theory of t-structures easily yields: Y*2? and Y*=? can be
functorially organized into a certain Postnikov tower for Y. Hence the
usual results on spectral sequences coming from Postnikov towers (see
§IV2, Exercise 2, of [I3]) yield the assertion easily.

2. Immediate from Proposition [25.4(1) and Theorem [ZZ2(III). Note that
the latter assertion does not use the ’dimension shift’ in (3.

3. Proposition [Z5.4)(2) and Theorem 2-A.2(IT) imply: there is a natural iso-
morphism of the derived exact couple for T" with the exact couple of S
(’at level 2°). The result follows immediately.

4. This is just assertion 2l for Es>-terms.

Remark 2.6.2. 1. So, we justified parts 4 and 5 of Remark 4.4.3 of [6].

2. Note that the spectral sequence denoted by S in (Remark 4.4.3(4) and
§6.4 of ) ibid. started from FE; so it differed from our S and T by a certain
shift of indices.

3. So, we developed an ’abstract triangulated alternative’ to the method of
comparing similar spectral sequences that was developed by Deligne and
Paranjape. The latter method used filtered complexes; it was applied in
[22], [11], and in §6.4 of [6]. The disadvantage of this approach is that one
needs extra information in order to construct the corresponding filtered
complexes; this makes difficult to study the naturality of the isomorphism
constructed. Moreover, in some cases the complexes required cannot
exist at all; this is the case for the spherical weight structure and its
adjacent Postnikov t-structure for C = D = SH (the topological stable
homotopy category; see §4.6 of [6]; yet in this case one can compare the
corresponding spectral sequences using topology).

4. One could modify our reasoning to prove a version of the theorem that
does not mention weight and t-structures. To this end instead of consid-
ering a weight Postnikov tower for X and the Postnikov tower coming
from t¢-truncations of Y one should just compare spectral sequences com-
ing from some Postnikov towers for X and Y in the case when these
Postnikov towers satisfy those 'orthogonality’ conditions (with respect to
a (nice) duality ®) that are implied by the orthogonality of structures
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condition in our situation. Yet it seems difficult to obtain the naturality
of the isomorphisms in Theorem 2.6.TIB) using this approach.

. Even more generally, it suffices to have an inductive system of Postnikov

towers in D and a projective system of Postnikov towers in C' such that the
orthogonality conditions required are satisfied in the (double) limit. Then
the comparison statements for the double limits of the corresponding
spectral sequences are valid also. A very partial (yet rather important)
example of a reasoning of this sort is described in §7.4 of [6]. Besides, this
approach could possibly yield the comparison result of §6 of [I1] (even
without assuming k to be countable as we do here).

. A simple (yet important) case of (24) is: for any i € Z

X € C¥=" = VY € ObjD we have ®(X,Y) = &(X,Y'=").  (25)

"CHANGE OF WEIGHT STRUCTURES’; COMPARING WEIGHT SPECTRAL
SEQUENCES

Now we compare weight decompositions, virtual ¢-truncations, and weight spec-
tral sequences corresponding to distinct weight structures. In order make our
results more general (and to apply them below) we will assume that these struc-
tures are defined on distinct triangulated categories; yet the case when both
are defined on C is also interesting.

So, till the end of the section we will assume: C, D are triangulated categories
endowed with weight structures w and v, respectively; F': C — D is an exact
functor.

DEFINITION 2.7.1. 1. We will say that F is right weight-ezact if F(C"=°) C
Q’UZO_

2. If F is fully faithful and right weight-exact, we will say that v dominates w.
3. We will say that F is left weight-exact if F(C*<°) c D"<°.

4. F will be called weight-ezxact if it is both right and left weight-exact.

We will say that w induces v (via F) if F'is a weight-exact localization functor.

PROPOSITION 2.7.2. Let F be a right weight-exact functor; let | > m € Z,
X € 0bjD, X' € ObjC, g € D(F(X'), X)

1. Let weight decompositions of X[m] with respect to v and X'[l] with respect
to w be fixed. Then g can be completed to a morphism of distinguished triangles

Flwsi 1 X') —— F(X') —— FlwgX')

| O

vsmpr X —— X —— v X

This completion is unique if | > m.
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2. For arbitrary weight Postnikov towers Po,(X) for X (with respect to v)
and Po, X' for X' (with respect to w), g can be extended to a morphism
F.(PoyX') = Poy(X).

3. Let H: D — A be any functor, k € Z, j > 0. Denote H o F by G. Then
(28) allows to extend H(g) naturally to a diagram

HY(X) —— H(X) —— HY(X)

1 o

GV (X' — GX') —— G¥(X')

here we add the weight structure chosen as an index to the notation of Theorem

[2.37(1).

Proof. 1. Since F is right weight-exact, D(F(wsn+1X"), v<mX) = {0} for any
n > m. Hence the composition morphism F(w>;+1X’) = v<,, X is zero; if
I > m then D(F(w>141X"), (vemX)[—1]) = {0}. The result follows easily; see
Proposition 1.1.9 of [2].

2. Assertion 1 (in the case | = m) yields that there exists a system of morphisms
fi € D(F(w>;X"),v>;X) compatible with g; we fix such a system. Applying
the same assertion for any pair of [,m : | > m, we obtain that f; is compatible
with f,, (here we use arguments similar to those described in Remark [Z2.2)).
Finally, since any commutative square can be extended to a morphism of the
corresponding distinguished triangles (an axiom of triangulated categories), we
obtain that we can complete (uniquely up to a non-canonical isomorphism)
the data chosen to a morphism of Postnikov towers (i.e. choose a compatible
system of morphisms F(X'") — X?).

3. Easy from assertion 1; note that for any commutative square in A

x I,y

o
z 2T
if we fix the rows then the morphism go h : X — T completely determines the

morphism Im f — Im ¢ induced by h.
O

We easily obtain a comparison morphism of weight spectral sequences.

PRrOPOSITION 2.7.3. I Let F, X', G be as in the previous proposition; suppose
also that H is cohomological. Set X = F(X'), g = idx.

1. There ezists some comparison morphism of the corresponding weight spectral
sequences M : T,(H,X) — T,,(G,X"). Moreover, this morphism is unique and
additively functorial (in g) starting from Es.

2. Let there exist D C C=° such that any Y € CV~° is a retract of some
Z € D, and that for any Z € D there exists a choice of ZV2' such that
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EYT,(H,F(Z“=1)) = {0} for all p,q € Z. Then (any choice of) M yields an
isomorphism of the spectral sequence functors starting from Es.

3. Let E be a triangulated category endowed with a weight structure v, F' : D —
E a right weight-exact functor; suppose that H = EoF' for some cohomological
functor E : E — A. Then we have the following associativity property for
comparison of weight spectral sequences: the composition of M with (any choice
of ) a comparison morphisms M’ : T,,(E, F'(X)) — T,(H, X) constructed as in
assertion 1, starting from Es is canonically isomorphic to (any choice of a
similarly constructed) comparison morphism Ty, (E, F' (X)) — T, (G, X').

II Let H, X', X, G be as above, but suppose that F : C — D 1is left weight-ezact.
Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G,X") = T,(H, X); this construction satisfies the duals for all properties
of M described in assertion I.

Proof. I 1. In order to construct some comparison morphism, it suffices to
construct a morphism of the corresponding exact couples that is compatible
with idx. Hence it suffices to use Proposition 277.2](2) to obtain a morphism
of the corresponding Postnikov towers, and then apply H to it.

Theorem 242(1T) yields that weight spectral sequences could be described in
terms of the corresponding virtual ¢-truncations. Hence Proposition B-7.2](3)
implies all the functoriality properties of M listed.

2. Tt suffices to prove that M is an isomorphism on E3*T,(G,Y) for all Y €
ObjC.

Since D € C*=°, this assertion is true for any Y € D. Since Z — E5(T(G, Z))
is a cohomological functor for any weight structure (see Theorem and the
remark at Definition 3.2)), the assertion is also true for any Y € ObjC’. To
conclude it suffices to note that for any H, any Y € ObjC, any finite 'piece’
of E3*T,(G,Y) coincides with the corresponding piece of E3*T, (G, wy; ;1Y)
(for any choice of wy; ;1Y) if 4 is small enough and j is large enough, and this
isomorphism is compatible with M.

3. We recall that comparison morphisms for weight spectral sequences were
constructed using Proposition 27.2(1). It easily follows that M’ o M is one of
the possible choices for a comparison morphism 7, (E, F'o F(X)) — T, (G, X').
It suffices to apply assertion I1 to conclude that this fixed choice of a comparison
morphism coincides with any other possible choice starting from Fs.

IT We obtain the assertion from assertion I immediately by dualization (see
Theorem [ZZTII(])); here one should consider the duals of C; D, and A (and
also ’'dualize’ the connecting functors). (]

Remark 2.7.4. M is an isomorphism (starting from FEs) also if: there exists a
localization of D such that H factorizes through it, v induces a weight struc-
ture v’ on it, w induces a weight structure on the categorical image of C that
coincides with the restriction of v’ to it (since both weight spectral sequences
are isomorphic to the spectral sequence corresponding to this new weight struc-
ture).
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Yet this conditions are somewhat restrictive since weight structures do not
"descend’ to localizations in general (since for an exact F’ : C'— E the classes
F/(C™2') and F!(C"=") are not necessarily orthogonal in E).

In order to simplify checking right and left weight-exactness of functors, we will
need the following easy statement.

LEMMA 2.7.5. Let w be bounded.

1. An ezxact J : C — D is a right weight-exact whenever there exists a D C
CYY such that any Y € CV=° is a retract of some X € D, and that for any
X € D we have J(Y) € D"=°.

2. An ezact J : C — D is a left weight-ezact whenever there exists a D ¢ CV=°
such that any Y € C¥=° is a retract of some X € D, and that for any X € D
we have J(Y) € D=C.

Proof. It suffices to prove assertion 1, since assertion 2 is exactly its dual.
If J is right weight-exact functor, then we can take D = ="
Now we prove the converse statement. Since D'Z° is Karoubi-closed and
extension-stable in D, Theorem Z2ZII([J) yields that J(C*=°) indeed belongs
to D=0,

O

3 CATEGORIES OF COMOTIVES (MAIN PROPERTIES)

We embed DM _gﬁ into a certain big triangulated motivic category ©; we will
call it objects comotives. We will need several properties of ©; yet we will
never use its description directly. For this reason in §3.1] we only list the main
properties of ©.

In we associate certain comotives to (disjoint unions of) ’infinite intersec-
tions’ of smooth varieties over k (we call those pro-schemes). We also introduce
certain Tate twists for these comotives.

In §3:3] we recall the definition of a primitive scheme (note that in the case of
a finite k we call a scheme primitive whenever it is smooth semi-local). The
main motivic property of primitive schemes (proved by M. Walker) is: F(S)
injects into F'(Sy) if S is primitive connected, Sy is its generic point, and F' is
a homotopy invariant presheaf with transfers.

In §341 we study the relation of (comotives of) primitive schemes with the
homotopy t-structure for DM/Y.

In §335] we prove that there are no @D-morphisms of positive degrees between
comotives of primitive schemes (and also certain Tate twists of those); this is
also true for products of comotives mentioned.

In §3.6] we prove that one can pass to countable homotopy limits in Gysin
distinguished triangles; this yields Gysin distinguished triangles for comotives
of pro-schemes. This allows to construct certain Postnikov towers for comotives
of pro-schemes (and their Tate twists), whose factors are twisted products of
comotives of function fields (over k). The construction of the tower is parallel
to the classical construction of coniveau spectral sequences (see §1 of [§]).
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3.1 COMOTIVES: AN 'AXIOMATIC DESCRIPTION’

We will define ® below as the derived category of differential graded functors
J — B(Ab); here J yields a differential graded enhancement of DM gj;f (cf. [4],
[19], or [7]), B(Ab) is the differential graded category of complexes over Ab.
We will also need some category @’ that projects to © (a certain model of D).
Derived categories of differential graded functors were studied in detail in [12]
and [16]. We will define and study them in §8 below; now we will only list their
properties that are needed for the proofs of main statements.

Below we will also need certain (filtered) inverse limits several times. D is a
triangulated category; so it is no wonder that there are no nice limits in it. So
we consider a certain additive ®’ endowed with an additive functor p : ®" — D.
We will call (the images of) inverse limits from ®’ homotopy limits in ©.

The relation of ®’ with © is similar to the relation of C'(4) with D(A4). In
particular, ®’ is closed with respect to all (small filtered) inverse limits; we have
functorial cones of morphisms in D’ that are compatible with inverse limits.
We will need some conventions and definitions introduced in Notation; in par-
ticular, I, L will be projective systems; I is countable.

ProroSITION 3.1.1. 1. There ezists a triangulated category © D DM;JJ;

all objects of DM;,J;Lf are cocompact in 9.

2. There exists an additive category ®' closed with respect to arbitrary (small
filtered) inverse limits, and an additive functor p : ©" — D that preserves
(small) products. Moreover, p is surjective on objects.

3. @' is endowed with a certain invertible shift functor [1] that is compatible
with the shift on © and respects inverse limits.

4. There is a functorial cone of morphisms in ®’' defined; it is compatible
with [1] and respects inverse limits.

5. Any triangle of the form X Ly & Cone(f) — X][1] in ©" becomes
distinguished in ©.

6. The composition functor My, : C°(SmCor) — DM;,J;f — ® can be
canonically factorized through an additive functor j : C®(SmCor) — D',
Shifts and cones of morphisms in C®(SmCor) are compatible with those
in® via j.

7. For any X € Mgy, (C®(SmCor)) C Obj®, any Y : L — D' we have
D(p(lim,_, Y1), X) —lim,_, D(p(¥1), X).

8. DMg%f weakly cogenerates © (i.e. we have LDMge?fnf = {0}, see Nota-
tion).
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9. Let a sequence i,, € I, n > 0, be increasing (i.e. int1 > iy for anyn >0)
unbounded (see Notation). Then for all functors X : I — ©', we have
functorial distinguished triangles in O :

p(lim,_, X;) — p(H Xi,) = p(H Xi, ) (27)

e is the product of idx, ©—¢n : X;,,, — X, ; here ¢, are the morphisms
coming from I via X.

10. There exists a differential graded enhancement for ©; see 5.1 below.

Remark 3.1.2. 1. Since below we will prove some statements for © only using
its ’axiomatics’ (i.e. the properties listed in Proposition [B.1.1]), these results
would also be valid in any other category that fulfills these properties. This
could be useful, since the author is not sure at all that all possible © are
isomorphic.

2. Moreover, one could modify the axiomatics of ® and consider instead a
category that would only contain the triangulated subcategory of DM, ge};f gen-
erated by motives of smooth varieties of dimension < n (for a fixed n > 0).
Our results and arguments below can be easily carried over to this setting (with
minor modifications; it is also useful here to weaken condition ] in the Propo-
sition). This makes sense since these 'geometric pieces’ of DM, ge,f@f are self-dual
with respect to Poincare duality (at least, if char k = 0); see §6.4] below. See
also Remark [.5.2(2).

Alternatively, we can weaken the condition for the functor DMSIS — D to be
a full embedding. For example, it could be interesting to consider the version
of © for which this functor kills DM/ (n) (for some fixed n > 0).

Lastly note that we do not really need condition Rlin its full generality (below).

Now we derive some consequences from the axiomatics listed.

COROLLARY 3.1.3. 1. For any Z € ObjDM;,J;f CObj®, any X : L — D'
we have D(p(lim,_, X1), Z) = lm,_, D(p(X), 2).

2. For any T € Obj®, all functors Y : I — ®' we have functorial short
exact sequences

{0} = 1im' D(T, p(¥;)[-1]) = D(T, p(m Y;)) = lmD(T, p(Y;)) — {0};
here ]'&rf is the (first) derived functor of@ = ]'&nl.

8. For all functors X : L — C*(SmCor), Y : I — C®(SmCor), we have
functorial short exact sequences

{0} = lim!_ (lim,_, D (M (X1), My (Yi)[~1])) =
D(p(im,_, (X)), plim_ j(Y) = (28)
lim,_ (tim,_ (M (X1), My (¥i))) — {0},
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4. DO 1is idempotent complete.

Proof. 1. If Z € My,,(C®(SmCor)), then the assertion is exactly Proposi-
tion BTN .
It remains to note that any Z € ObjDMg]] is a retract of some object
coming from C®(SmCor).

2. Since inverse limits and their derived functors do not change when we
replace a projective system by any unbounded subsystem, we can assume
that L consists of some i, as in (21).

Now, (27) yields a long exact sequence

= [T pv)[-1)) 4, [T p(¥)[-1)) = D(T. pllim,_, ¥7))
= [[2@p0) % [[2(Tp() = ...

here f and g are induced by e in (27)).
It is easily seen that Ker g = QQ(T, Mgm (Yn))-

Lastly, Remark A.3.6 of [2I] allows to identify Coker f with
lim' D (7, My (Vi) [-1]).

3. Immediate from the previous assertions.

4. Since @’ is closed with respect to all inverse limits, it is closed with respect
to all (small) products. Then Proposition BT[] yields that © is also
closed with respect to all products. Now, Remark 1.6.9 of [21] yields the
result (in fact, the proof uses only countable products).

O

We will often call the objects of © comotives.

3.2 PRO-SCHEMES AND THEIR COMOTIVES

Now we have certain inverse limits for objects (coming from) C®(SmCor);
this allows to define (reasonable) comotives for certain schemes that are not
(necessarily) of finite type over k (and for their disjoint unions). We also define
certain Tate twists of those.

We will call certain ind-schemes over k pro-schemes. An ind-scheme V/k is
a pro-scheme if it is a countable disjoint union of schemes, such that each of
them is a projective limit of smooth varieties of dimension < ¢y for some fixed
cy > 0 (in the category of schemes) with connecting morphisms being open
dense embeddings. One may say that a pro-scheme is a countable disjoint union
of countable intersections of smooth varieties. Note that (the spectrum of) any
function field over k is a pro-scheme; any smooth k-variety is a pro-scheme also.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



CONIVEAU SPECTRAL SEQUENCES FOR MOTIVES 83

We have the operation of countable disjoint union for pro-schemes of bounded
dimension.

Now, we would like to present a (not necessarily connected) pro-scheme V'
as projective limits of smooth varieties V;. This is easy if V is connected
(cf. Lemma 3.2.9 of [9]). In the general case one should allow (formally)
zero morphisms between connected components of V; (for distinct 7). So we
consider a new category SmVar’ containing the category of all smooth va-
rieties as a (non-fulll) subcategory. We take ObjSmVar’ = SmVar; for
any smooth connected varieties X, Y € SmVar we have SmVar'(X,Y) =
Moryq (X,Y)U{0}; the composition of a zero morphism with any other one
is zero; SmVar' (U; X;,U;Y;) = U; jSmVar' (X;,Y;). SmVar’ can be embed-
ded into SmCor (certainly, this embedding is not full).

We will write V' = lim V; (this is not possible in the category of ind-schemes,
but works in Pro —SmVar’). Note that the set of connected components of V'
is the inductive limit of the corresponding sets for V;.

Now, for any pro-scheme V' = limV;, any s > 0, we introduce the following
notation: Mg, (V)(s) = p(lﬁn(y(%)(s))) € Obj® (see Proposition BIT]); we
will denote My (V)(0) by Mgm (V) and call My, (V) the comotif of V. This
notation should be considered as formal i.e. we do not define Tate twists on ©
(till §5.43)).

Obviously, if V' € SmVar, its comotif (and its twists) coincides with its motif
(and its twists), so we can use the same notation for them.

If A is a category closed with respect to filtered direct limits, H’ : DMge?f@f — A
is a functor, we can (formally) extend it to co-motives in question; we set:

H (Mg (V)(5)[n]) = lig H' (Mg (Vi) (s)[n))- (29)

Remark 3.2.1. 1. For a general H' this notation should be considered as for-
mal. Yet in the case H' = (=,Y) : © — Ab, Y € ObjDMZ/ C ObjD, we
have H(Mgm (V) (@)[n]) = D(Mgm (V)(i)[n], X); see Corollary B.I3|(1), i.e. ([29)
yields the value of a well-defined functor ©® — Ab at Mgy, (V)(s)[n]. We will
only need H' of this sort till §4.3]

More generally, there exists such an H if A satisfies AB5 and H’ is cohomo-
logical; we will call the corresponding H an extended cohomology theory, see
Remark below.

2. Let V7 be a countable set of pro-schemes (of bounded dimensions). Then
My (WV7) =[] Mym (V7) by Proposition BIIIZ).

Besides, for any H’ as in ([@29) we have H(M,,(UV7)(s)[n]) =
@ H(Myy (VI)(s)[n).

Below we will need some conventions for pro-schemes.

For pro-schemes U = limU; and V = limV; we will call an element of
@ie[(@je.i SmCor(U;,V;)) an open embedding if it can be obtained as a
double limit of open embeddings U; — V; (as varieties). If U = V' \ W for
some pro-scheme W, we will say that W is a closed sub-pro-scheme of V. Note
that in this case any connected component of W is a closed subscheme of some
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connected component of V'; yet some components of V' could contain an infinite
set of connected components of W.

For V = UV7, V7 are connected pro-schemes, we will call the maximum of the
transcendence degrees of function fields of V7 the dimension of V (note that
this is finite). We will say that a sub-pro-scheme U = LUU™, U™ are connected,
is everywhere of codimension r (resp. > r, for some fixed r > 0) in V = LV
if for every induced embedding U™ — V7 the difference of their dimensions
(defined as above) is r (resp. > r).

We will call the inverse limit of the sets of points of V; of a fixed codimension
s > 0 the set of points of V of codimension s (note that any element of this set
indeed defines a point of some connected component of V).

3.3 PRIMITIVE SCHEMES: REMINDER

In [29] M. Walker proved that primitive schemes in the case of an infinite
have 'motivic’ properties similar to those of smooth semi-local schemes (in the
sense of §4.4 of [26]). Since we don’t want to discriminate the case of a finite
k, we will modify slightly the standard definition of primitive schemes.

DEFINITION 3.3.1. If k is infinite then a (pro-)scheme is called primitive if all of
its connected components are affine and their coordinate rings R; satisfy the fol-
lowing primitivity criterion: for any n > 0 every polynomial in R;[X1,..., X,]
whose coefficients generate R; as an ideal over itself, represents an R;-unit.

If % is finite, then we will call a pro-scheme primitive whenever all of its con-
nected components are semi-local (in the sense of §4.4 of [26]).

Remark 3.3.2. Recall that in the case of infinite £ all semi-local k-algebras
satisfy the primitivity criterion (see Example 2.1 of [29]).

Below we will mostly use the following basic property of primitive schemes.

PROPOSITION 3.3.3. Let S be a primitive pro-scheme, let Sy be the collection

of all of its generic points; F is a homotopy invariant presheaf with transfers.
Then F(S) C F(Sy); here we define F' on pro-schemes as in (29).

Proof. We can assume that S is connected (so it is a smooth primitive scheme).
Hence in the case of infinite k& our assertion follows from Theorem 4.19 of [29].
Now, if k is finite, then S is semi-local (by our convention); so we may apply
Corollary 4.18 of [26] instead.

O

3.4 BASIC MOTIVIC PROPERTIES OF PRIMITIVE SCHEMES

We will call a primitive pro-scheme just a primitive scheme. We prove certain
motivic properties of primitive schemes (in the form in which we will need them
below).
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PROPOSITION 3.4.1. For F € ObjDM®/ we define H'(—) = DM/ (—, F)
on DMEIT : we also define H(Mygy,(V)(i)[n]) as in (29). Let S be a primitive
scheme, m >0, € Z.

1. Let F € DM Tt<-1 (t is the homotopy t-structure, that we considered in
). Then H(Mqn(S)(m)m]) = {0}.

2. More generally, for any F € ObjDM®! we have H([Myp,(S)(m)[m]) =
FO, (S) where FO = F'=9 FO s the m-th Tate twist of F° (see Definition

[L-£.1)-

Proof. 1. We consider the homotopy invariant presheaf with transfers F_,, :
X — DM (M,,,(X)(m)[m], F). We should prove that F_,,(S) = 0 (here
we extend F_,, to pro-schemes in the usual way i.e. as in ([29)).
29) also yields that F_,,(US;) = € F_.n(S;). Hence by Proposition B33]
it suffices to consider the case of S being (the spectrum of) a function field
over k. Since F_,, is represented by an object of DM Tts—1 (see Proposition
T42](2)), it suffices to note that any field is a Henselian scheme i.e. a point in
the Nisnevich topology.
2. By Proposition 42 for any X € SmVar we have Mgy, (X)(m)m] L
DM Tt21 Hence we can assume F € DM/t<0,
Next, using assertion 1, we can easily reduce the situation to the case F' =
F'=0 ¢ ObjHI (by considering the t-decomposition of F[—1]). In this case the
statement is immediate from Proposition [L42](1).

O

LEMMA 3.4.2. Let U — U’ be an open dense embedding of smooth varieties.
1. We have Cone(Mgy, (U) = My, (U')) € DM/ Tt<—1,
2. Let S be primitive. Then for any n,m,i > 0 the map

D (Mg (S)(m)[m], My (U) (n) [n+i]) = D (Mg () (m)[m], Mgm (U”)(n) [n-+1])
1§ surjective.

Proof. 1. We denote Cone(My,(U) — My, (U')) € DM7t==1 by €. Ob-
viously, C € DM®/*<0_ Let H denote C*=° (H € ObjHI). By Corol-
lary 4.19 of [26], we have H(U) C H(U’). Next, from the long exact se-
quence {0}(= DM (M,,,,(U)[1], H)) - DM (C, H) - DM F (U, H) —
DM T (U, H) — ... we obtain C L H. Then the long exact sequence
oo = DM (Ct=-12], H) — DM/ (H,H) - DM/ (C,H) — ... yields
H=0.
2. It suffices to check that M, (S)(m)[m] L C(n)[n+1i]. Since Mg, (U)(n)[n]
is canonically a retract of M, (U x G},), we can assume that n = 0.
Now the claim follows immediately from assertion 1 and Proposition [B4T(1).
O
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3.5 ON MORPHISMS BETWEEN COMOTIVES OF PRIMITIVE SCHEMES

We will need the fact that certain ’positive’ morphism groups are zero.
Let n,m,>0,i>0,Y = @Yl (I € L), be any pro-scheme, X be a primitive
scheme.

PROPOSITION 3.5.1. 1. The natural homomorphism

D (Myy(X) ()], My (Y )] (n)) —
> dimy (g DML (Z(m)m], Moy (Vi) () 1))

1§ surjective.
2. Mg (X)(m)[m] L Mg (Y)[n + i (n).

Proof. Note first that by the definition of the Tate twist (1), it can be lifted to
C®(SmCor).

1. This is immediate from the short exact sequence (28).

2. By Remark B2ZT](2), we may suppose that Y is connected. Then
we apply ([28) again. The corresponding ]L—term is zero by Propo-
sition B4I(1). Lastly, the surjectivity proved in Lemma B.Z.2)(2)
yields that the corresponding im'-term is zero. Indeed, the groups
D(Mgm (X )(m)[m], Mgm (Y7)[n + i — 1](n)) obviously satisfy the Mittag-
Leffler condition; see §A.3 of [21].

In fact, one could easily deduce the assertion from the results of the
previous subsection and (27)) directly (we do not need much of the theory
of higher limits in this paper).

O

Remark 3.5.2. In fact, this statement, as well as all other properties of (prim-
itive) pro-schemes that we need, are also true for not necessary countable dis-
joint unions of (primitive) pro-schemes. This observation could be used to
extend the main results of the paper to a somewhat larger category; yet such
an extension does not seem to be important.

3.6 THE GYSIN DISTINGUISHED TRIANGLE FOR PRO-SCHEMES; 'GERSTEN’
POSTNIKOV TOWERS FOR COMOTIVES OF PRO-SCHEMES

We prove that we can pass to countable homotopy limits in Gysin distinguished
triangles.

PROPOSITION 3.6.1. Let Z, X be pro-schemes, Z a closed subscheme of X
(everywhere) of codimension r. Then for any s > 0 the natural morphism
Mgm(X \ Z)(s) = Mgm(X)(s) extends to a distinguished triangle (in ©):
Mgm (X \ Z)(s) = Mgm(X)(s) = Mgm(Z)(r + s)[2r].
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Proof. First assume s = 0.

We can assume X = @Xi, Z = @Zi for i € I, where X;,Z; € SmVar, Z;
is closed everywhere of codimension r in X; for all i € I.

We take Y; = j(Xi \ Z; — X;), Y = p(lim, ,Y;). By parts Bl and [ of Proposi-
tion B1I] we have a distinguished triangle Mgm(X \Z) = My, (X)—=Y.

It remains to prove that Y = M, (Z)(r)[2r]. Proposition 2.4.5 of [9] (a
functorial form of the Gysin distinguished triangle for Voevodsky’s motives)
yields that p(Y;) = Mgn(Z;)(r)[2r]; moreover, the connecting morphisms
p(Y;) = p(Yit1) are obtained from the corresponding morphisms M, (Z;) —
Mg (Zi41) by tensoring by Z(r)[2r]. It remains to recall: by Proposition
BIT@), the isomorphism class of a homotopy limit in © can be completely
described in terms of (objects and morphisms) of ® (i.e. we don’t have to
consider the lifts of objects and morphisms to ©’). This yields the result.
Now, since Mg (X X G) = Mg (X) @ My (X)(1)[1] for any X € SmVar
(hence this is also true for pro-schemes), the assertion for the case s = 0 yields
the general case easily. O

Now we will construct a certain Postnikov tower Po(X) for X being the
(twisted) comotif of a pro-scheme Z that will be related to the coniveau spec-
tral sequences (for cohomology) of Z; our method was described in §I.5] above.
Note that we consider the general case of an arbitrary pro-scheme Z (since
in this paper pro-schemes play an important role); yet this case is not much
distinct from the (partial) case of Z € SmVar.

COROLLARY 3.6.2. We denote the dimension of Z by d (recall the conventions
of §3.3). _

For all i > 0 we denote by Z" the set of points of Z of codimension i.

For any s > 0 there exists a Postnikov tower for X = My, (Z)(s)[s] such that
1=0,m=d+1, X; 2] cp Mgm(2)(i + 5)[2i + s].

Proof. As above, it suffices to prove the statement for s = 0. Since any product
of distinguished triangles is distinguished, we can assume Z to be connected.
We consider a projective system L whose elements are sequences of closed
subschemes @ = Zyy1 C Zg C Zg—1 C --- C Zy. Here Zy € SmVar, Z; €
Var for I > 0, Z is open in Zy (see §3.2} Zy is connected; in the case when
Z € SmVar we only take Zy = Z); for all j > 0 we have: Z; is everywhere of
codimension > j in Zg; all irreducible components of all Z; are everywhere of
codimension > j in Zy; and Z;; contains the singular locus of Z; (for j < d).
The ordering in L is given by open embeddings of varieties U; = Z; \ Z; for
7 > 0. For [ € L we will denote the corresponding sequence by @ = ZQ_H C
zLcZ, , c--- C Zl. Note that L is countable!
By the previous proposition, for any j we have a distinguished triangle
Moy (1n(Z\ 1)) = Mo (n(Z}\ ZL41)) = Mo (n(Z)\ Z241)(7)[24]).
It remains to compute the last term; we fix some j.

We have lim, _ NZINZL) = Hngi My (2). Indeed, for all I € L the variety

Z5\ Zk, | is the disjoint union of some locally closed smooth subschemes of
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Z} of codimension j; for any zy € Z7 for | € L large enough 2 is contained
in ZJl» \ Z§+1 as an open sub-pro-scheme, and the inverse limit of connected
components of Z \ ZL,, containing z is exactly zo. Now, we can apply the
functor X +— Mg, (X)(5)[27] to this isomorphism. We obtain MngiLn(ZJL \
Zt )()124]) 2T,z Mgm(2)(i). This yields the result.

J
O

Remark 3.6.3. 1. Alternatively, one could construct Po(X) for the (twisted)
comotif of a pro-scheme T' = I&n T! as the inverse limit of the Postnikov towers
for T (constructed as above yet with fixed Z} = T'); certainly, to this end one
should pass to the limit in ©’. It is easily seen that one would get the same
tower this way.

2. Certainly, if we shift a Postnikov tower for M, (Z)(s)[s] by [j] for some
J € Z, we obtain a Postnikov tower for My, (Z)(s)[s + j]. We didn’t formulate
assertion 2 for these shifts only because we wanted X? to belong to ¥~ (see
Proposition LT.T] below).

3. Since the calculation of X* used Proposition B.LII@), our method cannot
describe connecting morphisms between them (in ©). Yet one can calculate
the ’images’ of the connecting morphisms in ®"%¥¢; see §I.5 and §6.11

4  MAIN MOTIVIC RESULTS

The results of the previous section combined with those of §2.2] allow us to
construct (in §41)) a certain Gersten weight structure w on a certain triangu-
lated D,: DMZI € D, C D. Its main property is that comotives of function
fields over & (and their products) belong to Hw. It follows immediately that
the Postnikov tower Po(X) provided by Corollary is a weight Postnikov
tower with respect to w. Using this, in §€£.2/we prove: if S is a primitive scheme,
So is its dense sub-pro-scheme, then Mg, (S) is a direct summand of Mg, (So);
Mg (K) (for a function field K/k) contains (as retracts) comotives of primitive
schemes whose generic point is K, as well as twisted comotives of residue fields
of K (for all geometric valuations).

In §43] we (easily) translate these results to cohomology; in particular, the
cohomology of (the spectrum of) K contains direct summands corresponding
to the cohomology of primitive schemes whose generic point is K, as well as
twisted cohomology of residue fields of K. Here one can consider any coho-
mology theory H : ®, — A; one can obtain such an H by extending to ®;
any cohomological H' : DM/ — A if A satisfies AB5 (by means of Propo-
sition [L2.1)). Note: in this case the cohomology of pro-schemes mentioned is
calculated in the 'usual’ way.

In §4.4] we consider weight spectral sequences corresponding to (the Gersten
weight structure) w. We observe that these spectral sequences generalize natu-
rally the classical coniveau spectral sequences. Besides, for a fixed H : ©; — A
our (generalized) coniveau spectral sequence converging to H*(X) (where X
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could be a motif or just an object of ©;) is Ds-functorial in X (i.e. it is mo-
tivically functorial for objects of DM _gﬁ ); this fact is non-trivial even when
restricted to motives of smooth varieties.

In §&5l we prove that there exists a nice duality D°? x DM — Ab (extending

the bi-functor DM/ (— ) DMgffor x DM —5 Ab); the Gersten weight

structure w (on Dy) is left orthogonal to the homotopy ¢-structure ¢ on DM
with respect to it. This allows to apply Theorem 2.6.1F in the case when H
comes from Y € ObjDM’ we prove the isomorphism (starting from E)
of (the coniveau) T'(H, X ) with the spectral sequence corresponding to the t-
truncations of Y. We describe ObjDM;,J;f NDY<i in terms of ¢ (for DM,
We also note that our results allow to describe torsion motivic cohomology in
terms of (torsion) étale cohomology (see Remark [£.5.4(4)).

In §4.6] we define the coniveau spectral sequence (starting from Fs) for coho-
mology of a motif X over a not (necessarily) countable perfect base field [ as the
limit of the corresponding coniveau spectral sequences over countable perfect
subfields of definition for X. This definition is compatible with the classical one
(for X being the motif of a smooth variety); so we obtain motivic functoriality
of classical coniveau spectral sequences over a general base field.

In §4.7 we prove that the Chow weight structure for DM}/ (introduced in §6
of [6]) could be extended to © (certainly, the corresponding weight structure
Wehow differs from w). We will call the corresponding weight spectral sequences
Chow-weight ones; note that they are isomorphic to classical (i.e. Deligne’s)
weight spectral sequences when the latter are defined.

In §4.8 we use the results §2.7] to compare coniveau spectral sequences with
Chow-weight ones. We always have a comparison morphism; it is an isomor-
phism if H is a birational cohomology theory.

In §4.9] we consider the category of birational comotives Dy, (a certain ’com-
pletion’ of birational motives of [I5]) i.e. the localization of ® by ©(1). It
turns our that w and wenew induce the same weight structure wy;, on Dy
Conversely, starting from wy;,. one can glue ’from slices’ the weight structures
induced by w and wehew on ©/D(n) for all n > 0. Furthermore, these struc-
tures belong to an interesting family of weight structures indexed by a single
integral parameter; other terms of this family could be also interesting!

4.1 THE GERSTEN WEIGHT STRUCTURE FOR D, D DMZl/

Now we describe the main weight structure of this paper. Unfortunately, the
author does not know whether it is possible to define the Gersten weight struc-
ture (see below) on the whole ©. Yet for our purposes it is quite sufficient to
define the corresponding weight structure on a certain triangulated subcategory
s C D containing DM gj;f (and comotives of all pro-schemes).

In order to make the choice of ®5 C © compatible with extensions of scalars,
we bound certain dimensions of objects of Hw.

We will denote by H the full subcategory of ©® whose objects are all countable
products [[;c; Mgum (K;)(ng)[ni]; here K are (the spectra of) function fields
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over k, n; > 0; we assume that the transcendence degrees of K;/k and n; are
bounded.

PROPOSITION 4.1.1. 1. Let ®; be the Karoubi-closure of (H) in ©. Then
C =34 can be endowed with a unique weight structure w such that Hw contains
H.

2. Huw is the idempotent completion of H.

3. ®, contains DMge?f@f as well as all My, (Z)(l) for Z being a pro-scheme,
[>0.

4. For any primitive S, i > 0, we have My, (S)(i)[i] € D¥=0.

5. Let Z be a pro-scheme, s > 0. Then My, (Z)(s)[s] € DV=Y; the Postnikov
tower for Mg, (Z)(s)[s] given by Corollary [3.6.2 is a weight Postnikov tower
for it.

Proof. 1. By Proposition B5.(2), H is negative (since any object of H is
a finite sum of My, (X;)(m;) for some primitive pro-schemes X;, m; € Z).
Besides, D is idempotent complete (see Corollary[3.1.3((4)); hence ®, and D=0
also are. Hence we can apply Theorem 222IYI8) (for D = H).
2. Also immediate from Theorem [ZZTI([IS).
3. My (Z)(l) € ObjD, by Corollary B.6.2} in particular, this is true for Z €
SmVar. It remains to note that DM;{If is the Karoubization of (Mg, (U) :
Ue SmVar)in ®.
4. Tt suffices to note that M,,,(S)(i)[i] belongs both to D¥<? and to D¥=° by
Theorem 22.TY20). Here we use Proposition B.5.1(2) again.
5. We have X' € D=, Hence Theorem ZZI|[4) yields the result. Note here
that we have Yy = 0 in the notation of Definition 2T.2(9).

o

We will call w the Gersten weight structure, since it is closely connected with
Gersten resolutions of cohomology (cf. below). By default, below w will
denote the Gersten weight structure.

Remark 4.1.2. 1. Hw is idempotent complete since D is.

2. In fact, one could easily prove similar statements for C' being just (H)
(instead of its Karoubization in ®). Certainly, for this version of C we will
only have C D M, (Kb(SmCor)).

Besides, note that for any function field K’ /k, any r > 0, there exists a function
field K/k such that Mg, (K')(r)[r] is a retract of M, (K) (see Corollary d.2.2]
below). Hence it suffices take H being the full subcategory of © whose objects
are [[;c; Mym(K;) (for bounded transcendence degrees of K;/k).

3. The proposition implies that ©, is exactly the Karoubization in ® of the
triangulated category generated by comotives of all pro-schemes.

4. The author does not know whether one can describe weight decompositions
for arbitrary objects of DM, gj;f explicitly. Still, one can say something about
these weight decompositions and weight complexes using their functoriality
properties. In particular, knowing weight complexes for X, Y € ObjDM;,J;f
(or just € ObjDM?) one can describe the weight complex of X — Y up to a
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homotopy equivalence as the corresponding cone (see Lemmal[G. T T below). Be-
sides, let X — Y — Z be a distinguished triangle (in ©). Then for any choice
of (Xws0 Xw2l) and (Z¥<0 Zw21) there exists a choice of (Y%<0 yw=1)
such that there exist distinguished triangles X*<0 — yws0 _ Zw=<0 gpq
Xwzl _ yw2l _ 7u>l s66 Lemma 1.5.4 of [6]. In particular, we obtain that
j maps complexes (over SmCor) concentrated in degrees < j into D¥SJ (we
will prove a stronger statement in Remark £.5.4[(4) below). If X € ObjDM;,J;f
comes from a complex over SmCor whose connecting morphisms satisfy certain
codimension restrictions, these observations could be extended to an explicit
description of a weight decomposition for it; cf. §7.4 of [6].

4.2 DIRECT SUMMAND RESULTS FOR COMOTIVES
Proposition [£1.1] easily implies the following interesting result.

THEOREM 4.2.1. 1. Let S be a primitive scheme; let Sy be its dense sub-pro-
scheme. Then Mg, (S) is a direct summand of Mgy (So).

2. Suppose moreover that Sy = S \ T where T is a closed subscheme
of S everywhere of codimension r > 0. Then we have Mg, (So) =

My (S) @ Mg (T)(r)[2r — 1.

Proof. We can assume that S and Sy are connected.
1. By Proposition ETLI(5), we have: Myn(So), Mgm(S) € Dv=0;
Mg (Spec(k(S))) could be assumed to be the zeroth term of their weight
complexes for a choice of weight complexes compatible with some negative
Postnikov weight towers for them; the embedding Sy — S is compatible with
idng,,, (Spec(k(s))) (since we have a commutative triangle Speck(S) — So — S
of pro-schemes). Hence Theorem Z2.T(I6) yields the result.
2. By Proposition B.6.1] we have a distinguished triangle Mgn,(So) —
Mgm(S) = Mg (T)(r)[2r]. By parts 4 and 5 of Proposition L.1.J] we have
Mym(So) € DY<0. My, (S) € DY=0, My, (T)(r)[2r] € DYS—" C DWws—1
Hence Theorem 22.TI[R) yields the result.

O

COROLLARY 4.2.2. 1. Let S be a connected primitive scheme, let Sy be its
generic point. Then My, (S) is a retract of Mg, (So).

2. Let K be a function field over k. Let K' be the residue fields for a geometric
valuation v of K of rank r. Then My (K')(r)[r] is a retract of Mg, (K).

Proof. 1. This is just a partial case of part 1 of the the theorem.

2. Obviously, it suffices to prove the statement in the case r = 1. Next, K is
the function field of some normal projective variety over k. Hence there exists
a U € SmVar such that: k(U) = K, v yields a non-empty closed subscheme
of U (since the singular locus has codimension > 2 in a normal variety). It
easily follows that there exists a pro-scheme S (i.e. an inverse limit of smooth
varieties) whose only points are the spectra of K and Kj. So, S is local, hence
it is primitive.
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By part 2 of the theorem, we have
Mg (Spec K) = Mo (S) @D M (Spec Ko)(1)[1];

this concludes the proof.
O

Remark 4.2.3. 1. Note that we do not construct any explicit splitting mor-
phisms in the decompositions above. Probably, one cannot choose any canoni-
cal splittings here (in the general case); so there is no (automatic) compatibility
for any pair of related decompositions. Respectively, though comotives of (spec-
tra of) function fields contain tons of direct summands, there seems to be no
general way to decompose them into indecomposable summands.

2. Yet Proposition 6.1 easily yields that My, (Speck(t)) =
Z®[1g Mym(E)(1)[1]; here E runs through all closed points of A' (con-
sidered as a scheme over k).

4.3 ON COHOMOLOGY OF PRO-SCHEMES, AND ITS DIRECT SUMMANDS

The results proved above immediately imply similar assertions for cohomology.
We also construct a class of cohomology theories that respect homotopy limits.

ProrosiTION 4.3.1. Let H : ®5s — A be cohomological, S be a primitive
scheme.

1. Let Sy be a dense sub-pro-scheme of S. Then H (Mg, (S)) is a direct sum-
mand of H(Mgm (50)).

2. Suppose moreover that Sy = S \ T where T is a closed sub-
scheme of S of codimension v > 0. Then we have H(Mgy,(So)) =
H(Mypn(S)) @ H (Mo (T) ()27 — 1)),

3. Let S be connected, Sy be the generic point of S. Then H(Myn(S)) is a
retract of H(Mgm(So)) in A.

4. Let K be a function field over k. Let K' be the residue field for a geometric
valuation v of K of rankr. Then H(M gy (K')(r)[r]) is a retract of H( Mg, (K))
in A.

5. Let H' : DMg%f — A be a cohomological functor, let A satisfy AB5. Then
Proposition [[L2.1] allows to extend H' to a cohomological functor H : ® — A
that converts inverse limits in ' to the corresponding direct limits in A.

Proof. 1. Immediate from Theorem [£2.T1).
2. Immediate from Theorem [L21}2).
3. Immediate from Corollary E22(1).
4. Tmmediate from Corollary F2.2(2).
5. Immediate from Proposition [LZT} note that DML is skeletally small.
Here in order to prove that H converts homotopy limits into direct limits we
use part I2 of loc.cit. and Proposition [BIIKT).
O
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Remark 4.3.2. 1. In the setting of assertion 5 we will call H an extended
cohomology theory.

Note that for H' = DM;,{If(f,Y), Y € ObjDMge,J;f, we have H = ©D(—,Y);
see ().

2. Now recall that for any pro-scheme Z, any ¢ > 0, My, (Z)(¢) (by definition)
could be presented as a countable homotopy limit of geometric motives. More-
over, the same is true for all small countable products of M, (Z;)(¢). Hence
if H is extended, then the cohomology of [[ My (Z;)(¢) is the corresponding
direct limit; this coincides with the definition given by ([29) (cf. Remark [32.7).
In particular, one can apply the results of Proposition [£3.1] to the usual étale
cohomology of pro-schemes mentioned (with values in Ab or in some category
of Galois modules).

3. If H' is also a tensor functor (i.e. it converts tensor product in DMZS into
tensor products in D(A)), then certainly the cohomology of Mg, (K')(r)[r] is
the corresponding tensor product of H* (Mg, (K")) with H*(Z(r)[r]). Note that
the latter one is a retract of H*(G7,); we obtain the Tate twist for cohomology
this way.

4.4 CONIVEAU SPECTRAL SEQUENCES FOR COHOMOLOGY OF (CO)MOTIVES

Let H : ©% — A be a cohomological functor, X € ObjD;,.

PROPOSITION 4.4.1. 1. Any choice of a weight spectral sequence T (H,X) (see
Theorem [2.4.3) corresponding to the Gersten weight structure w is canonical
and D s-functorial in X starting from Es.

2. T(H,X) converges to H(X).

3. Let H be an extended theory (see Remark [{.3.2), X = Mgy (Z) for
Z € SmVar. Then any choice of T(H,X) starting from Es is canonically
isomorphic to the classical coniveau spectral sequence (converging to the H-

cohomology of Z; see §1 of [8]).

Proof. 1. This is just a partial case of Theorem 2.4.2(T).

2. Immediate since w is bounded; see part 12 of loc.cit.

3. Recall that in the proof of Corollary a certain Postnikov tower
Po(X) for X was obtained from certain ’geometric’ Postnikov towers (in
§(C*(SmCor))) by passing to the homotopy limit. Now, the coniveau spec-
tral sequence (for the H-cohomology of Z) in §1.2 of [§] was constructed by
applying H to the same geometric towers and then passing to the inductive limit
(in A). Furthermore, Remark [L3.2(2) yields that the latter limit is (naturally)
isomorphic to the spectral sequence obtained via H from Po(X). Next, since
Po(X) is a weight Postnikov tower for X (see Proposition L.I.Jk5)), we obtain
that the latter spectral sequence is one of the possible choices for T'(H, X).
Lastly, assertion 1 yields that all other possible T'(H, X) (they depend on the
choice of a weight Postnikov tower for X) starting from Es are also canonically

isomorphic to the classical coniveau spectral sequence mentioned.
O
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Remark 4.4.2. 1. Hence we proved (in particular) that classical coniveau
spectral sequences (for cohomology theories that could be factorized through
motives; this includes étale and singular cohomology of smooth varieties) are
DM¢g}T-functorial (starting from Es); we also obtain such a functoriality for
the coniveau filtration for cohomology! These facts are far from being obvious
from the usual definition of the coniveau filtration and spectral sequences, and
seem to be new (in the general case). So, we justified the title of the paper.
We also obtain certain coniveau spectral sequences for cohomology of singular
varieties (for cohomology theories that could be factorized through DME/S; in
the case chark > 0 one also needs rational coefficients here).

2. Assertion 3 of the proposition yields a nice reason to call (any choice of)
T(H,X) a coniveau spectral sequence (for a general H, A, and X € ObjDs,);
this will also distinguish (this version of) 7" from weight spectral sequences
corresponding to other weight structures. We will give more justification for
this term in Remark 5.4 below. So, the corresponding filtration could be
called the (generalized) coniveau filtration.

4.5 AN EXTENSION OF RESULTS OF BLOCH AND OGUS

Now we want to relate coniveau spectral sequences with the homotopy t-
structure (in DM®//). This would be a vast extension of the seminal results of
§6 of [5] (i.e. of the calculation by Bloch and Ogus of the E2-terms of coniveau
spectral sequences) and of §6 of [I1].

We should relate ¢ (for DMfff) and w; it turns out that they are orthogonal
with respect to a certain quite natural nice duality.

ProrosITION 4.5.1. For any Y € ObjDMfff we extend H' = DMfff(f,Y)
from DM;,J;Lf to ® D D, by the method of Proposition [L.2.1; we define
O(X,Y) = H(X). Then the following statements are valid.

1. ® is a nice duality (see Definition [Z.51).

2 w is left orthogonal to the homotopy t-structure t (on DMfff) with respect
to .

3. ®(—,Y) converts homotopy limits (in ®©') into direct limits in Ab.

Proof. 1. By Proposition [Z5.6](1), the restriction of ® to DMgej;fOp x DM
is a nice duality. It remains to apply part 3 of loc.cit.
2. In the notation of Proposition 253 we take for D the set of all small
products [];c; Mgm (K1) (n)[u] € ObjD; here My, (K;) denote comotives of
(spectra of) some function fields over k, n; > 0 and the transcendence degrees
of K;/k are bounded (cf. §41). Then D,® satisfy the assumptions of the
proposition by Proposition B4T(2) (see also Remark [£.3.2(2)).
3. Immediate from Proposition A3.1)(3).

O

Remark 4.5.2. 1. Suppose that we have an inductive family Y; € ObjDMfff
connected by a compatible family of morphisms with some Y € DM such
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that: for any Z € ObjDMg}/ we have DM (Z,Y) = lim DM7(2,Y;) (via
these morphisms ¥; — Y). In such a situation it is reasonable to call Y a
homotopy colimit of Y;.

The definition of ® in the proposition easily implies: for any X € Obj® we have
O(X,Y) = Hﬂ@(X,Yi). So, one may say that all objects of ® are ’compact
with respect to ®’, whereas part 3 of the proposition yields that all objects of
DM are ‘cocompact with respect to ®’. Note that no analogues of these nice
properties can hold in the case of an adjacent weight and ¢-structure (defined
on a single triangulated category).

2. Now, we could have replaced DMEJ] by DMy, everywhere in the *axiomat-
ics’ of ® (in Proposition B.I.T). Then the corresponding category ® ., could
be used for our purposes (instead of D), since our arguments work for it also.
Note that we can extend ® to a nice duality DgF, x DM — Ab; to this end
it suffices for Y € ObjDMfff to extend H' to DM, in the following way:
H'(X(—n)) = DM (X,Y (n)) for X € ObjDMS,! < ObjDMyy, n > 0.
Moreover, the methods of §5.4.3lallow to define an invertible Tate twist functor
on Dgp,.

COROLLARY 4.5.3. 1. If H is represented by a Y € ObjDMfff (via our ®)
then for a (co)motif X our coniveau spectral sequence T'(H, X) starting from Es
could be naturally expressed in terms of the cohomology of X with coefficients
in t-truncations of Y (as in Theorem [2.6.1]).

In particular, the coniveau filtration for H*(X) could be described as in part[2
of loc.cit.

2. For U € ObjDMELS | i € Z, we have U € DVSt «— U € DM Tt=<i,

gm

Proof. 1. Immediate from Proposition [£.5.1]
2. By Theorem ZZT[20), we should check whether Z L U for any Z =
[Licr Mgm(K7)(ni)[ny + 7], where K; are function fields over k, n; > 0
and the transcendence degrees of K;/k are bounded, r > 0 (see Proposi-
tion L1I(2)). Moreover, since U is cocompact in D, it suffices to consider
Z = Mg (K")(n)[n 4+ r] (K'/k is a function field, n > 0). Lastly, Corollary
4.2.2](2) reduces the situation to the case Z = M, (K) (K/k is a function
field).
Hence (25) implies: U € DV<? whenever for any j > i, any function field K/k,
the stalk of U=/ at K is zero. Now, if U € DM//t<i then Ut=7 = 0 for all
j > i; hence all stalks of U*=7 are zero. Conversely, if all stalks of U7 at
function fields are zero, then Corollary 4.19 of [26] yields U'=7 = 0 (see also
Corollary 4.20 of loc.cit.); if U=J = 0 for all j > i then U € DM/ /t<i,

O

Remark 4.5.4. 1. Our comparison statement is true for Y-cohomology of an
arbitrary X € ObjDM gj;f ; this extends to motives Theorem 6.4 of [I1] (whereas
the latter essentially extends the results of §6 of [5]). We obtain one more
reason to call T (in this case) the coniveau spectral sequence for (cohomology
of) motives.
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2. Y € ObjHI, then E5(T) yields the Gersten resolution for ¥ (when X
varies); this is why we called w the Gersten weight structure.

3. Now, let Y represent étale cohomology with coefficients in Z/IZ, [ is prime to
chark (Y is actually unbounded from above, yet this is not important). Then
the t-truncations of Y represent Z/IZ-motivic cohomology by the (recently
proved) Beilinson-Lichtenbaum conjecture (see [28]; this paper is not published
at the moment). Hence Proposition2Z.5.4(1) yields some new formulae for Z/IZ-
motivic cohomology of X and for the ’difference’ between étale and motivic
cohomology. Note also that the virtual ¢-truncations (mentioned in loc.cit.)
are exactly the Do-terms of the alternative exact couple for T'(H, X) and for
the version of the exact couple used in the current paper respectively (i.e.
we consider exact couples coming from the two possible versions for a weight
Postnikov tower for X, as described in Remark ZT.3). See also §7.5 of [6] for
more explicit results of this sort. It could also be interesting to study coniveau
spectral sequences for singular cohomology; this could yield a certain theory of
‘motives up to algebraic equivalence’; see Remark 7.5.3(3) of loc.cit. for more
details.

5. Assertion 2 of the corollary yields that D¥<% N ObjDMS/f is large enough
to recover w (in a certain sense); in particular, this assertion is similar to
the definition of adjacent structures (see Remark [Z5.7). In contrast, D¥=% N
ObjDMg%f seems to be too small.

4.6 BASE FIELD CHANGE FOR CONIVEAU SPECTRAL SEQUENCES; FUNCTO-
RIALITY FOR AN UNCOUNTABLE k

It can be easily seen (and well-known) that for any perfect field extension I/k
there exist an extension of scalars functor DM/, — DME]S, compatible
with the extension of scalars for smooth varieties (and for K°(SmCor)). In
below we will prove that this functor could be expanded to a functor
Extyp : D — Dy that sends My, 1(X) to My, 1(X;) for a pro-scheme X /k;
this extension procedure is functorial with respect to embeddings of base fields.
Moreover, Ext;;;, maps Dgy into Dg;. Note the existence of base change for
comotives does not follow from the properties of @ listed in Proposition B.1.T}
yet one can define base change for our model of comotives (described in §5l
below) and (probably) for any other possible reasonable version of D.

Now we prove that base change for comotives yields base change for coniveau
spectral sequences; it also allows to prove that these spectral sequences are
motivically functorial for not necessary countable base fields.

In order to make the limit in Proposition £6.1(2) below well-defined, we assume
that for any X € ObjDMgefnf there is a fixed representative Y, Z,p chosen,
where: Z,Y € C*(SmCor), My (Y) = My, (Z), p € C*(SmCor)(Y, Z) yields
a direct summand of Mg, (Y) in DMge?f@f that is isomorphic to X. We also
assume that all the components of (X, Y, p) have fixed expressions in terms of
algebraic equations over k; so one may speak about fields of definition for X.
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PROPOSITION 4.6.1. Let I be a perfect field, H : ®; — A be any cohomological
functor (for an abelian A). For any perfect k C | we denote HoExt, : D3, — A
by Hk.

1. Let | be countable. Then for any X € Obj®y the method of Proposition
[Z7.3(11) yields some morphism Ny, : Ty, (Hy, X) — T, (H, Exty;,(X)); this
morphism is unique and Dy -functorial in X starting from Es.

The correspondence (I, k) — Ny, is associative with respect to extensions of
countable fields (starting from Es); cf. part I3 of loc.cit.

2. Let 1 be a not (necessarily) countable perfect field, let A satisfy ABS5.

For X € ObjDMZLT we define T,(H, X) = lim, Tw, (Hy, Xi). Here we take
the limit with respect to all perfect k C | such that k is countable, X is defined
over k; the connecting morphisms are given by the maps N_,_ mentioned in
assertion 1; we start our spectral sequences from FEs. Then T,(H,X) is a
well-defined spectral sequence that is DMg%fl—functorial in X.

3. If X = My (Z), Z € SmVar, H is as an extended theory, and A sat-
isfies ABS, the spectral sequence given by the previous assertion is canonically
isomorphic to the classical coniveau spectral sequence (for (H,Z); considered
starting from Es).

Proof. 1. By Proposition Z73(II) it suffices to check that Ext;/, is left weight-
exact (with respect to weight structures in question). We take D being the
class of all small products [],c; Mgm(K;), where Mg, (K;) denote comotives
of (spectra of) function fields over k of bounded transcendence degree. Propo-
sition @11 and Corollary EE2Z2(2) yield that any X € ©,%=C is a retract of
some element of D. It suffices to check that for any X = [],c; Mgm x(K;) we
have Ext;/, X € Qs}“lgo; here we recall that wy is bounded and apply Lemma
2. 7.9

Now, X is the comotif of a certain pro-scheme, hence the same is true for
Ext;/, X. It remains to apply Proposition BET.TI(5).

2. By the associativity statement in the previous assertion, the limit is well-
defined. Since A satisfies AB5, we obtain a spectral sequence indeed. Since
we have k-motivic functoriality of coniveau spectral sequences over each k, we
obtain [-motivic functoriality in the limit.

3. Again (as in the proof of Proposition [£4.1k3)) we recall that the classical
coniveau spectral sequence for this case is defined by applying H to ’geometric’
Postnikov towers (coming from elements of L as in the proof of Corollary [3.6.2))
and then passing to the limit (in A) with respect to L. Our assertion follows
easily, since each [ € L is defined over some perfect countable k C I; the limit
of the spectral sequences with respect to the subset of L defined over a fixed k
is exactly T, (Hy, Xi) since H sends homotopy limits to inductive limits in A
(being an extended theory).

Here we certainly use the functoriality of T" starting from Fj.
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Remark 4.6.2. 1. For a general X € ObjDMgiJ;f we only have a canonical
choice of base change maps (for T'(Hy,, X)) starting from Eso; this is why we
start our spectral sequence from the Es-level.

2. Assertion 2 of the proposition is also valid for any comotif defined over a
(perfect) countable subfield of I. Unfortunately, this does not seem to include
comotives of function fields over [ (of positive transcendence degrees, if [ is not
countable).

4.7 THE CHOW WEIGHT STRUCTURE FOR 3

Till the end of the section, we will either assume that chark = 0, or that we
deal with motives, comotives, and cohomology with rational coefficients (we
will use the same notation for motives with integral and rational coefficients;
cf. §6.3 below).

We prove that ® supports a weight structure that extends the Chow weight
structure of DM;,J;f (see §6.5 and Remark 6.6.1 of [6], and also [7]).

In this subsection we do not require k to be countable.

PROPOSITION 4.7.1. 1. There exists a Chow weight structure on DMg%f that
is uniquely characterized by the condition that all Mg, (P) for P € SmPrVar
belong to its heart; it could be extended to a weight structure wonow 0N .

2. The heart of wohew @S the category Hopow of arbitrary small products of
(effective) Chow motives.

3. We have X € Dwcrew20 if and only if D(X,Y[i]) = {0} for any Y €
ObjChowe?f i > 0.

4. There exists a t-structure tchow on © that is right adjacent to wopew (see
Remark[Z57). Its heart is the opposite category to Chow®f'* (i.e. it is equiv-
alent to (AddFun(Chow®/f, Ab))°P).

5. Wehow Tespects products i.e. X; € DWChow<0 — [1X; € Dwerew<0 gnd
X; € DWChow>0 — HXi € DWChow20

6. For [[ X, there exists a weight decomposition: [[X; — HX;”SO —
1=

7. If H : ®© — A is an extended theory, then the functor that sends X to the
derived ezxact couple for Ty, .., (H,X) (see Theorem[2-].9) converts all small
products into direct sums.

Proof. 1. It was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6] that
there exists a unique weight structure wg,,,,, on DM such that My, (P) €
Dwenow=0 for all P € SmPrVar. Moreover, the heart of this structure is
exactly Chow*/f ¢ DMJ/.

Now, DM¢/f is generated by Chow®!7. Tt easily follows that { My, (P), P €
SmPrVar} weakly cogenerates ©. Then the dual (see Theorem Z2TI)) of
Theorem 4.5.2(12) of [6] yields that wg,,,, could be extended to a weight struc-
ture wepew for ®. Moreover, the dual to part II1 of loc.cit. yields that for this
extension we have: Hwey,,,, 15 the idempotent completion of Heopow-
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2. It remains to prove that Hgopow is idempotent complete. This is obvious
since Chow®f/ is.
3. This is just the dual of (27) in loc.cit.
4. The dual statement to part 12 of loc.cit. (cf. Remark [[T3(1)) yields the
existence of topew. Applying the dual of Theorem 4.5.2(II1) of [6] we obtain
for the heart of t: Htpy,,, = (Chow!T)op.
5. Theorem Z2TR) easily yields that Dwcrew<0 is stable with respect to
products. The stability of D¥crew20 with respect to products follows from
assertion 3; here we recall that all objects of Chow®/! are cocompact in D.
6. Immediate from the previous assertion; note that any small product of
distinguished triangles is distinguished (see Remark 1.2.2 of [21]).
7. Since H is extended, it converts products in © into direct sums in A. Hence
for any X; € Obj® there exist a choice of exact couples for the corresponding
weight spectral sequences for X; and [] X; that respects products i.e such that
D;quwcmw (Ha H XZ) = @1 Dll)quChow (Hv Xl) and EquwChow (Ha H XZ) =
@, EV'Twey,. (H, X;) (for all p.g € Z; this isomorphism is also compatible
with the connecting morphisms of couples). Since A satisfies AB5, we obtain
the isomorphism desired for Dy and Es-terms (note that those are uniquely
determined by H and X).

O

Remark 4.7.2. 1. In Remark 2.4.3 of [6] it was shown that weight spectral
sequences corresponding to the Chow weight structure are isomorphic to the
classical (i.e. Deligne’s) weight spectral sequences when the latter are defined
(i.e. for singular or étale cohomology of varieties). Yet in order to specify the
choice of a weight structure here we will call these spectral sequences Chow-
weight ones.

2. All the assertions of the Proposition could be extended to arbitrary tri-
angulated categories with negative families of cocompact weak cogenerators
(sometimes one should also demand all products to exist; in assertion 7 we
only need H to convert all products into direct sums).

3. Since (effective) Chow motives are cocompact in ©, Hwey,,,, iS the
category of ‘formal products’ of Chow®! ie. D([c; Xi,[Tic; ¥3)
[Tic;(®1eLChow® ¥ (X1, Y;)) for X;, Y1 € ObjChow®/f C Obj® (cf. Remark
4.5.3(2) of [6]).

4. Recall (see §7.1 of ibid.) that DM/ supports (adjacent) Chow weight
and t-structures (we will denote them by wg,,., and t,,.,, respectively). One
could also check that these structures are right orthogonal to the corresponding
Chow structures for ©. Hence, applying Proposition 25.4(1) repeatedly one
could relate the compositions of truncations (on ®s C D) via w and via tchow
(resp. via w and via wonew) With truncations via ¢ and via wi,,,, (resp. via
t and via tgp,,,,) on DMfff; cf. §8.3 of [6]. One could also apply wchow-
truncations and then w-truncations (i.e. compose truncations in the opposite
order) when starting from an object of DM/, Recall also that truncations via
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tohow (and their compositions with ¢-truncations) are related with unramified
cohomology; see Remark 7.6.2 of ibid.

4.8 COMPARING CHOW-WEIGHT AND CONIVEAU SPECTRAL SEQUENCES

Now we prove that Chow-weight and coniveau spectral sequences are naturally
isomorphic for birational cohomology theories.

PROPOSITION 4.8.1. 1. wchow for ® dominates w (for ©;) in the sense of
2.7

2. Let H : DMg%f — A be an extended cohomology theory in the sense of
Remark[{.3-2; suppose that H is birational i.e. that H(Mgy,(P)(1)[i]) = 0 for
all P € SmPrVar, i € Z. Then for any X € Obj®, the Chow-weight spectral
sequence T, (H, X) (corresponding to Wchow) is naturally isomorphic start-
ing from Es to (our) coniveau spectral sequence T,,(H, X) via the comparison
morphism M given by Proposition [2Z773(11).

Proof. 1. Let D be the class of all countable products [],c; Mym(K;), where
Mgm (K;) denote comotives of (spectra of) function fields over k of bounded
transcendence degree. Proposition 1.1l and Corollary [£2.2(2) yield that any
X € D=0 is a retract of some element of D. It suffices to check that any
X = [, Mgm(K;) belongs to D®erew=0; here we recall that w is bounded
and apply Lemma,

By Proposition E711(5), we can assume that L consists of a single element.
In this case we have ©(Mgym (K;), Mgm(P)[E]) = 0 (this is a trivial case of
Proposition B.5.0); hence loc.cit. yields the result.

2. We take the same D and X as above.

Let chark = 0. We choose P, € SmPrVar such that K; are their func-
tion fields. Since all M, (P) are cocompact in ®, we have a natural
morphism X — [[ Mgy (P). By Proposition Z7.3(12), it suffices to check
that Cone(X — [[Mgn(P)) € Dwerewz0" H(X) = H([[ Mgm(P,)), and
E;*Twchow (Ha Cone(X - H Mgm(Pl))) =0.

By Proposition [7.T)(7) we obtain: it suffices again to verify these statements
in the case when L consists of a single element. Now, we have Spec(K;) =
Wm Mg, (U) for U € SmVar, k(U) = K. Therefore [27) yields: it suffices to
verify assertions required for Z = My, (U — P) instead, where U € SmVar,
U is open in P € SmPrVar.

The Gysin distinguished triangle for Voevodsky’s motives (see Proposition 2.4.5
of [9]) easily yields by induction that Z € ObjDMgefnf(l).

Since Chow®/f is — ® Z(1)[2]-stable, we obtain that there exists a wWchouw-
Postnikov tower for Z such that all of its terms are divisible by Z(1); this yields
the vanishing of E3* Ty, (H,Z). Lastly, the fact that Z € DMSS wonow=0
was (essentially) proved by easy induction (using the Gysin triangle) in the
proof of Theorem 6.2.1 of [7].

In the case chark > 0, de Jong’s alterations allow to replace My, (P;) in
the reasoning above by some Chow motives (with rational coefficients); see
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Appendix B of [14]; we will not write down the details here.
O

Remark 4.8.2. Assertion 2 is not very actual for cohomology of smooth varieties
since any Z € SmPrVar is birationally isomorphic to P € SmPrVar (at least
for char k = 0). Yet the statement becomes more interesting when applied for
X = Mg, (2).

4.9 BIRATIONAL MOTIVES; CONSTRUCTING THE GERSTEN WEIGHT STRUC-
TURE BY GLUING,; OTHER POSSIBLE WEIGHT STRUCTURES

An alternative way to prove Proposition .81](2) is to consider (following [15])
the category of birational comotives. It satisfies the following properties:

(i) All birational cohomology theories factorize through it.

(ii) Chow and Gersten weight structures induce the same weight structure on
it (see Definition [Z77.T)(4)).

(iii) More generally, for any n > 0 Chow and Gersten weight structures induce
weight structures on the localizations ©(n)/D(n + 1) & Dy, (we call these
localizations slices) that differ only by a shift.

Moreover, one could ’almost recover’ original Chow and Gersten weight struc-
tures starting from this single weight structure.

Now we describe the constructions and facts mentioned in more detail. We
will be rather sketchy here, since we will not use the results of this subsection
elsewhere in the paper. Possibly, the details will be written down in another
paper.

As we will show in §5.4.3 below, the Tate twist functor could be extended (as
an exact functor) from DMg/! to D; this functor is compatible with (small)
products.

PROPOSITION 4.9.1. I The functor — ® Z(1)[1] is weight-ezact with respect to
w on Ds; —RZ(1)[2] is weight-exact with respect to Wehow on D (we will say
that w is — @ Z(1)[1]-stable, and wenow is — @ Z(1)[2]-stable).

IT Let Dy denote the localization of © by ©(1); B is the localization functor.
We denote B(Ds) by Ds pir-

1. Wehow induces a weight structure wy,,. on Dy,.. Besides, w induces a weight
structure wyi, on D pir .

2. We have C‘D:ﬁ%@;go - CDZ;LT“'SO, QZZ;’T'ZO - QZ{;""ZO (i.e. the embedding
(D5 pir, Woir) = (Dpir, w},,.) i weight-exact).

3. For any pro-scheme U we have B(Mym(U)) € @:ﬁ’;ﬁfo.

Proof. T This is easy, since the functors mentioned obviously map the corre-
sponding hearts (of weight structures) into themselves.

IT 1. By assertion I, wepoew induces a weight structure on ©(1) (i.e. D(1) is a
triangulated category, Obj® (1) N ®Wchrow<0 and ObjD(1) N D¥chrow=0 yield a
weight structure on it). Hence by Proposition 8.1.1(1) of [6] we obtain existence
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(and uniqueness) of wj,.. The same argument also implies the existence of some
Wpir ON Qs,bir-

2. Now we compare wy;, with wy, . Since w is bounded, wsy;» also is (see
loc.cit.). Hence it suffices to check that Hw,,. C Huwj, (see Theorem
22.1(T9)).

Moreover, it suffices to check that for X = [],c; Mym(K;) we have B(X) €

=" (since D0 =" is Karoubi-closed in Dy, here we also apply Propo-
sition E71](2)). As in the proof of Proposition f:81](2), we will consider the
case char k = 0; the case char k = p is treated similarly. Then we choose P, €
SmPrVar such that K; are their function fields; we have a natural morphism
X — [[ My (P;). It remains to check that Cone(X — [[ My (F)) € D4(1).
Now, since (1) and the class of distinguished triangles are closed with respect
to small products, it suffices to consider the case when L consists of a single
element. In this case the statement is immediate from Corollary [3.6.2]

3. Immediate from Corollary

O

Remark 4.9.2. 1. Assertion IT easily implies Proposition [L.8T12).

Indeed, any extended birational H (as in loc.cit.) could be factorized as G o B
for a cohomological G : Dp;- — A. Since B is weight-exact with respect to
Wehow (and its restriction to D, is weight-exact with respect to w), (the trivial
case of) Proposition 277.3(12) implies that for any X € Obj®D (any choice)
of Toyy. (G, B(X)) is naturally isomorphic starting from E» to any choice of
Tweno, (H, X); for any X € Obj®; (any choice) of Ty, (G, B(X)) is naturally
isomorphic starting from Es to any choice of T,,(H, X).

It is also easily seen that the isomorphism T, (H, X) — T\ (H, X) is com-
patible with the comparison morphism M (see loc.cit.).

2. The proof of existence of wp;,- and of assertion 3 works with integral co-
efficients even if chark > 0. Hence we obtain that that the category image
B(Myn(U)), U € SmVar, is negative. We can apply this statement in C' be-
ing the idempotent completion of B(DM gj;f ) i.e. in the category of birational
comotives. Hence Theorem [Z2ZT|(I8)) yields: there exists a weight structure for
C whose heart is the category of birational Chow motives (defined as in §5 of
[15]). Note also that one can pass to the inductive limit with respect to base
change in this statement (cf. §4.6)); hence one does not need to require k to be
countable.

Now we explain that w and wgpew could be ’almost recovered’ from
(Dpir, wy,;,.). Exactly the same reasoning as above shows that for any n > 0 the
localization of © by ©(n) could be endowed with a weight structure w,, com-
patible with wepew, whereas the localization of ©4 by D4(n) could be endowed
with a weight structure w,, compatible with w.

Next, we have a short exact sequence of triangulated categories ©/D(n) <3
D/D(n+ 1) L Dy, Here the notation for functors comes from the ’classical’
gluing data setting (cf. §8.2 of [6]); i. could be given by — ® Z(1)[s] for any
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s € Z, j* is just the localization. Now, if we choose s = 2 then i, is weight-
exact with respect to w;, and w),,; if we choose s = 1 then the restriction of
ix 10 Ds/Ds(n) is weight-exact with respect to wy, and wy,1.

Next, an argument similar to the one used in §8.2 of [6] shows: for any short

exact sequence D o C AN FE of triangulated categories, if D and E are endowed
with weight structures, then there exist at most one weight structure on C such
that both i. and j* are weight-exact (see also Lemma 4.6 of [3] for the proof
of a similar statement for t-structures). Hence one can recover w, and w/,
from (copies of) wy,,; the main difference between them is that the first one
is — ® Z(1)[1]-stable, whereas the second one is — ® Z(1)[2]-stable. It is quite
amazing that weight structures corresponding to spectral sequences of quite
distinct geometric origin differ just by [1] here! If one calls the filtration of ©
by D (n) the slice filtration (this term was already used by A. Huber, B. Kahn,
M. Levine, V. Voevodsky, and other authors for other ’motivic’ categories),
then one may say that w, and w], could be recovered from slices; the difference
between them is "how we shift the slices’.

Moreover, Theorem 8.2.3 of [6] shows: if both adjoints to i, and j* exist, then
one can use this gluing data in order to glue (any pair) of weight structures
for D and E into a weight structure for C. So, suppose that we have a weight
structure wy, ; for ©/D(n) that is — ® (1)[s]-stable and compatible with wj,,
on all slices (in the sense described above; so w)], = wy, 2, wy, is the restriction
of wy1 to Ds/Ds(n), and all w; s coincide with wj,.). General homological
algebra (see Proposition 3.3 of [I8]) yields that all the adjoints required do
exist in our case. Hence one can construct wy41, s for ©/®(n+1) that satisfies
similar properties. So, w,, s exist for all n > 0 and all s € Z. Hence Gersten
and Chow weight structures (for ®;/D4(n) C ©/D(n)) are members of a rather
natural family of weight structures indexed by a single integral parameter. It
could be interesting to study other members of it (for example, the one that is
— ® Z(1)-stable), though possibly w!, is the only member of this family whose
heart is cocompactly generated.

This approach could allow to construct w in the case of a not necessarily
countable k. Note here that the system of D,/®;(n) yields a fine approx-
imation of ©,. Indeed, if X € SmPrVar, n > dim X, then Poincare du-
ality yields: for any Y € ObjDMgefnf we have DM;,{If(Y(n),Mgm(X)) =
DMH(Y ® X (n — dim X)[—2dim X], Z); this is zero if n > dim X since Z
is a birational motif. Hence (by Yoneda’s lemma) for any n > 0 the full sub-
category of DM ;ﬂlf generated by motives of varieties of dimension less than n
fully embeds into DM&]S /DMESf (n) € ©/D(n).

It follows that the restrictions of w,, s to a certain series of (sufficiently small)
subcategories of ©/®(n) are induced by a single — ® (1)[s]-stable weight struc-
ture w, for the corresponding subcategory of ©. Here for the corresponding
subcategory of ®/D(n) (or ©) one can take the union of the subcategories
of ®/D(n) (resp. D) generated (in an appropriate sense) by comotives of
(smooth) varieties of dimension < 7 (with r running through all natural num-
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bers). Note that this subcategory of © contains DMgej;f.

We also relate briefly our results with the (conjectural) picture for ¢-structures
described in [3]. There another (geometric) filtration for motives was consid-
ered; this filtration (roughly) differs from the filtration considered above by (a
certain version of) Poincare duality. Now, conjecturally the gr,, of the category
of birational motives with rational coefficients (cf. §4.2 of ibid.) should be (the
homotopy category of complexes over) an abelian semisimple category. Hence it
supports a t-structure which is simultaneously a weight structure. This struc-
ture should be the building block of all relevant weight and t-structures for
comotives. Certainly, this picture is quite conjectural at the present moment.

Remark 4.9.3. The author also hopes to carry over (some of) the results of the
current paper to relative motives (i.e. motives over a base scheme that is not a
field), relative comotives, and their cohomology. One of the possible methods
for this is the usage of gluing of weight structures (see §8.2 of [6], especially
Remark 8.2.4(3) of loc.cit.). Possibly for this situation the ’version of D’ that
uses motives with compact support (see §6.41below) could be more appropriate.

5 THE CONSTRUCTION OF ® AND ®’; BASE CHANGE AND TATE TWISTS

Now we construct our categories ® and © using the differential graded cate-
gories formalism.

In §5.0] we recall the definitions of differential graded categories, modules over
them, shifts and cones (of morphisms).

In we recall main properties of the derived category of (modules over) a
differential graded category.

In §5.3] we define ©’ and © as the categories opposite to the corresponding
categories of modules; then we prove that they satisfy the properties required.
In §5. 4 we use the differential graded modules formalism to define base change
for motives (extension and restriction of scalars). This yields: our results on di-
rect summands of comotives (and cohomology) of function fields (proved above)
could be carried over to pro-schemes obtained from them via base change.

We also define tensoring of comotives by motives, as well as a certain ’co-
internal Hom’ (i.e. the corresponding left adjoint functor to X ® — for X €
ObjDMg}T). These results do not require k to be countable.

5.1 DG-CATEGORIES AND MODULES OVER THEM

We recall some basic definitions; cf. [16] and [12].

An additive category A is called graded if for any P,Q € ObjA there is a
canonical decomposition A(P,Q) = @;A*(P,Q) defined; this decomposition
satisfies A’(*,%) o AJ(x,%) C A (x,x). A differential graded category (cf.
[12]) is a graded category endowed with an additive operator § : A*(P,Q) —
AHY(P,Q) for all i € Z, P, € ObjA. § should satisfy the equalities 62 = 0
(so A(P,Q) is a complex of abelian groups); §(fog) =dfog+ (—1)'f odg for
any P,Q, R € ObjA, f € AY(P,Q), g € A(Q, R). In particular, 6(idp) = 0.
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We denote & restricted to morphisms of degree i by 4°.

Now we give a simple example of a differential graded category.

For an additive category B we consider the category B(B) whose objects are
the same as for C'(B) whereas for P = (P*), Q = (Q?) we define B(B)*(P,Q) =
[Licz B(P7,Q™7). Obviously B(B) is a graded category. We will also consider
a full subcategory B®(B) C B(B) whose objects are bounded complexes.

We set §f = dgof—(—1)'fodp, where f € B'(P,Q), dp and dg are the differ-
entials in P and Q. Note that the kernel of §°(P, Q) coincides with C(A)(P, Q)
(the morphisms of complexes); the image of 61 are the morphisms homotopic
to 0.

Note also that the opposite category to a differential graded category becomes
differential graded also (with the same gradings and differentials) if we define
foPo g% = (=1)P(go f)°P for g, f being composable homogeneous morphisms
of degrees p and ¢, respectively.

For any differential graded A we define an additive category H(A) (some au-
thors denote it by H°(A)); its objects are the same as for A; its morphisms are
defined as

H(A)(P7 Q)= Ker&%(PaQ)/Im(SZl(PaQ)

In the case when H(A) is triangulated (as a full subcategory of the category
K(A) described below) we will say that A is a (differential graded) enhancement
for H(A).

We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Kerdy(P,Q).
We have an obvious functor Z(A4) — H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).

Now we define (left differential graded) modules over a small differential graded
category A (cf. §3.1 of [16] or §14 of [12]): the objects DG-Mod(A) are those
additive functors of the underlying additive categories A — B(Ab) that pre-
serve gradings and differentials for morphisms. We define DG-Mod(A)*(F, G)
as the set of transformations of additive functors of degree i; for h €
DG-Mod(A)*(F,G) we define 6°(h) = dg o f — (—1)f odr. We have a natural
Yoneda embedding YV : A°? — DG-Mod(A) (one should apply Yoneda’s lemma
for the underlying additive categories); it is easily seen to be a full embedding
of differential graded categories.

Now we define shifts and cones in DG-Mod(A) componentwisely. For F €
Obj DG-Mod(A) we set F[1](X) = F(X)[1]. For h € Keré%G_Mod(A)(F, G)
we define the object Cone(h): Cone(h)(X) = Cone(F(X) — G(X)) for all
X € ObjA.

Note that for A = B(B) both of these definitions are compatible with the
corresponding notions for complexes (with respect to the Yoneda embedding).
We have a natural triangle of morphisms in 6% . )"

P P = Cone(f) — P[1]. (30)
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5.2 THE DERIVED CATEGORY OF A DIFFERENTIAL GRADED CATEGORY

We define K(A) = H(DG-Mod(A)). It was shown in §2.2 of [16] that C(A) is a
triangulated category with respect to shifts and cones of morphisms that were
defined above (i.e. a triangle is distinguished if it is isomorphic to those of the
form (B0)).
We will say that f € Ker 5%G_M0d(A)(F, G) is a quasi-isomorphism if for any
X € ObjA it yields an isomorphism F(X) — F(Y). We define D(A) as the
localization of C(A) with respect to quasi-isomorphisms; so it is a triangulated
category. Note that quasi-isomorphisms yield a localizing class of morphisms
in K (A). Moreover, the functor X — H°(F(X)) : K(A) — Ab is corepresented
by DG-Mod(A)(X, —) € ObjK(A); hence for any X € ObjA, F € ObjK(A) we
have

D(AY(Y (X), F) = K(A)(Y (X), F). (31)

Hence we have an embedding H(A)? — D(A).

We define C(A4) as Z(DG-Mod(A)). It is easily seen that C(A) is closed with
respect to (small filtered) direct limits, and lim F; is given by X — h_ngFl(X ).
Now we recall (briefly) that differential graded modules admit certain ’resolu-
tions’ (i.e. any object is quasi-isomorphic to a semi-free one in the terms of §14
of [12]).

PROPOSITION 5.2.1. There exists a full triangulated K' C IKC(A) such that the
projection K(A) — D(A) induces an equivalence K' ~ D(A). K' is closed with
respect to all (small) coproducts.

Proof. See §14.8 of [12] O

Remark 5.2.2. In fact, there exists a (Quillen) model structure for C(A) such
that D(A) its homotopy category; see Theorem 3.2 of [16]. Moreover (for the
first model structures mentioned in loc.cit) all objects of C(A) are fibrant, all
objects coming from A are cofibrant. For this model structure two morphisms
are homotopic whenever they become equal in K(A). So, one could take K’
whose objects are the cofibrant objects of C(A).

Using these facts, one could verify most of Proposition BIT] (for ® and ©
described below).

5.3 THE CONSTRUCTION OF ©’ AND ®; THE PROOF OF PROPOSITION 3. 1.1]

It was proved in §2.3 of [4] (cf. also [I9] or §8.3.1 of [7]) that DMge?f@f could be
described as H(A), where A is a certain (small) differential graded category.
Moreover, the functor K°(SmCor) — DME}] could be presented as H(f),
where f : B®(SmCor) — A is a differential graded functor. We will not
describe the details for (any of) these constructions since we will not need
them.

We define " = C(A)°?, ® = D(A)°P, pis the natural projection. We verify that
these categories satisfy Proposition B.Il Assertion [I0] follows from the fact
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that any localization of a triangulated category that possesses an enhancement,
is enhanceable also (see §§3.4-3.5 of [12]).

The embedding H(A)°? — D(A) yields DM}/ < ®’. Since all objects coming
from A are cocompact in K(A)°P, Proposition (2T yields that the same is true
in ©. We obtain assertion [l

D’ is closed with respect to inverse limits since C(A) is closed with respect to
direct ones. Since the projection C(A) — K(A) respects coproducts (as well as
all other (filtered) colimits), Proposition 5.2.] yields that p respects products
also. We obtain assertion 2

The descriptions of C(A) and D(A) yields all the properties of shifts and cones
required. This yields assertions Bl [, and Since D(A) is a localization of
K(A), we also obtain assertion Bl

Next, since D(A) is a localization of K(A) with respect to quasi-isomorphisms,
we obtain assertion [8l

Recall that filtered direct limits of exact sequences of abelian groups are exact.
Hence for any X € ObjA C Obj®’, Y : L — DG-Mod(A) we have

K(A)(DG-Mod(A)(X, -), liny, Y1) = H((lim Y1) (A))
— HO(lim(Yi(A))) = lim HO(Yi(A)) = liny, K(4)(DG-Mod (4)(X, ), Y).

Applying (31 we obtain assertion [7

It remains to verify assertion [d of loc.cit. Since the inverse limit with respect
to a projective system is isomorphic to the inverse limit with respect to any its
unbounded subsystem, and the same is true for lim in the countable case, we
can assume that [ is the category of natural numbers, i.e. we have a sequence
of F; connected by morphisms.

In this case we have functorial morphisms lim F; EN I1E EN [1F: as in 7).
Hence it suffices to check that these morphisms yield a distinguished trian-
gle in ®. Note that g o f = 0; hence g could be factorized through a mor-
phism h : Conef — [[F; in ®’. Since for any X € ObjA the morphism
h* : Tl Fi(X) — Cone F(X) is a quasi-isomorphism, & becomes an isomor-
phism in ®. This finishes the proof.

Remark 5.3.1. 1. Note that the only part of our argument when we needed k
to be countable in the proof of assertion [l of loc.cit.

2. The constructions of A (i.e. of the ’enhancement’ for DMgefnf mentioned
above) that were described in [4], [I9], and in [7], are easily seen to be functorial
with respect to base field change (see below). Still, the constructions mentioned
are distinct and far from being the only ones possible; the author does not
know whether all possible ® are isomorphic. Still, this makes no difference for
cohomology (of pro-schemes); see Remark

Moreover, note that assertion [I0l of Proposition [3.1.1] was not very important
for us (without if we would only have to consider a certain weakly ezact weight
complex functor in §6.1] below; see §3 of [6]). The author doubts that this
condition follows from the other parts of Proposition B.1.11
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5.4 BASE CHANGE AND TATE TWISTS FOR COMOTIVES

Our differential graded formalism yields certain functoriality of comotives with
respect to embeddings of base fields. We construct both extension and re-
striction of scalars (the latter one for the case of a finite extension of fields
only). The construction of base change functors uses induction for differential
graded modules. This method also allows to define certain tensor products and
Co — Hom for comotives. In particular, we obtain a Tate twist functor which
is compatible with (23)) (and a left adjoint to it).

We note that the results of this subsection (probably) could not be deduced
from the ’axioms’ of D listed in Proposition B.1.T} yet they are quite natural.

5.4.1 INDUCTION AND RESTRICTION FOR DIFFERENTIAL GRADED MODULES:
REMINDER

We recall certain results of §14 of [I2] on functoriality of differential graded
modules. These extend the corresponding (more or less standard) statements
for modules over differential graded algebras (cf. §14.2 of ibid.).

If f: A— B is a functor of differential graded categories, we have an obvious
restriction functor f* : C(B) — C(A). It is easily seen that f* also induces
functors K(B) — K(A) and D(B) — D(A). Certainly, the latter functor
respects homotopy colimits (i.e. the direct limits from C(B)).

Now, it is not difficult to construct an induction functor f. : DG-Mod(A) —
DG-Mod(B) which is left adjoint to f*; see §14.9 of ibid. By Example 14.10 of
ibid, for any X € Obj A this functor sends X* = A(X, —) to f(X)*.

f« also induces functors C(A) — C(B) and K(A) — K(B). Restricting the
latter one to the category of semi-free modules K’ (see Proposition 5.2.]) one
obtains a functor Lf, : D(A) — D(B) which is also left adjoint to the corre-
sponding f*; see §14.12 of [12]. Since all functors of the type X* are semi-free
by definition, we have Lf,(X*) = A(X,—) = Lf(X)*. It can also be shown
that Lf, respects direct limits of objects of A°? (considered as A-modules via
the Yoneda embedding). In the case of countable limits this follows easily from
the definition of semi-free modules and the expression of the homotopy colimit
in D(A) as lim X; = Cone(p X; — @ X;) (this is just the dual to [27))). For
uncountable limits, one could prove the fact using a 'resolution’ of the direct
limit similar to those described in §A3 of [21].

5.4.2 EXTENSION AND RESTRICTION OF SCALARS FOR COMOTIVES

Now let I/k be an extension of perfect fields.

Recall that ®’ and D were described (in §5.3)) in terms of modules over a certain
differential graded category A. It was shown in [I9] that the corresponding
version of A is a tensor (differential graded) category; we also have an extension
of scalars functor Ay — A;. It is most probable that both of these properties
hold for the version of A described in [4] (note that they obviously hold for
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Bb(SmCor)). Moreover, if I /k is finite, then we have the functor of restriction
of scalars in inverse direction.

So, the induction for the corresponding differential graded modules yields
an exact functor of extension of scalars Ext;/;, : ®; — ©;. The reasoning
above shows that Ext;/, is compatible with the 'usual’ extension of scalars
for smooth varieties (and complexes of smooth correspondences). Moreover,
since Ext;/,, respects homotopy limits, this compatibility extends to comotives
of pro-schemes and their products. It can also be easily shown that Ext;
respects Tate twists.

We immediately obtain the following result.

PROPOSITION 5.4.1. Let k be countable (and perfect), let | D k be a perfect
field.

1. Let S be a connected primitive scheme over k, let Sy be its generic point.
Then Mg, (S1) is a retract of Mgm(Sor) in D;.

2. Let K be a function field over k. Let K' be the residue field for a geometric
valuation v of K of rank r. Then Mg, (K[(r)[r]) is a retract of Mym(K;) in
9.

As in[3] this result immediately implies similar statements for any cohomology
of pro-schemes mentioned (constructed from a cohomological H : DM, _gﬁ 1 —~ A
via Proposition [L2ZT).

Next, if [/k is finite, induction for differential graded modules applied to
the restriction of scalars for A’s also yields a restriction of scalars functor
Res;/, : ©; — Dg. Similarly to Ext;/;, this functor is compatible with re-
striction of scalars for smooth varieties, pro-schemes, and complexes of smooth
correspondences; it also respects Tate twists.

It follows: [/ is finite, then Ext;/;, maps Dsx to D5 Res;/, maps D to Dy
Besides, if we also assume [ to be countable, then both of these functors respect
weight structures (i.e. they map @SZJSO to @S?JSO, @S:ZO to @S;”ZO, and vice
versa).

Remark 5.4.2. It seems that one can also define restriction of scalars via re-
striction of differential graded modules (applied to the extension of scalars for
A’s). To this end one needs to check the corresponding adjunction for DM/
the corresponding (and related) statement for the motivic homotopy categories
was proved by J. Ayoub. This would allow to define Res;/;, also in the case
when [/k is infinite; this seems to be rather interesting if [ is a function field

over k. Note that Res;/;, (in this case) would (probably) also map @SEUSO to

D,=0 and D,1"2% to D=0 (if I is countable).

5.4.3 TENSOR PRODUCTS AND ’'CO-INTERNAL HOM’ FOR COMOTIVES; TATE
TWISTS

Now, for X € ObjA we apply restriction and induction of differential graded
modules for the functor X ® — : A — A. Induction yields a certain functor
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X ®—:9D — D, whereas restriction yields its left adjoint which we will denote
by Co— Hom(X,—) : ® — ©. Both of them respect homotopy limits. Also,
X ®~— is compatible with tensoring by X on DM]/. Besides, the isomorphisms
classes of these functors only depend on the quasi-isomorphism class of X in
DG-Mod(A). Indeed, it is easily seen that both X ® Y and Co — Hom(X,Y)
are exact with respect to X if we fix Y'; since they are obviously zero for X = 0,
it remains to note that quasi-isomorphic objects could be connected by a chain
of quasi-isomorphisms.

Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n € Z. Then we
obtain that the formal Tate twists defined by (23] are the true Tate twists i.e.
they are given by tensoring by X on ©. Then recall the Cancellation Theorem
for motives: (see Theorem 4.3.1 of [25], and [27])): X ® — is a full embedding
of DM¢// into itself. Then one can deduce that X @ — is fully faithful on ©
also (since all objects of © come from semi-free modules over A). Moreover,
Co— Hom(X,—)o (X ® —) is easily seen to be isomorphic to the identity on
© (for such an X).

6 SUPPLEMENTS

We describe some more properties of comotives, as well as certain possible
variations of our methods and results. We will be somewhat sketchy sometimes.

In §6.1] we define an additive category D9¢" of generic motives (a variation
of those studied in [9]). We also prove that the exact conservative weight
complez functor (that exists by the general theory of weight structures) could
be modified to an exact conservative WC : © — K°(D9"). Besides, we prove
assertions on retracts of the pro-motif of a function field K/k, that are similar
to (and follow from) those for its comotif.

In §6. 2 we prove that HI has a nice description in terms of Hw. This is a sort of
Brown representability: a cofunctor Hw — Ab is representable by a (homotopy
invariant) sheaf with transfers whenever it converts all small products into
direct sums. This result is similar to the corresponding results of §4 of [6] (on
the connection between the hearts of adjacent structures).

In §6.3 we note that our methods could be used for motives (and comotives)
with coefficients in an arbitrary commutative unital ring R; the most important
cases are rational (co)motives and ’torsion’ (co)motives.

In §6.4] we note that there exist natural motives of pro-schemes with compact
support in DM®T. 1t seems that one could construct alternative ® and D’
using this observation (yet this probably would not affect our main results
significantly).

We conclude the section by studying which of our arguments could be extended
to the case of an uncountable k.
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6.1 THE WEIGHT COMPLEX FUNCTOR; RELATION WITH GENERIC MOTIVES

We recall that the general formalism of weight structures yields a conservative
exact weight complex functor ¢ : ®, — K?(Hw); it is compatible with Defini-
tion 22 T2[@). Next we prove that one can compose it with a certain ’projection’
functor without losing the conservativity.

LEMMA 6.1.1. There ewists an exact conservative functor t : ®, — K°(Hw)
that sends X € ObjDs to a choice of its weight complex (coming from any
choice of a weight Postnikov tower for it).

Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6] (note that
D, has a differential graded enhancement by Proposition BITII0)).
o

Now, since all objects of Hw are retracts of those that come via p from inverse
limits of objects of j(C?(SmCor)), we have a natural additive functor Hw —
Dnaive (see §IH). Its categorical image will be denoted by ©9¢"; this is a
slight modification of Deglise’s category of generic motives. We will denote the
'projection’ Hw — D9 and K°(Hw) — K°(®9°") by pr.

THEOREM 6.1.2. 1. The functor WC = prot: D, — K°(D9") is exact and
conservative.

2. Let S be a connected primitive scheme, let Sy be its generic point. Then
pr(Mgm (S)) s a retract of pr(Mgm(So)) in DI,

3. Let K be a function field over k. Let K' be the residue field for some
geometric valuation v of K of rank r. Then pr(Mgm (K')(r)[r]) is a retract of
pr(Mym(K)) in D97,

Proof. 1. The exactness of WC is obvious (from Lemma [E1.1). Now we check
that WC' is conservative.
By Proposition BT[], it suffices to check: if WC(X) is acyclic for some
X € ObjD,, then D(X,Y) = 0 for all Y € ObjDMS}S. We denote the terms
of t(X) by X*.
We consider the coniveau spectral sequence T'(H,X) for the functor H =
D(—,Y) (see Remark 42)). Since WC(X) is acyclic, we obtain that the
complexes D(X ~¢,Y[j]) are acyclic for all j € Z. Indeed, note that the restric-
tion of a functor D(X %, —) to DMge?f@f could be expressed in terms of pr(X —*);
see Remark B:2.11 Hence E5(T) vanishes. Since T' converges (see Proposition
M47](2)) we obtain the claim.
2. Immediate from Corollary [22](1).
3. Immediate from Corollary F2.2](2).

o

Remark 6.1.3. For X = My, (Z), Z € SmVar, it easily seen that WC(X)
could be described as a 'naive’ limit of complexes of motives; cf. §1.5.

Now, the terms of ¢(X) are just the factors of (some possible) weight Postnikov
tower for X; so one can calculate them (at least, up to an isomorphism) for

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



112 M. V. BONDARKO

X = Myn(Z). Unfortunately, it seems difficult to describe the boundary for
t(X) completely since Hw is finer than ©9°".

6.2 THE RELATION OF THE HEART OF w WITH HI (’BROWN REPRE-
SENTABILITY’)

In Theorem 4.4.2(4) of [6], for a pair of adjacent structures (w,t) for C
(see Remark 2.5.7) it was proved that Ht is a full subcategory of Hw,(=
AddFun(Hw°?, Ab)). This result cannot be extended to arbitrary orthog-
onal structures since our definition of a duality did not include any non-
degenerateness conditions (in particular, ® could be 0). Yet for our main
example of orthogonal structures the statement is true; moreover, HI has a
natural description in terms of Hw. This statement is very similar to a certain
Brown representability-type result (for adjacent structures) proved in Theorem
4.5.2(I1.2) of ibid.

Note that Hw is closed with respect to arbitrary small products; see Proposition

ATT(2).

PROPOSITION 6.2.1. HI is naturally isomorphic to a full abelian subcategory
Huw' of Hw, that consists of functors that convert all products in Hw into
direct sums (of the corresponding abelian groups).

Proof. First, note that for any G € ObjDMfff the functor ® — Ab that sends
X € 0bjD to ®(X,G) (P is the duality constructed in Proposition 5T is
cohomological. Moreover, it converts homotopy limits into injective limits (of
the corresponding abelian groups); hence its restriction to Hw belongs to Hw'..
We obtain an additive functor DM g%f — Hw'.. In fact, it factorizes through
HI (by 28)). For G € ObjHI we denote the functor Hw — Ab obtained by
G

Next, for any (additive) F': Hw’” — Ab we define F' : ©, — Ab by:

F'(X) = (Ker(F(X%) — F(X7Y)/Im(F(X") — F(X°)); (32)

here X° is a weight complex for X. It easily seen from Lemma [E.T.Ithat F’ is
a well-defined cohomological functor. Moreover, Theorem [Z22ZI(I9)) yields that
F’ vanishes on ®¥<~! and on D¥=! (since it vanishes on D¥=* for all i # 0).
Hence F’ defines an additive functor F” = F' o My, : SmCor°? — Abie. a
presheaf with transfers. Since My, (Z) & My, (Z x A') for any Z € SmVar,
F" is homotopy invariant. We should check that F" is actually a (Nisnevich)
sheaf. By Proposition 5.5 of [26], it suffices to check that F" is a Zariski sheaf.
Now, the the Mayer-Vietoris triangle for motives (§2 of [25]) yields: to any
Zariski covering U [TV — U UV there corresponds a long exact sequence

= F(Men(UN V1) = F'(UUV) = F'O) D F'(V) » F'UNV) - ...

Since My, (UNV) € D=0 by part 5 of Proposition 1.1}, we have F’ (Mg, (UN
V)[1]) = {0}; hence F” is a sheaf indeed.
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So, F'— F" yields an additive functor Hw, — HI.

Now we check that the functor G — G’ (described above) and the restrictions
of F +— F" to Hw!, C Hw, yield mutually inverse equivalences of the categories
in question.

@24) immediately yields that the functor HI — HI that sends G € ObjHI to
(G")" is isomorphic to idp;.

Now for F' € ObjHw', we should check: for any P € D¥=° we have a natu-
ral isomorphism (F”)(P) = F(P). Since Hw is the idempotent completion
of H, it suffices to consider P being of the form [],.; Myu (K;)(ni)[ni] (here
K are function fields over k, n; > 0; n; and the transcendence degrees of
K;/k are bounded); see part 2 of Proposition @111 Moreover, since F' con-
verts products into direct sums, it suffices to consider P = My,,(K")(n)[n]
(K'/k is a function field, n > 0). Lastly, part 2 of Corollary 22 reduces the
situation to the case P = M, (K) (K/k is a function field). Now, by the defi-
nition of the functor G — G’, we have (F")" (Mg, (K)) = limg, F" (Mg (Uh)),

where K = @zeL U, Uy € SmVar. We have F"(U;) = Ker F(Mym(K)) —

F(HzeUll My (2)(1)[1]); here U}l is the set of points of U, of codimen-
sion 1. Since F(HzeUll Mgm(2)()[1]) = &.cvp F(Mgm(2)(1)[1]); we have
lim, F(HzeUll Mg (2)(1)[1]) = {0}; this yields the result.

O

6.3 MOTIVES AND COMOTIVES WITH RATIONAL AND TORSION COEFFI-
CIENTS

Above we considered (co)motives with integral coefficients. Yet, as was shown
in [20], one could do the theory of motives with coefficients in an arbitrary
commutative associative ring with a unit R. One should start with the naturally
defined category of R-correspondences: Obj(SmCorg) = SmVar; for X,Y in
SmVar we set SmCorg(X,Y) = @, R for all integral closed U C X x Y that
are finite over X and dominant over a connected component of X. Then one
obtains a theory of motives that would satisfy all properties that are required in
order to deduce the main results of this paper. So, we can define R-comotives
and extend our results to them.

A well-known case of motives with coefficients are the motives with rational
coefficients (note that Q is a flat Z-algebra). Yet, one could also take R = Z/nZ
for any n prime to char k.

So, the results of this paper are also valid for rational (co)motives and "torsion’
(co)motives.

Still, note that there could be idempotents for R-motives that do not come
from integral ones. In particular, for the naturally defined rational motivic
categories we have DME//Q # DM} © Q; also Chow*/fQ # Chow®/f @ Q
(here Chow®//Q C DM;,J;Lf Q denote the corresponding R-hulls). Certainly,
this does not matter at all in the current paper.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



114 M. V. BONDARKO

6.4 ANOTHER POSSIBILITY FOR ®; MOTIVES WITH COMPACT SUPPORT OF
PRO-SCHEMES

In the case chark = 0, Voevodsky developed a nice theory of motives with
compact support that is compatible with Poincare duality; see Theorem 4.3.7
of [25]. Moreover, the explicit constructions of [25] yield that the functor of
motif with compact support Mg, : SmVar® — DMg%f is compatible with
a certain j¢ : SmVary) — C~(Shv(SmCor)) (which sends X to the Suslin
complex of L¢(X), see §4.2 loc.cit.); this observation was kindly communicated
to the author by Bruno Kahn). This allows to define j¢(V') for a pro-scheme
V as the corresponding direct limit (in C(Shv(SmCor))).

Starting from this observation, one could try to develop an analogue of our
theory using the functor Mg,,. One could consider ® = DM °P; then it
would contain DM g,flf °P ag the full category of cocompact objects. It seems
that our arguments could be carried over to this context. One can construct
some ®’ for this D using certain differential graded categories.

Though motives with compact support are Poincare dual to ordinary motives
of smooth varieties (up to a certain Tate twist), we do not have a covariant
embedding DM¢]/ — ® (for this ’alternative’ D), since (the whole) DM/ is
not self-dual. Still, DM ge,f;f has a nice embedding into (Voevodsky’s) self-dual
category DMg,,; it contains an exhausting system of self-dual subcategories.
Hence this alternative © would yield a theory that is compatible with (though
not ’isomorphic’ to) the theory developed above.

Since the alternative version of ® is closely related with DM °P it seems
reasonable to call its objects comotives (as we did for the objects of ’our’ D).
These observations show that one can dualize all the direct summands results
of #lto obtain their natural analogues for motives of pro-schemes with compact
support. Indeed, to prove them we may apply the duals of our arguments in
§4] without any problem; see part 2 of Remark Note that we obtain
certain direct summand statements for objects of DM this way. This is an
advantage of our ’axiomatic’ approach in §3.11

One could also take D = U,z DM} (—n) (more precisely, this is the direct
limit of copies of DMge?f@f with connecting morphisms being — ® Z(1)). Then
we have a covariant embedding DM}/ — DMy, — D.

Note that both of these alternative versions of © are not closed with respect to
all (countable) products, and so not closed with respect to all (filtered count-
able) homotopy limits; yet they contain all products and homotopy limits that
are required for our main arguments.

6.5 WHAT HAPPENS IF k£ IS UNCOUNTABLE

We describe which of the arguments above could be applied in the case of an
uncountable k (and for which of them the author has no idea how to achieve
this). The author warns that he didn’t check the details thoroughly here.
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As we have already noted above, it is no problem to define D, @', or even D
for any k. The main problem here that (if k¥ is uncountable) the comotives of
generic points of varieties (and of other pro-schemes) can usually be presented
only as uncountable homotopy limits of motives of varieties. The general for-
malism of inverse limits (applied to the categories of modules over a differential
graded category) allows to extend to this case all parts of Proposition B.1.1] ex-
pect part @ This actually means that instead of the short exact sequence (28)
one obtains a spectral sequence whose F;-terms are certain lim’; here @j is
the j’s derived functor of lim ; cf. Appendix A of [2I]. This does not seem to
T
be catastrophic; yet the author has absolutely no idea how to control higher
projective limits in the proof of Proposition 3.5} note that part 2 of loc.cit.
is especially important for the construction of the Gersten weight structure.
Besides, the author does not know how to pass to an uncountable homotopy
limit in the Gysin distinguished triangle. It seems that to this end one either
needs to lift the functoriality of the (usual) motivic Gysin triangle to D', or
to find a way to describe the isomorphism class of an uncountable homotopy
limit in ® in terms of ®-only (i.e. without fixing any lifts to ®’; this seems to
be impossible in general). So, one could define the 'Gersten’ weight tower for a
comotif of a pro-scheme as as the homotopy limit of ’geometric towers’ (as in the
proof of Corollary B.6.2)); yet it seems to be rather difficult to calculate factors
of such a tower. It seems that the problems mentioned do not become simpler
for the alternative versions of © described in §6.41 So, currently the author does
not know how to prove the direct summand results of §4.2]if k is uncountable
(they even could be wrong). The problem here that the splittings of are
not canonical (see Remark [£2.3), so one cannot apply a limit argument (as in
§4.6) here.
It seems that constructing the Gersten weight structure is easier for ©;/D4(n)
(for some n > 0); see §401
Lastly, one can avoid the problems with homotopy limits completely by re-
stricting attention to the subcategory of Artin-Tate motives in DMgefnf (i.e.
the triangulated category generated by Tate twists of motives of finite exten-
sions of k, as considered in [30]). Note that coniveau spectral sequences for
cohomology of such motives (could be chosen to be) very ’economic’.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

This article studies a refinement of a conjecture of Tate concerning the values
at s = 1 of Artin L-functions. We recall that Tate’s conjecture was originally
formulated in [26, Chap. I, Conj. 8.2] as an analogue of (Tate’s reformulation
of) the main conjecture of Stark on the leading terms at s = 0 of Artin L-
functions and that the precise form of the ‘regulators’ and ‘periods’ that Tate
introduced in this context were natural generalisations of earlier constructions
of Serre in [24].

The refinement of Tate’s conjecture that we study here was formulated by
the present authors in [5, Conj. 3.3] and predicts an explicit formula for the
leading term at s = 1 of the zeta-function of a finite Galois extension of number
fields L/K in terms of the Euler characteristic of a certain perfect complex of
Gal(L/K)-modules (see (3) for a statement of this formula). In comparison to
Tate’s conjecture, this refinement predicts not only that the quotient by Tate’s
regulator of the leading term at s = 1 of the Artin L-function of a complex
character x of Gal(L/K) is an algebraic number but also that as y varies these
algebraic numbers should be related by certain types of integral congruence
relations. We further recall that [5, Conj. 3.3] is also known to imply the
‘Q2(1)-Conjecture’ that was formulated by Chinburg in [13].
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In the sequel we write Q(1), for the motive h°(Spec L)(1), considered as defined
over K and endowed with the natural action of the group ring Q[Gal(L/K)].
We recall that the ‘equivariant Tamagawa number conjecture’ applies in par-
ticular to pairs of the form (Q(1)r,Z[Gal(L/K)]) and was formulated by Flach
and the second named author in [9] as a natural refinement of the seminal
‘Tamagawa number conjecture’ of Bloch and Kato [3]. The main technical
result of the present article is then the following

THEOREM 1.1. Let L be a finite complex Galois extension of Q. If Leopoldt’s
Conjecture is valid for L, then [5, Conj. 3.3] is equivalent to the equivariant
Tamagawa number conjecture of [9, Conj. 4] for the pair (Q(1)r, Z]Gal(L/Q)]).

COROLLARY 1.2. If Leopoldt’s Conjecture is valid for every number field, then
for every Galois extension of number fields L/K the conjecture [5, Conj. 3.3]
is equivalent to the congecture [9, Conj. 4] for the pair (Q(1)r,Z]Gal(L/K)]).

These results connect the explicit leading term formula of [5, Conj. 3.3] to
a range of interesting results and conjectures. For example, [9, Conj. 4(iv)] is
known to be a consequence of the ‘main conjecture of non-commutative Iwasawa
theory’ that is formulated by Fukaya and Kato in [18, Conj. 2.3.2] and also of
the ‘main conjecture of non-commutative Iwasawa theory for Tate motives’
that is formulated by Venjakob and the second named author in [12, Conj.
7.1]. Corollary 1.2 therefore allows one to regard the study of the explicit
conjecture [5, Conj. 3.3] as an attempt to provide supporting evidence for
these more general conjectures. Indeed, when taken in conjunction with the
philosophy described by Huber and Kings in [19, §3.3] and by Fukaya and Kato
in [18, §2.3.5], Corollary 1.2 suggests that, despite its comparatively elementary
nature, [5, Conj. 3.3] may well play a particularly important role in the context
of the very general conjecture of Fukaya and Kato.

In addition to the above consequences, our proof of Theorem 1.1 also answers
an explicit question posed by Flach and the second named author in [7] (see
Remark 5.1) and combines with previous work to give new evidence in support
of the conjectures made in [5] including the following unconditional results.

COROLLARY 1.3. If L is abelian over Q, and K is any subfield of L, then both
[5, Conj. 3.3] and [5, Conj. 4.1] are valid for the extension L/K.

COROLLARY 1.4. There exists a natural infinite family of quaternion extensions
L/Q with the property that, if K is any subfield of L, then both [5, Conj. 3.3]
and [5, Conj. 4.1] are valid for the extension L/K.

We recall (from [5, Prop. 4.4(i)]) that [5, Conj. 4.1] is a natural refinement of
the ‘main conjecture of Stark at s = 0’. For details of connections between
[5, Conj. 3.3 and Conj. 4.1] and other interesting conjectures of Chinburg, of
Gruenberg, Ritter and Weiss and of Solomon see [5, Prop. 3.6 and Prop. 4.4]
and the recent thesis of Jones [20].

The main contents of this article is as follows. In §2 we recall the explicit state-
ment of [5, Conj. 3.3] and in §3 we review (and clarify) certain constructions
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in étale cohomology that are made in [8]. In §4 we make a detailed analysis of
the p-adic completion of the perfect complex that occurs in [5, Conj. 3.3]. In
85 we prove Theorem 1.1 and in §6 we use Theorem 1.1 to prove Corollaries
1.2, 1.3 and 1.4.
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this paper. In addition, the first author would like to thank the Isaac Newton
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2. THE EXPLICIT LEADING TERM CONJECTURE

In this section we quickly review [5, Conj. 3.3]. To do this it is necessary to
summarise some background about K-theory and homological algebra.

2.1. K-THEORY. Let R be an integral domain of characteristic 0, E an ex-
tension of the field of fractions of R, and G a finite group. We denote the
relative algebraic K-group associated to the ring homomorphism R[G] — E[G]
by Ko(R[G], E); a description of Ko(R[G], E) in terms of generators and rela-
tions is given in [25, p. 215]. The group Ko(R[G], E) is functorial in the pair
(R, E) and also sits inside a long exact sequence of relative K-theory. In this
paper we will use the homomorphisms 811%[G]’E : K1(E[G]) — Ko(R[G], E) and
010%[0],]5 : Ko(R[G], E) — Ko(R|G]) from the latter sequence.

Let Z(E[G])* denote the multiplicative group of the centre of the finite dimen-
sional semisimple E-algebra E[G]. The reduced norm induces a homomorphism
ur: K1 (E[G]) — Z(E[G])™ and we denote its image by Z(E[G])**. In this pa-
per I will always be either R or C,, for some prime number p. In both cases the
map nr is injective and hence we can use it to identify K (FE[G]) and Z(E[G])* ™.
In particular we will consider 011%[0],]5 as a map Z(F[G])*t — Ko(R[|G],E). If
E = C,, then Z(E[G))*t = Z(E[G])*.

For every prime p and embedding j : R — C, there are induced homomor-
phisms j. : Ko(Z[G],R) — K¢(Z,]|G],C,) and j. : Z(R[G])* — Z(C,[G])*.
In [5, §2.1.2] it is shown that there exists a (unique) homomorphism J% :
Z(R[G])* — Ko(Z[G],R) which coincides with 9} on Z(R[G])** and is
such that for every prime p and embedding j : R — C, one has j, o 8}; =
%p[c],cp o Jx : Z(R[G])* = Ko(Zp|G], Cp).

2.2. HOMOLOGICAL ALGEBRA. For our homological algebra constructions in
this paper we use the same notations and sign conventions as in [5]. So in
particular by a complex we mean a cochain complex of left R-modules for a
ring R, we use the phrase ‘distinguished triangle’ in the sense specified in [5,
§2.2.1] and by a perfect complex we mean a complex that in the derived category
D(R) is isomorphic to a bounded complex of finitely generated projective left
R-modules. The full triangulated subcategory of D(R) consisting of the perfect
complexes will be denoted by DP™(R).

Now let R, E and G be as in §2.1. For any object C' of D(R[G]) we write
He¥(C) and H°4(C) for the direct sums @; even H*(C) and &; 094 H*(C) where
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i runs over all even and all odd integers respectively. A trivialisation ¢ (over
E) of a complex C in DP°f(R[G]) is an isomorphism of E[G]-modules of the
form¢: HV(C)®@r E EN H°Y(C) @r E. We write xg(g),£(C,t) for the Euler
characteristic in Ko(R[G], F) defined in [4, Definition 5.5]. To simplify notation
in the sequel we write x for xz(g) r-

We shall interpret certain complexes in the derived category in terms of
Yoneda extension classes as in [8, p. 1353]. To be specific, for any com-
plex E that is acyclic outside degrees 0 and n > 1 we associate the class in
Exts™ (H™(E), H°(E)) given by the truncated complex E’ := 1<"720F with
the induced maps H°(E) = HY(E') — (E')° and (E')" — H"(E') = H"(E)
considered as a Yoneda extension.

2.3. NOTATION FOR NUMBER FIELDS. Let L be a number field. We write Op,
for the ring of integers of L and S(L) for the set of all places of L. For any place
w € S(L) we denote the completion of L at w by L,,. For a non-archimedean
place w we write O,, for the ring of integers of L,,, m,, for the maximal ideal
of O, and U jglw) for the group 1 4+ m,, of principal units in Ly,.

If L is an extension of K and v € S(K) then S, (L) is the set of all places of
L above v. We also use the notation Sy(L) and Soo(L) for the sets of all non-
archimedean and archimedean places, Sg(L) for the set of real archimedean
places and S¢(L) for the set of complex archimedean places.

From now on let L/K be a Galois extension of number fields with Galois group
G. For w in S(L) we let G, denote the decomposition group of w. For any place
vin S(K) we set Ly := ][, cq, (1) Lw and (if v € Sy(K)) Orv := [Les, 1) Ow
and my, , := HweSU(L) m,,. Note that L, Or , and mp,, are G-modules in an
obvious way.

Let S be a finite subset of S(K). The G-stable set of places of L that lie above
a place in S will also be denoted by S. This should not cause any confusion
because places of K will be called v and places of L will be called w. For a finite
subset S of S(K) which contains all archimedean places we let Oy, g be the ring
of S-integers in L. Note that Of, g is a G-module and that if S = So.(K), then
Or=0r5.

2.4. THE CONJECTURE. Let L/K be a Galois extension of number fields with
Galois group G. Let S be a finite subset of S(K) which contains all archimedean
places and all places which ramify in L/K and is such that Pic(Op g) = 0. In
[5, Lemma 2.7(ii)] it is shown that the leading term (Z/K,S(l) at s = 1 of the
S-truncated zeta-function of L/K belongs to Z(R[G])*". In this subsection
we recall the explicit conjectural description of éé((z /K, 5(1)) formulated in [5,
Conj. 3.3].

For each v € Soo(K) we let exp : L, — L denote the product of the (real or
complex) exponential maps L., — L5 for w € S,(L). If v € S¢(K), then for
sufficiently large ¢ the exponential map exp : miw — L) is the product of the
p-adic exponential maps m!, — LX for w € S, (L).

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 119-146



ON EQUIVARIANT DEDEKIND ZETA-FUNCTIONS AT s =1 123

To state [5, Conj. 3.3] we need to choose certain lattices. For each v € Sy :=
S N S§(K), with residue characteristic p, we choose a full projective Z,[G]-
lattice £, € O, which is contained in a sufficiently large power of my , to
ensure that the exponential map is defined on £,. Let £ be the full projective
Z|G]-sublattice of O, which has p-adic completions

(1) £®ZZp=< H OL,U>><< H £@>.
veS,(K)\S veS,(K)NS

We set Ls := [[,cq Lv and Ls := [],cg Lo (Where £, := L, for each v €
Soo(K)) and we let expg denote the map Ls — LZ that is induced by the
product of the respective exponential maps. We also write Ag for the natural
diagonal embedding from L* to L.

Following the notation of [23, Chap. VIII] we write I, for the group of ideles
of L and regard L* as embedded diagonally in I;,. The idele class group is
Cp = I /L* and the S-idele class group is Cg(L) := I/(L*Uyg,s), where
Urss = [l,es{l} % [l,gs On- We remark that since Pic(Or,s) = 0, the
natural map Lg — Cs(L) is surjective with kernel Ag(Oy ). There is also a

canonical invariant isomorphism invy ks : H*(G,Cs(L)) =N ﬁZ/Z and we
write e£°” for the element of Ext7¢)(Z, Cs(L)) = H*(G,Cs(L)) that is sent

by iIlVL/K7S to \_Cll\

Let Eg be a complex in D(Z[G]) which corresponds (in the sense of the last
paragraph of §2.2) to e%lOb. Then by [5, Lemma 2.4] there is a unique morphism
as 1 L5[0] ® L[-1] — Es in D(Z[G]) for which H°(ag) is the composite
Lg 222, L% — Cs(L) and H'(ag) is the restriction of the trace map try g :
L — Qto L. Let Es(L) be any complex which lies in a distinguished triangle
in D(Z|G)) of the form

(2) Ls0] @ £]-1] 2% By 25 Bg(0) 255 .
To describe the cohomology of Es(L) we set Lo = [[,cs. (1) Lw and

write LY, for the kernel of the map Los — R defined by (ly)wes.(r) —
Zwesw(L) trr, /r(lw). We write exp,, for the product of the exponential maps
Loo — L%, A for the diagonal embedding L* — L% and log. (O;) for the
full sublattice of L2, comprising elements = of Lo, with exp(z) € A (OF).
In [5, Lemma 3.1] it is shown that Eg(L) is a perfect complex of G-modules,
that Es(£) ® Q is acyclic outside degrees —1 and 0, that H~!(yg) induces an
identification of H=*(Eg(L)) with {z € Lg : expg(z) € Ag(OF)} and that
H°(~s) induces an identification of H(Es (L)) ® Q with ker(try,q). In addi-
tion, the projection L5 — Lo induces an isomorphism of Q[G]-modules from
{z € Ls : expg(z) € Ag(0F)}@Q to log. (OF )®Q. With these identifications
the isomorphism ker(trz, ;) ®gR N LY, =log.. (O] )®R which is obtained by
restricting the natural isomorphism L ®g R =N Lo to ker(try ;o) @g R gives a
trivialisation puy, : H(Eg(£)) ® R =N H Y(Es(L)) @R of Eg(L). In [5, Conj.
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3.3] it is conjectured that

(3) 05(Chx.s(1) = —xa(Es(L), pr).

For a discussion of the basic properties of this conjecture see [5, §3]. In par-
ticular for a proof of the fact that this conjecture refines Tate’s conjecture [26,
Chap. I, Conj. 8.2] see [5, Prop. 3.6(i)].

3. PRELIMINARIES CONCERNING ETALE COHOMOLOGY

To relate the conjectural equality (3) to [9, Conj. 4] we will use constructions
in étale cohomology that are made in [8]. However, to do this certain aspects
of the exposition in [8] require clarification and so in this section we review the
relevant parts of these constructions.

We fix L/K and S as in §2.4 but for simplicity we also assume henceforth that
S contains at least one non-archimedean place. For each w € S(L) we denote
the algebraic closure of L in L, by L. For w € S;(L) we let O be the ring of
integers in L"; note that O is the henselization of (the localization of) Oy, at
w (compare [21, Chap. I, Exam. 4.10(a)]) and that L” is the field of fractions
of Oh.

Similarly, for a place v € S(K) we define K’ as the algebraic closure of K in
K,. The inclusions Og s C K" C K, induce canonical maps g/ : Spec K* —
Spec Ok, s, fv : Spec K, — SpecKﬁ and g, = gfj o fy : Spec K, = Spec Ok g.

3.1. GENERAL CONVENTIONS. Let X be any scheme and F an étale sheaf on
X, i.e. a sheaf on the étale site X;. If Y is an étale X-scheme then we denote
by RT'(Y,F) the complex in the derived category D(Z) which is obtained by
applying the right derived functor of the section functor I'(Y, —) to the sheaf F;
thus RI(Y, F) is defined up to canonical isomorphism in D(Z). If Y = Spec R
for some commutative ring R, then we will write RT'(R, F) for RI'(Spec R, F)
and H'(R,F) for the cohomology groups H'(RT'(R, F)).

Now let v € S(K), w € S,(L) and let F be an étale sheaf on Spec K.
The G-action on Spec L" induces a G\,-action on the sections I'(Spec L" | F)
and hence the complex RI'(L" F) naturally lies in D(Z[Gy]). Similarly, if
F is an étale sheaf on Spec Ok, g, then RI'(Op g,F) belongs to D(Z[G]).
Finally for v € S(K) and F an étale sheaf on Spec Ok g we can consider
Dues.r) RU(L", (g")*F) as a complex in D(Z[G]). This is possible because
there is a canonical isomorphism

P rrh. 0 F) =Re( [ SeecLl,(9h)'F),
wES, (L) wESy (L)

and HwGSv(L) Spec L” is a Galois covering of Spec K with group G. Of course
the same is true with L”? and g" replaced by L,, and g, respectively.
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3.2. LOCAL COHOMOLOGY. Let v be a place of K and w € S,(L). Recall
that f, : Spec K, — Spec K corresponds to the inclusion K — K,. For
any étale sheaf F on Spec K the canonical map RT(L"?  F) — RT(L,,, f*F)
is an isomorphism in D(Z[Gy]). Indeed, if L,, is an algebraic closure of L,
and L! is the algebraic closure of L in L,, then the restriction map gives
an isomorphism Gal(L,,/K,) N Gal(Lh /K). Thus, upon identifying étale
cohomology and Galois cohomology the claimed isomorphism follows.

If 7 = G, on (Spec Kﬁ)et, then f¥G,, is not isomorphic to the sheaf G,
on (Spec K,)et. However the complexes RI(L! . G,,) = RI(Ly, f;G,,) and
RT'(Ly, G,y,) are related as follows.

LEMMA 3.1. There is a distinguished triangle in D(Z[Gy))
RIU(LYy,, Grm) — RT(Luw, Gm) — (Lyy /(Ly)*)[0] —,

whose cohomology sequence in degree 0 identifies with the canonical short ez-
act sequence 0 — (L")* — LX — L2/(Lh)* — 0. The G, -module
L2/ (LhY* is uniquely divisible and hence cohomologzcally trivial.

Proof. There is a canonical injection f*G,, — G,, of sheaves on (Spec Ky )et
such that the sequence

0— Gy, — Gy — G/ f1G, — 0

corresponds to the exact sequence 0 — %X — Ly — L_wx/%X — 0 of
Gal(L,,/K,)-modules. NOWL__wX /ﬁx is uniquely divisible. Also, the isomor-
phism Gal(L,,/K,) = Gal(L"/K!) combines with Hilbert’s Theorem 90 to
imply HO(Gal(E/Lw),EX/@X) = LX/(L")* as G,-modules. It follows
that LX/(L")* is uniquely divisible and hence cohomologically trivial (as a
Gy-module). In addition, by applying RI'(L.,, —) to the displayed exact se-
quence we obtain the claimed distinguished triangle. O
LEMMA 3.2. There are canonical isomorphisms of G,-modules

_ Lx if i =0,

H'(Ly,Gp) 24 0 ifi=1,

Br(L,) ifi=2.

If w is non-archimedean then H'(Ly,G,,) = 0 for i > 3 cmd the local in-
variant isomorphism gives a canonical identification Br(L,,) = Q/Z. With
respect to this identification the class of RT'(Ly, Gy,) in Eth[Gw (Q/Z,L}) =
H?(G., L)) is the local canonical class.

Proof. This is [8, Prop. 3.5.(a)]. O

3.3. COHOMOLOGY WITH COMPACT SUPPORT. For any étale sheaf F on
Spec Ok, s we define the complex RI':(Or ¢, F) in D(Z[G]) by

(4) RI:(Ot,s,F) = cone <RF (OL,s,F) = @ RU(LL, (9" f)) [—1],

wesS
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where, for every w € S, v(w) denotes the place of K below w. Thus this
complex lies in a distinguished triangle

(5)  RI'c(Or,s,F) — RI(Or,s,F) — @ RT(L, (90 u)) F) — -

weS
In [8, (3)] a complex RI'.(Oy g, F) is defined just as in (4) but with L and
gg(w) replaced by L, and g, () respectively. However, the observation made
at the beginning of §3.2 ensures that this definition coincides with that given
above.

3.3.1. The complez RT.(Of, 5,G,,). We define a G-module C%(L) in the same
way as Cs(L) is defined in §2.4 but with L, replaced by L" for each w €
S(L) and O,, replaced by OF for each w € Sy(L). Then, since we assume
Pic(Or.s) = 0, the natural map [],,.¢(L%)* — CE(L) is surjective with kernel
Of s

weSsS

LEMMA 3.3. There are canonical isomorphisms of G-modules

| Ce(L) ifi=1,
Hz(RFc(OL,Sma)) = @/Z ZfZ =3,
0 otherwise.

Proof. We first note that there are canonical isomorphisms of G-modules

Of,s if i =0,

i ~J 0 ifi=1,
H'(Ops,Gp) = ker (Br(L) - @MZS Br(Lw)) ifi =2,
Duesar) H' (Lw,Gm) if i > 3,

(cf. [22, Chap. II, Prop. 2.1, Rem. 2.2] and recall that Pic(Op,s) = 0 and
St # 0). Now, for every w € S one has (¢ )*G,, = G,, on (Spec Kf}(w))et

v(w)
because K f}( w) is an algebraic extension of K. The cohomology sequence of the

distinguished triangle (5) with F = G, thus combines with Lemmas 3.1 and
3.2 and the above displayed isomorphisms to give exact sequences

0 — H(RT(Op,5,Gpm)) = OF g — GaweS(LZ’)X
— HY(RT.(O1.5,Gy)) — 0
and
0 — H*(RT.(Oy,s,Gy)) — ker (Br(L) — @WS Br(Ly))
€D, _BrLw) = H*(RLe(OLs,Gm)) = 0

and an equality H (RT.(Of s,G,,)) = 0 for each i > 4. All maps here are
the canonical ones, thus for ¢ = 0 and ¢ = 1 the claimed description follows
immediately and for ¢ = 2 and ¢ = 3 it follows by using the canonical exact
sequence 0 = Br(L) = @, cs(r) Br(Lw) = Q/Z — 0. O

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 119-146



ON EQUIVARIANT DEDEKIND ZETA-FUNCTIONS AT s =1 127

3.3.2. The complex ﬁ“C(OLyg,Gm). Recall that for every w € S there is a
canonical map g,(w) : Spec Ky, — Spec Ok s of schemes and an inclusion
g;(w)Gm — Gy, of étale sheaves on Spec K, (,). Thus we can consider the
composite morphism

RT(OL.5,Gm) — @D RT(Lw, g5()Gm) — €D RT(Lw, Gim)
weS weS

in D(Z[G]). We then define the complex ﬁ“c(OL,S, Gpn) by setting

]ﬁ‘c(OL,S,Gm) := cone <RF(OL75,Gm) — @ RF(Lw,Gm)> [—1].

weS

LEMMA 3.4. There are canonical isomorphisms of G-modules

o Cs(L) ifi=1,
HZ(RFC(OL,S7G'M)) = @/Z ZfZ = 3;
0 otherwise.

The class of RUo(Or,s5,Gyn)[1] in Extd;(Q/Z,Cs(L)) = H*(G, Cs(L)) is the
global canonical class.

Proof. The computation of the cohomology is similar to the proof of Lemma
3.3, except that the role of (5) is now played by the distinguished triangle

(6) RU(O1,5,Gm) — RU(OL5,Gr) — @D RU(Luw, ) —
weS

that is induced by the definition of ﬁ“c(OL,S, Gpn). In degree 1 we also use the
fact that, since Pic(Op.s) = 0, C's(L) is canonically isomorphic to the cokernel
of the diagonal embedding Of, s = Ilwes L~ For the extension class see [8,

Prop. 3.5(b)] (but note that the result and proof in [8] apply to ﬁ“c(OL,S, Gm)
rather than to RI':(Ofr. g, Gy,) as incorrectly stated in loc. cit.). O

LEMMA 3.5. There is a distinguished triangle in D(Z[G])

RTUe(OL,s,Gm) — RLe(OL,s,Gm) — @ (L5/(L1))[-1] —
weS
which on cohomology in degree 1 induces the canonical exact sequence
0— CHL) = Cs(L) — H LX/(Lh)y* =0
weS

and on cohomology in degree 3 induces the identity map Q/Z — Q/Z.

Proof. This follows upon combining the distinguished triangle in Lemma 3.1
for each w € S with the distinguished triangle (5) with F = G,, and the
distinguished triangle (6). O
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4. PRO-p-COMPLETION

Let L/ K be a Galois extension of number fields, G = Gal(L/K), and S a set of
places of K as in §2.4. We will assume throughout this section that L is totally
complex. We fix a prime number p and also assume henceforth that .S contains
all places of residue characteristic p. As in §2.4 we choose lattices £, for v € Sy
and define £ by (1). We fix an algebraic closure K of K containing L and write
K for the maximal extension of K inside K which is unramified outside S.
For each natural number n we write ppn for the group of p™-th roots of unity
in K and let Z,(1) denote the continuous Gal(K g/K)-module im  pipn where
the limit is taken with respect to p-th power maps. In this section we relate
Es(L) ® Z, to the explicit complex RI'.(Or s,Z,(1)) that is defined in [9, p.
522]. For convenience we often abbreviate RI'.(Or,g,Z,(1)) to RT¢(Zy(1)).

For any abelian group A and natural number m we write A, for the kernel
of the endomorphism given by multiplication by m. For each natural number
n we consider the Z/p"[G]-module [, cq () (Ly)pn) C L. We then define a

Zyp|G)-module by setting L(1),, := lim (HwESw(L)(LZt(J)[P"O where the transi-
tion morphisms are the p-th power maps. We set L, := HweSP(L) L, and note
that £, := Huesp(K) L, is a full projective Z,[G]-sublattice of L,. We write
Ap for the natural localization map Of ® Z, — HweSP(L) Uﬁj Recall that
Leopoldt’s Conjecture for the field L and prime number p is the statement that
Ap is injective. With these notations we can now describe the cohomology of
the complex RI'.(OL,s,Zy(1)) @z, Qp.

LEMMA 4.1. If A\, is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p), then there are canonical isomorphisms

L(1), ®z, Qp ifi =1,
cok(Ay) ®z, Qp ifi =2,
Qp if 1 =3,

0 otherwise.

Hi(ch(OL,S; Z;D(]‘))) ®Zp @p =

Before proving Lemma 4.1 we first state the main result of this section and
introduce some further notation.

PROPOSITION 4.2. There is a distinguished triangle in D**™(Z,[G]) of the form
(7) L,[0] ® Ly[—1] — RT(Or,s,Zy(1))[2] — Es(L) @ Zp — .

Now assume that X\, is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p). With respect to the isomorphisms in Lemma 4.1 and the
description of the cohomology groups H (Es(L)) ® Q given in §2.4, the image
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under — ®z, Q, of the cohomology sequence of (7) is equal to

0 —— L(1), ®z, Q — > H~(Es(L)) @ Q,

(8) 02 L, e cok(Ay) ®z, Qp — H°(Es(L)) @ Qp

ter/@p

S Q, 0

where 01 sends an element (1 - {exp(2mvV—=1/p") }n>0)wes.. 1) of L(1)p®z, Qp

to the element (1 - 2mv/—1)yes. (1) of ker(exp,,) ® @, € H™H(Es(L)) @ Q,
and 03 is induced by the projection Ls — L.

In the proofs of Lemma 4.1 and Proposition 4.2 we will need the complex
RT'(ppn) := RT'c(OL,s, ptpn) for each natural number n. This complex can be
considered in two different ways. On the one hand, since p,» is a continuous
Gal(Kg/K)-module, we can consider RT'.(ppn) as the concrete complex of
Z/p"[G]-modules that is constructed using continuous cochains in [9, p. 522].
On the other hand, there is a natural étale sheaf y1,» on Spec Ok g and we can
consider the cohomology with compact support as defined in §3.3. However this
will not cause any confusion because it can be shown that these two possible
definitions of RIT':(u,») agree (up to canonical isomorphism), and whenever it
is necessary to distinguish between these two constructions of RI'.(p,n) we will
emphasize which one we are using.

Proof of Lemma 4.1. Recall that the complex RI'¢(Z,(1)) defined in [9, p. 522]
is equal to @n RT:(tpn ), where RT.(ppn) denotes the complex constructed
using continuous cochains and the transition morphisms are induced by the

n

p-th power map ppn+1 — ppn. From the exact sequence 0 — ppn — Gy L,

G — 0 of étale sheaves on Spec Ok s we obtain the distinguished triangle

9) RTe(ptpn) = RTo(O1.5,Gp) 25 RTe(Op.5, Gra) —

in D(Z[G]). To compute the modules H*(RI'.(Z,(1))) explicitly we combine
the cohomology sequence of (9) with the identifications of Lemma 3.3 and then
pass to the inverse limit over n. In particular, since each module L /(L")* is
uniquely divisible (by Lemma 3.1), one obtains in this way canonical isomor-
phisms

lim Cs(L)pn ifi=1,
lim Cs(L)/p" ifi=2,
Z, if i = 3,

0 otherwise.

IR

(10) H'(RT¢(Zy(1)))
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To describe this cohomology more explicitly we use the natural exact sequence
of finite G-modules

A
(11) 0— (OZS)[P"] —>S H (L;;)[pn] — CS(L)[pn]
weSs
X AS/P n
— Of o/p" —— [[ Lx/p" = Cs(L)/p" — 0.

weS
For each place (resp. finite place) w of L we write L} ®Z, (resp. or. ®Zyp)
for the pro-p-completion of L) (resp. Ofw). Note that Ofw QZ, Ujglw) if
w € Sy(L), and that Of &Z, is finite if w € Sy(L) \ Sp(L). Hence from the
commutative diagram

Or ®Z, ues, OF,©Zy
| |
X lgln As/p" X S
OL,S ® ZZD HwES Lw®ZP

we can deduce that the map ]ﬂl Ag/p™ is injective (since A\, : OF ® Z, —

[Tues, ) U ) is injective by assumption), and that cok(lim lim Ag/p")®z,Qp =
cok(Mp) ®z, (@p

Now the limit Jim (O I.s)pe] vanishes and one has lim [oes(Li)pr) =
Hm [wes.. ) (L ;;)pn = L(1),. By passing to the inverse limit over
n the sequence (11) thus induces identifications m Cs(L)pm) = L(1)y
and lim Cs(L)/p" = COk(Ln As/p™).  The explicit description of

HY(RT'c(Zy(1)))®z, Qp given in Lemma 4.1 therefore follows from (10) and the
identification cok ( lim As/p™) ®z, Qp = cok(\,) ®z, Qp described above. [

The proof of Proposition 4.2 will occupy the rest of this section. As the first
step in this proof we introduce a useful auxiliary complex.

LEMMA 4.3. There exists a complex Q in D(Z[G]) which corresponds (in the
sense of the third paragraph of §2.2) to the extension class e%lOb and also pos-
sesses all of the following properties.
(i) Q is a complex of Z-torsion-free G-modules of the form Q™! — Q° —
Q' (where the first term is placed in degree —1).
(ii) The morphism ag used in the distinguished triangle (2) is represented
by a morphism of complexes of G-modules o : Lg[0] & L[-1] = Q.
(iii) For each natural number n the complex Q/p™ consists of finite projec-
tive Z/p™|G]-modules.

Proof. At the outset we fix a representative of eglOb of the form A % B asin 5,
Rem. 3.2] with B a finitely generated projective Z[G]-module. We write d—!
for the composite of expg : Ls — Cg(L) and the inclusion Cg(L) C A. Since
cok(expg) is finite we may choose a finitely generated free Z[G]-module F and
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a homomorphism 7 : F' — A such that the morphism (d=!,7) : Ls® F — A is

-1
surjective. We take Q to be the complex ker((d~!, 7)) = Ls @& F eldm, g
where the first term is placed in degree —1. Then (d~!,7) restricts to give a
surjection ker(d o (d=!, 7)) — Cs(L) which induces an identification of H°(Q)
with Cg(L). Via this identification, the morphism from @ to A — B that is
equal to (d~1,7) in degree 0 and to the identity map in degree 1 induces the
identity map on cohomology in each degree and so @) represents e%bb. Further,
we obtain a morphism « as in claim (ii) by defining a® to be the inclusion

Ls C Ls @ F and o' to be any lift £ Yo BofL %7 through the given
surjection B — Z.

It is easy to see that (Lg@F)/p™ and B/p™ are finite and projective as Z/p"™[G|-
modules. So to prove claim (iii) it remains to show that ker((d—!,))/p"
is a finite projective Z/p™|G]-module. The proof of [5, Lemma 3.1] shows
that ker(Ls — Cg(L)) is finitely generated, from which we can deduce
that ker((d—!,n)) is finitely generated. Since furthermore ker((d~!,)) is Z-
torsion-free, it follows that ker((d—!,7)) is in fact Z-free. But the exact se-
quence 0 — ker((d~',7)) — Ls@® F — A — 0 implies that the G-module
ker((d=1, 7)) is cohomologically trivial, and any cohomologically trivial Z-free
Z]G)-module is a projective Z[G]-module. From this it immediately follows that
ker((d~1,7))/p™ is finite and projective as Z/p"™[G]-module, as required. [

We now fix a complex @ as in Lemma 4.3, and set Qm := mn Q/p"™ where
the inverse limit is taken with respect to the natural transition morphisms.
To compute the cohomology H*(Qim) = mn H'(Q/p™) we use the short exact

sequence 0 — Q *— Q — Q/p"™ — 0 together with the identifications H°(Q) =
Cs(L) and H'(Q) = Z to compute the cohomology of Q/p™ and then pass to
the inverse limit over n. We find that (similar to the proof of Lemma 4.1)
H_l(Qlim) - @1” CS(L)[p7L]7 HO(Qlim) = mn CS(L)/pna Hl(Qlim) - Z;m and
H¥(Q1m) = 0 otherwise. Hence, if we assume that Leopoldt’s Conjecture is
valid for L at the prime p and use the same identifications as in the proof of
Lemma 4.1, then we obtain isomorphisms

L), ®z, Q, ifi=—1,
cok(Ap) ®z, Qp ifi=0,
Qp ifi=1,
0 otherwise.

(12) Hi(Qlim) ®Zp Qp =

LEMMA 4.4. There exists an isomorphism Quim = RT(Z,(1))[2] in D(Z,[G]).
Further, if Leopoldt’s Conjecture is valid for L at the prime p and we use
the isomorphisms in Lemma 4.1 and (12) to identify the cohomology groups
of RU'(Zy(1))[2] ®z, Qp and Quim ®z, Qp respectively, then this isomorphism
induces the identity map in each degree of cohomology after tensoring with Q.
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Proof. Applying RI'. to the short exact sequence 0 = pipn — Gy, 2 Gy —0
and combining the resulting distinguished triangle with the triangle of Lemma
3.5 and the fact that each module L /(L")* is uniquely divisible (by Lemma
3.1) one obtains the following commutative diagram of distinguished triangles

ch(ﬂp") I RFC(OL,S; Gm) L RFC(OL,S; Gm) I

o | |

n

RFC(MP") — R\FC(OL,S; Gm) L R\FC(OL,S; Gm) —

Rotating the lower row of (13) (without changing the signs of the maps) gives
the distinguished triangle
RT(O1.5,G)[1] 25 RTo(Op s, Gm)[1] 25 RTu(japn)[2] — -

It is not difficult to see that one obtains the same identifications for
H'(RT(pp»)) (and hence also for H*(RT'.(Zy(1))) = fm HY(RL(ppn))) if
one computes the cohomology using this distinguished triangle instead of the
first row of (13).

Let @ denote the complex

Q'-Q"->Q'—=Q

where Q! is placed in degree —1, the first two arrows are the differentials of
Q and the third is the natural map Q' — H*(Q) = Z C Q. Associated to the

n

natural short exact sequence 0 — @ £, @ — Q/p" — 0 is a distinguished
triangle

QL Qe —.
It is easy to see that one obtains the same identifications for H*(Q/p™) (and
hence also for H*(Qiim) = Wm H {(Q/pm™)) if one computes the cohomology

using this distinguished triangle instead of the short exact sequence 0 — Q £—

Q— Q/p" — 0.

The second assertion of Lemma 3.4 combines with the fact that @ corresponds
to eél(’b to imply the existence of an isomorphism & : Q = RI':(Or. g, G )[1] in
D(Z|G]) which induces the identity map on each degree of cohomology.

We now consider the following diagram in D(Z[G])

n

p On

Q Q Q/p" —
(14) l& ls

AL (015, Gon) 1]~ RTL(O1. 5, Gy 1]~ RT. (1) 2] —
Since the left hand square of (14) commutes there exists an isomorphism

&n 2 Q/p™ — RT:(upn)[2]
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in D(Z|G]) that makes the diagram into an isomorphism of distinguished tri-
angles. In fact the isomorphisms &, can be chosen to be compatible with the
inverse systems over n, i.e. such that for every n the square

Q/p" — = RT(pt)[2)

| |

Q/p" R (ppn—1)[2]

commutes in D(Z[G]). This can be seen for example as follows: if we com-

gn—l

pute Jfﬁ“ c(Or,5,Gy,) and RT':(upn) using the concrete realisation of all chain
complexes given by the Godement resolution of the sheaves (as described, for
example, in [21, Chap. III, Rem. 1.20(c)]), then we obtain a short exact se-
quence

0— RFC(,upn) — ﬁc(OL7s,Gm) i> ﬁc(OL,S,Gm) — 0.

Then both the top and the bottom row of (14) are canonically isomorphic to
the distinguished triangles coming from short exact sequences (i.e. the distin-
guished triangles which are constructed using mapping cones), and for such
distinguished triangles the statement is easy to see.

To be able to pass to the inverse limit we must replace the maps &, in D(Z[G))
by actual maps of complexes. Since both Q/p™ and RI':(u,n)[2] are coho-
mologically bounded complexes of Z/p™[G]-modules, the natural restriction of
scalars homomorphism

(15)  Hompz,(c))(Q/p"; RL(upn)[2]) = Hompziay (Q/p", R c(ppn)[2])

is bijective (cf. [8, Lemma 17]). Thus for each n the map &, : Q/p" —
RT.(ppn)[2] can be represented as Q/p™ «— T, — RT.(ppn)[2] where T, is
a complex of Z,[G]-modules and Q/p" <— T, and T, — RIT.(upn)[2] are
quasi-isomorphisms of complexes of Z,[G]-modules. By choosing a projective
resolution we can assume that T, is a bounded above complex of projective
Zp[G]-modules. There exists a morphism T,, — T,,—1 in D(Zy[G]) such that
the diagram

~ ~

Q/p" T, REc(ppm ) [2]

Lo
Q! Th RT . (p1n—1)[2]

commutes in D(Z,[G]). Since T, is a bounded above complex of projective
Zp[G]-modules, the morphism T,, — T,,—1 in D(Z,[G]) can be realised by an
actual map of complexes, and the above diagram will commute up to homo-
topy. The same argument as in [8, p. 1367] shows that after modifying the
horizontal maps in this diagram by homotopies we can assume that the dia-
gram is commutative. Finally, we can add suitable acyclic complexes to the T,
to guarantee that the maps T,, — T;,—1 are surjective.
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To summarise, we have constructed morphisms of inverse systems of complexes

of Zp[G]-modules (Q/p"™) < (T) — (RT(upn)[2]) such that for each n the

composite Q/p"™ <— T, — RT'.(upn)[2] considered as a map in D(Z[G]) is equal

to &,. Furthermore the transition maps in each inverse system are surjective.

Passing to the inverse limit gives morphisms of complexes of Z,[G]-modules
Qlim = @Q/pn ¢ ImT, — @ch(ﬂp”)p] = RT(Z,(1))[2].

n n n

Now [8, Lemma 9] implies that these morphisms are quasi-isomorphisms and
that the resulting map Qim — RI:(Z,(1))[2] in D(Z,[G]) has the required
properties. O

We now fix a morphism « as in Lemma 4.3(ii). Then, for each natural number
n one has a commutative diagram of morphisms of complexes of G-modules

Ls[0] Tﬁ[l] = T ? conf(a)
(16) Ls[0] ® L][-1] = Q o cone(q) -

: e

Ls/p"(0] & £/ (1] —22+ Q/p" —2 cone(a/pr) —22

n

In this diagram the maps 8 and 7 come from the definition of cone(a) and
so the first (and second) row is an explicit representative of the triangle (2).
Also, the columns are the short exact sequences which result from the fact
that L£g, £ and all terms of @ (and hence also of cone(a)) are Z-torsion-
free. Now L, is canonically isomorphic to both ]&nn Ls/p™ and I&nn L/p™.
Furthermore, as cone(«) is a perfect complex of Z-torsion-free modules, there
is a natural isomorphism cone(a) ® Zp, = lim cone(a)/p" in prert(7,[G)), and

~

clearly lim cone(a)/p™ lim cone(a/p") = cone(@n a/p"™) (where in all
cases the limits are taken with respect to the natural transition morphisms).
Hence, upon passing to the inverse limit of the lower row of (16), we obtain a
distinguished triangle in DPe(Z,[G]) of the form

n

lim o/p" lim B/p
(17)  Lp0] & Lp[-1] o Qlim < cone(a) ® Zy,

The distinguished triangle (17) together with the isomorphism Qi =
RT'.(Z,(1))[2] from Lemma 4.4 show the existence of a triangle of the form
(7).

It remains to show that if Leopoldt’s Conjecture is valid for L at the prime p
and we use the identifications of the cohomology of Qi given in (12), then after
tensoring with @, the long exact sequence of cohomology of the triangle (17)
is equal to (8). Now the identifications of the cohomology of the three terms in
(17) come from the columns in (16). In particular we have natural isomorphisms
HI(£,[0] & L,[~1]) = lim H'(L5[0] & Ls[~1])/p" and H'(cone(a) @ Z,) =

. n
I@nn v/p

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 119-146



ON EQUIVARIANT DEDEKIND ZETA-FUNCTIONS AT s = 1 135

Hm H'(cone(a))/p™ for all i, and H*(Quim) = lim HY(Q)/p" for i = 0 and
© = 1. Therefore by considering the cohomology sequences of the second and
third rows in (16), we can easily deduce the explicit description of all maps in (8)
except for the map L(1), ®z, Qp = H 1 (Qiim) ®z, Qp = H 1 (Es(L)) ® Q, =
IOgoo (OZ) ® Qp'

To compute this map we consider the following diagram.

71( / n

H™HQ/p") — H ! (cone(a)/p")

o HO() o
HY(Ls[0)®L[-1]) —— H"(Q)

ok
iy HO(a)

1<cone<a>><—)> HO(Ls[0)@L[-1]) ——— H°(Q)

|

H~*(cone(a)/p")
By an easy computation with cochains one shows that if an element of
n 0
HO(Ls[0] @ £[~1]) lies in the kernel of HO(Ls[0] & £[-1]) 2 go(Q),
then its images under the two maps
HO ()
—

—(8/p")

H°(Ls[0] & £[-1]) HY(Q) + H(Q/p") 2 B~ (come(a) /p")

and

HO(Ls0] @ £[-1)) £ HO(Ls[0] @ £[-1]) ¢— 7~ (cone(a))

— H™(cone(a)/p™)
coincide (note that the inverse arrows make sense in this context). By consid-
ering the elements (7, - QW\/*l/pn)wesm € Lo C Ls = HLs[0]® L[-1]) for
rw € Z we see that the map H~1(Q/p") — H!(cone(a)/p™) sends the image
of (ry - exp(2mv/=1/p"))wes..r) € (L§)pn) C LE in Cs(L)pm) = HH(Q/p™)
to the image of the element (ry-27v/—1),es (1) € ker(exp,,) € H ! (cone(w))
in H~!(cone(a)/p™). Passing to the inverse limit gives the desired description
of 0. This completes the proof of Proposition 4.2.

q

5. THE PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. Let L/ K be a Galois extension of number
fields with Galois group G. We define an element of Ky(Z[G],R) by setting

TQ(L/K, 1) = 04(Cf yx,5(1) + X6 (Es (L), pr)

where the terms on the right hand side are as in §2.4. The element TQ(L/K, 1)
depends only upon L/K (see [5, Prop. 3.4]), and the conjectural equality (3)
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asserts that TQ(L/K,1) vanishes. We also recall that [9, Conj. 4(iv)] for
the pair (Q(1)r,Z[G]) asserts the vanishing of an element TQ(Q(1)r, Z[G])
of Ko(Z|G],R) that is defined (unconditionally) in [9, Conj. 4(iii)]. To prove
Theorem 1.1 it is therefore enough to prove the following result.

ProrosiTiON 5.1. Let L be a complex Galois extension of Q and G =
Gal(L/Q). If Leopoldt’s Congecture is valid for L and all prime numbers p,
then TQ(L/Q,1) = TQ(Q(1) 1, Z[G)).

Remark 5.1. Recall that we write ag[G],R for the natural homomorphism of K-
groups Ko(Z|G],R) — Ky(Z[G]). The argument of [5, Prop. 3.6(ii)] combines
with the equality of Proposition 5.1 to imply that if Leopoldt’s Conjecture
is valid, then 82[0]’R(TQ(Q(1)L,Z[G])) is equal to the element Q(L/K,1) of
Ky(Z]G]) defined by Chinburg in [13]. Proposition 5.1 therefore answers the
question raised in [7, Question 1.54].

5.1. PRELIMINARIES. From now on let L/Q be a complex Galois extension
with Galois group G. For each p and each embedding j : R — C, there is
an induced homomorphism j, : Ko(Z[G],R) = K¢(Z,|G],C,) and it is known
that (), ; ker(j.) = {0} where p runs over all primes and j over all embeddings
R — C, (cf. [5, Lemma 2.1]). To prove Proposition 5.1 it is thus enough to
prove that for all p and j one has

(18) J«(TQL/Q, 1)) = j.(TRQ() L, Z[G]))-

The proof of this equality will occupy the rest of this section.

We fix a prime p and in the sequel assume that Leopoldt’s Conjecture is valid
for L and p. We also fix an embedding j : R — C, and often suppress it
from our notation; so in particular in a tensor product of the form — ®g C, we
consider C,, as an R-module via j. Just as in §4 we will always assume that S
contains all places of residue characteristic p.

In the following we will need to use the language of virtual objects. To this
end we consider the Picard categories V(Z,[G]), V(C,[G]) and V(Z,[G], C,[G])
discussed in [4, §5]. We fix a unit object 1yc,[q)) of V(Cp[G]) and for each
object X of V(C,[G]) we fix an inverse, i.e. an object X ! of V(C,[G]) together
with an isomorphism X @ X! 2 1yc g in V(Cp[G]). We also write ¢ :
moV(Z,|G), Cp[G]) = Ko(Zp[G], Cp) for the group isomorphism described in [4,
Lemma 5.1].

We need to slightly generalise the definition of a trivialised complex and
its Euler characteristic. If P is a perfect complex of Z,[G]-modules and
T [HY(P ®z, Cp)] — [Hod(P ®z, Cp)] an isomorphism in V(C,[G]), then
we will sometimes call the pair (P,7) a trivialised complex. Its Euler char-
acteristic xz,[q).c, (P, 7) is defined as in [4, Definition 5.5] except that [t] is
replaced by 7. Clearly any trivialised complex (P, t) as in §2.2 gives rise to the
trivialised complex (P, [t]) in the new sense, but in general not every triviali-
sation 7 : [H®(P ®z, Cp,)] = [H°Y(P ®z, Cp)] of P will be of the form [t] for
some isomorphism ¢ : H*Y(P ®z, C,) = H°Y(P ®z, Cp).
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5.2. THE ELEMENT j,(TQ(L/Q,1)). We set RT'(Zy(1)) := RTo(OL,s,Zp(1))
and also H!(Cp(1)) := HY(RIL:(Zy(1)) ®z, Cp). Furthermore we write
H(Cp(1)) and HCY(C,(1)) for the direct sums @ evenHI(Cp(1)) and
®i 0aaHL(Cp(1)) respectively.
We start by defining an isomorphism

W+ [HEY(Cy(1))] @ [im(62) @, Cp] = [HY(C,(1))] ® [im(62) ®q, C,)

in V(C,[G]) which is induced by the identifications from Lemma 4.1, the exact
sequence (8) in Proposition 4.2, and py. More precisely, we let 1 be the
following composite map.

[HZ(Cp(1))] @ [im(f2) ®g, Cp]

[Lp ®q, Cp]

= [H'(Es(L)) ® Cp @ [C,]
[H™H(Es(L)) @ Cy] @ [Cy)
[L(1)p @z, Cp] @ [im(62) @q, Cp] @ [Cy]
= [H, (Cp(1 ))®H3(<Cp( )] ® [im(62) @q, Cp)-

Here oy is induced by the isomorphism H2(C,(1)) = cok(),) ®z, C,, and the
short exact sequence

lﬁ lfl

Ola

(19) im () ®g, Cp—S— L, ®q, Cp — 2 cok(A,) @z, Cp,

as and a4 are induced by the short exact sequences

(20) H°(Es(L)) ® C,——— Ly ®g, C, ——C,
and
91®QPCP 92®QPC1’

(21) L(1), @z, C,——2"o H-1(Eg(L)) ® C) — 2" im(f) @g, C,

respectively, oz = [ur, ®r C,] ® id, and a5 is induced by the isomorphisms

H(Cy(1)) = L(1), @z, Cp and HZ(Cp(1)) = C,.

Now by the properties of a Picard category there exists a unique isomorphism
v [HY(Cp(1))] = [HZN(Cy(1))]

in V(C,[G]) such that ¢ = v ® id. We will consider this isomorphism as a
trivialisation of the complex RI'+(Zy(1)).

LEMMA 5.2. In Ko(Zy|G],C,) one has
3 (TUL/Q, 1)) = 07 11.c, (75 (CE 0.5 (1) + Xz (010, (RTe(Zp(1)),v).

Proof. To simplify the notation we will abbreviate ‘xz,(c},c,” t0 ‘xp’

It is clear that j, (8%@2/@’3(1))) = 8%p[G]y(cp (Jx(CF /g,5(1))) (compare §2.1) and
also j.(xz[q),r(Es(L), L)) = Xp(Es(L) ® Zy, pr, @r Cp). Moreover it follows
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from [4, Prop. 5.6.3] that x,(RI'c(Zy(1)),v) = xp(RT(Z,(1))[2],v). It is thus
enough to prove that in Ky(Z,[G], C,) one has

(22) Xp(Es (L) @ Zp, pr @r Cp) = xp(RUe(Zp(1))[2], ).

To do this we will apply the additivity criterion of [4, Theorem 5.7] to the exact
triangle (7) in Proposition 4.2. On the complex £,[0] & £,[—1] we consider
the trivialisation given by the identity map id : £, ®z, C, — L, ®z, C,, on
RT'.(Z,(1))[2] we consider the trivialisation v, and on Eg(L) ® Z, we consider
the trivialisation ur, ®r C,. Note that the additivity criterion in [4] is only
stated for trivialisations as defined in §2.2, however it is easy to check that it
remains valid for generalised trivialisations as defined in §5.1.

In our context, the map a in [4, Theorem 5.7] is the map £,[0] & L,[-1] —
RT'.(Z,(1))[2] in the distinguished triangle (7), and ¥ = C,[G]. There-
fore ker(H®ax) = im(#z) ®q, C, and ker(H°%ay) = LY ®qg, C, where
Lg = ker(try g, : Lp — Qp). To apply the additivity criterion we must
show that the following diagram commutes in V(C,[G]).

[cok(Ap) ®z, Cp s 0
alm(P:) @q, )l @ (L B, €] — v @a GO HESL) @ Gl
lu@id@[id} id®[pr ®rCp]
[L(1)p ®z, Cp @ Cp] s

olin(0z) S, €] © L] 8e, €, — 117 @ Gl O W (EsE) @ )

Here the horizontal maps are induced by the even respectively odd part of the
cohomology sequence (8) after tensoring with C,, i.e. the top horizontal map
s®V is induced by the short exact sequence (19) and the isomorphism

(23) H°(Es(L)) ® Cp = L) ®q, Cp,
and the bottom horizontal map s°¢ is induced by (21) and
(24) LY ®q, Cp— > L ®g, Cp — > C,.
To see the commutativity of the above diagram we will show that the auto-
morphism
k= (id® [ur @r Cpl) o (s° o (r@id ® [—id]) o (s°¥) 7!

of [L, ®q, Cp] ® [H*(Es(L)) ® Cp] is the identity map. For this we use the
isomorphism

[Lp ®Q, (Cp] ® [HO(ES (ﬁ)) ® (Cp] = [Lg ®Q, (Cp] ® [(Cp] ® [Lg ®Q, (Cp]

which is induced by the short exact sequence (24) and the isomorphism (23).
Using v ® id ® [—id] = ¢ ® [—id] and the definition of 9, it is easy to see that
then s becomes the automorphism of [L) ®q, Cp] ® [Cp] @ [LY ®q, Cp] which
is given by (using the obvious abuse of notation)

a®b®cr [—idl(c) ®b® a,
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i.e. the morphism in V(C,[G]) which swaps the two copies of [L) ®q, C,] com-
posed with the map [—id] on one of the two copies. It now follows from the
general properties of a determinant functor (see e.g. [15, §4.9]), that this auto-
morphism (and hence also k) is the identity morphism as required.

The additivity criterion [4, Theorem 5.7] now implies that

XP(RFC(Zp(l))[Q]a v) = Xp(ﬁp[o] ® ﬁp[*l]a id) + X;D(ES(E) Q® Ly, pr1, AR (Cp)-

Since clearly x,(£,[0] ® £,[—1],id) = 0 this completes the proof of (22) and
hence of Lemma 5.2. O

5.3. THE ELEMENT j,.(TQ(Q(1)r,Z[G])). The motive Q(1)r, is pure of weight
—2. The argument of [10, §2] therefore shows that

(25) Ju(TAQ() 1, ZIG)) = 03,161, (74 (€L jg.s(1)) + L(([RTe(Zp(1))],w))
with w the composite morphism

9p®q, Cp
[RT(Z(1)) ®z, Cp] ——2"

[E(Q(1)L) ®q Cyp) DB, 1y,
where ﬁp and ¥, are as defined in [10, p. 479, resp. p. 477]. Indeed, whilst the
argument of [10, §2] is phrased solely in terms of abelian groups G it extends
immediately to the general case upon replacing graded determinants by virtual
objects and then (25) is the non-abelian generalisation of the equality [10, (11)].
Given the observations of [7, §1.1, §1.3] it is also a straightforward exercise to
explicate the space Z(Q(1)1) and the morphisms ¥, and .. To describe the
result we introduce further notation. We write X(L) for the set of all complex
embeddings L — C and consider By, ;) C as a G x Gal(C/R)-module where G
acts via L and Gal(C/R) acts diagonally. We write Hp for the G x Gal(C/R)-
submodule Py, 1, 2my/—1-7Z of @Dy (1) C and let H} and (@Z(L) (C)Jr denote
the G-submodules comprising elements invariant under the action of Gal(C/R).
We also set H} :=im()\p) ®z, Qp. Then w is equal to the composite

[RTe(Z,(1)) ®z, Cp) = [H (C,p(1))] 7" @ [HZ(Cy(1))] @ [HZ(Cp(1))] 7
= [H(Cp(1)] ' @ ([Hf e, C pl ® [HE(Cp(1))])
® [Hj ®q, Cp] ' ® [HI(Cp(1))] 7

1%

([Hf © Cpl ™! @ [L ®g Cyl)
® (0 ®C ' @ [Cp ™)

- {HSOO(L) C”} © [st(L) C”}_l

= 1y, la)

(26)

12
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where the maps are defined as follows. The first, second and fifth maps are
clear. The third map is induced by the exact sequence

0 L(1), ®z, C, = HY(C,(1)) & H} ®q, C, = [[ UL @z, C,
weSp(L)

Ty H2(Cp(1)) = 0 — 0 — H3(CH(1)) = C, — 0,

where 7 is induced by the identification HZ2(C,(1)) = cok(},) ®z, Cp
from Lemma 4.1 (this sequence is the cohomology sequence of the dis-
tinguished triangle of [10, (3)] with M = Q(1)r and A = QI[G]), to-
gether with the isomorphism L(1), = Hj; ® Z, that sends an ele-
ment (n, - {eXP(QWﬁ/pn)}nZO)wesw(L) in L(1), to the element (n,, -
6-(27T\/__1))0'EE(L) in Hf, ® Z, (where w, denotes the place of L correspond-

ing to o, and 6 : L,, — C is the unique continuous extension of o), the
isomorphism

(27) [I vi)esco=( II Lu)®e, C=LagC,
weSp(L) weSp(L)

induced by the p-adic logarithm maps U £1w) — Ly, and the isomorphism A, ®z,
Cp: 07 ®C,= H} ®q, Cp. The fourth map is induced by (the image under
— ®r C, of) the short exact sequence

x Reg
29 of sr—"E- [, R—>R

where Reg : Of ® R — HSOQ(L) R denotes the usual regulator map v ® r —
7 - (2loglow (u)])wes. () (here oy, is a complex embedding of L corresponding
to the place w), the natural isomorphism

(29) (B, T~ LegR

and (the image under — ®g C,, of) the short exact sequence
+ (S + -
(30) Hf @R (Bs,,,©) I, .’

. . +

in which the second arrow sends each element (zy),ex(z) of (@2(1;) C)" to
(20, + 275 )wes.o(r) in [[s_ ()R (where oy, and 7, denote the two complex
embeddings of L corresponding to the place w).

5.4. COMPLETION OF THE PROOF. Let
W [HE(Cy(1)] ® [Hf ®q, Cp] = [HY(C,(1))] ® [Hf ®g, Cy

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 119-146



ON EQUIVARIANT DEDEKIND ZETA-FUNCTIONS AT s =1 141

denote the composite isomorphism

[H2(C,(1))] ® [H} g, Cy) <5 [L 86 C,)

’

= (D) ©) ex0]

5 H: @ Cyl® [st(m Cp}

a_4> [L(l)p ®z, (Cp] ® [OZ ® (Cp] ® [(Cp]

— [He(Cp(1)) & HZ(Cp(1)] ® [Hf g, C

where o} is induced by the short exact sequence

H} ®Q, (Cp(—> HwESp(L) Uélu? ®z, (Cp - HE(CP(]-))

and the isomorphism (27), the map o is induced by the isomorphism (29), the
map «j is induced by (the image under — ®g C,, of) the short exact sequence
(30), o is induced by (the image under — ®g C,, of) the short exact sequence
(28) and the isomorphism Hj ® C, = L(1), ®z, Cp, and of is induced by the
isomorphisms HZ(Cp(1)) = L(1), ®z, Cp, H}(Cy(1)) = C, and O] ® C, =
H }‘ ®q, Cp.
Let v : [H(C,(1))] =N [Ho4(C,(1))] be the unique isomorphism in
V(C,[G]) such that v/ ® id = ¢'. We recall that the Euler characteristic
xz,(c).c,(RTe(Zy(1)),v) is defined to be ¢(([RTc(Zy(1))],A)), where X is the
composite isomorphism

[RT(C,(1))] = [HE(C,(1))] @ [HZ(Cp(1))
L8, [H(C(1)] @ [HENC, (1)) 2 Ty e

in V(C,[G]) (compare [4, Definition 5.5]). Now by comparing w and A one can
show that

(31) (([RTe(Zp(1))],w)) = Xz, )., (RTe(Zp(1)),1).
The isomorphism (27) restricts to an isomorphism
P H} ®Q, Cp = im(6s) ®Q, Cp

of
V(

Cp[G]-modules and we will show below that the following diagram in
C,[G]) is commutative.

[H (C,p(1))] @ [H} g, C] — 2L [Hev(C,(1))] @ im(0:) ®q, Cy)

l v ®id lu@id

[H(C,(1))] @ [H} @, Cpl — 2+ [H2A(C,(1))] @ [im(6) ®g, C,]
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From this diagram it follows that v = ¢/. In view of Lemma 5.2 and equations
(25) and (31) this implies the required equality (18) and hence Proposition 5.1.
It now only remains to show that the above diagram in V(C,[G]) is commuta-
tive. For this we consider the following diagram.

[H2(C,(1))] ® [H} ®g, Cpl ——5 s [H2(C,(1))] @ [im(0:) ©g, Cp)
Hf o Cle [(T],_, R) ®=C) [H(Es(£)) © C,) ® [C,)
B1 X4
[L(l)p ®Zp (Cp] [ (1)p ®Zp (Cp]
®[im(6:) ®q, Cpl ® [Cy] ®[im(6s) ®g, Cy] @ [Cy)
B2 as

[HY(C,(1) ® H3(Cp(1))]  wele]  [HYC,(1)) @ H3(Cy(1))]
®[H} ®q, Cyl ®[im(f2) ®q, Cp]

Here the maps «; and o are as above. The map f; is induced by the isomor-
phism L(1), ®z, C, = H}f ® C, and the short exact sequence

(32) im(fy) ®g, CpC— (Hsm@) R) @ Cp —> C,

which is obtained by applying — ®r C,, to the short exact sequence (28) and
using the identification O] ® C,, = im(62) ®q, Cp, and the map [ is induced
by the isomorphisms H}(C,(1)) = L(1), ®z, C,, H3(Cy(1)) = C,, and ¢.

By definition the composite of the right vertical maps is ¢ = r®id. Furthermore
it is not difficult to see that B3 o 81 = af o o, hence the composite of the left
vertical maps is ¢’ = v/ ® id.

Clearly the bottom square is commutative. The isomorphism of short exact
sequences

(1)
H} @o, C—— 1, ¢ ;) UL, ©2, Co ——= HZ(C,(1))
® l: ~
im(ag) ®Q, (CPC—> L (290 (Cp B —— COk()\p) Rz, (Cp

implies that the top square is commutative. The commutativity of the middle
rectangle follows from the properties of a determinant functor applied to the
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following commutative diagram of short exact sequences.

01®q,Cp L 02®0,Cp .
L(l)p ®Zp (Cp% H- (Es(£)) 29 (Cp —_— lm(92) (?Qp (Cp

o

H];@cp%L@Qcp—»(H R) ®r C,

Soo (L)

tr

Cp Cp

Here the top horizontal and right vertical short exact sequences are (21) and
(32) respectively. The middle horizontal short exact sequence comes from com-
bining (30) with the isomorphism (29), and the middle vertical short exact
sequence comes from combining (20) with the isomorphism g7, ®r C,. The
commutativity of this diagram is easily checked.

6. THE PROOFS OF COROLLARIES 1.2, 1.3 AND 1.4
In this section we use Theorem 1.1 to prove Corollaries 1.2, 1.3 and 1.4.

6.1. THE PROOF OF COROLLARY 1.2. Let F/E be a Galois extension of num-
ber fields and set I' := Gal(F/E). Let L be a totally complex finite Ga-
lois extension of Q@ containing F' and set G := Gal(L/Q). We write 7 for
the natural composite homomorphism Ky(Z[G],R) — Ko(Z|Gal(L/E)],R) —
Ko (Z|I'],R) where the first arrow is restriction and the second projection. Then
it is known that 7(TQ(L/Q,1)) = TQ(F/E,1) and m(TQQ(1),Z|G])) =
TQ(Q(1)p, Z]T')) (see [5, Prop. 3.5] and [9, Prop. 4.1]). In particular, to prove
that TQ(F/E,1) = TQ(Q(1)p, Z[I']) it is enough to prove that TQ(L/Q, 1) =
TQ(Q(1),Z|G]). Given this observation, Corollary 1.2 is an immediate con-
sequence of Theorem 1.1.

6.2. THE PROOF OF COROLLARY 1.3. By the functorial properties of the con-
jectures (see [5, Prop. 3.5 and Rem. 4.2]) it suffices to consider the case K = Q
and L totally complex. Since L is abelian over QQ, Leopoldt’s Conjecture is
known to be valid for L and all primes p [6]. In addition, the validity of [9,
Conj. 4(iv)] for the pair (Q(1)r,Z[Gal(L/Q)]) has been proved by Flach and
the second named author in [11, Cor. 1.2]. (The proof of [11, Cor. 1.2] re-
lies on certain 2-adic results of Flach in [16] and unfortunately the relevant
results in [16] are now known to contain errors. However, in [17] Flach has
recently provided the necessary corrections so that, in particular, the result
of [11, Cor. 1.2] is valid as stated.) Given the validity of [9, Conj. 4(iv)] for
(Q(1)L,Z[Gal(L/Q))]), the first assertion of Corollary 1.3 follows immediately
from Theorem 1.1.

We now assume that [5, Conj. 3.3] is valid for L/Q. Then [5, Theorem 5.2]
implies that [5, Conj. 4.1] is valid for L/Q if and only if [5, Conj. 5.3] is valid
for L/Q. Also, in [5, Rem. 5.4] it is shown that [5, Conj. 5.3] is equivalent to
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the earlier conjecture [2, Conj. 4.1]. To prove the second assertion of Corollary
1.3 we therefore need only note that [2, Conj. 4.1] is proved for abelian exten-
sions L/Q of odd conductor in [2, Cor. 6.2] and for abelian extensions L/Q of
arbitrary conductor in [11, Theorem 1.1] (see in particular the discussion at
the end of [11, §3.1]).

This completes the proof of Corollary 1.3.

Remark 6.1. By using the main result of Bley in [1] one can prove an analogue
of Corollary 1.3 for certain classes of abelian extensions of imaginary quadratic
fields.

6.3. THE PROOF OF COROLLARY 1.4. Let p,q and r be distinct (odd) rational
primes which satisfy p = r = —¢ = 3 (mod 4) and are such that the Legendre
symbols (7) and (7 ) are both equal to —1. Then if £ is any odd prime such
that (pl;_) = 7(2) = 1 Chinburg has shown that there exists a unique totally
complex field Ly, ¢, which contains Q(,/pr, /q), is Galois over Q with group
isomorphic to the quaternion group of order 8 and is such that L, q,¢/Q is
ramified precisely at p,q,r, ¢ and infinity (cf. [14, Prop. 4.1.3]). We observe
that the primes p = 3,9 = 5 and r = 7 satisfy the congruence conditions
described above and will now prove that the conjectures [5, Conj. 3.3] and [5,
Conj. 4.1] are both valid for any extension of the form L3 57 ,/K. To do this
we set Ly := L3 57,0 and Gy := Gal(Ls3 5,7,¢/Q).
We note first that L,/ K is tamely ramified and we recall that for any tamely
ramified extension of number fields F/E the element TQ°¢(F/E, 1) that is
defined in [5, §5.1.1] vanishes (by [5, Prop. 5.7(i)]) and hence that the conjec-
tures [5, Conj. 3.3] and [5, Conj. 4.1] are equivalent for F/E (by [5, Theorem
5.2]). Tt therefore suffices for us to prove that [5, Conj. 3.3] is valid for all
extensions Ly/K. We recall that this is equivalent to asserting that the ele-
ment TQ(Ly/K, 1) of Ko(Z]Gal(Lg/K)],R) that is defined in [5, §3.2] vanishes.
Taking account of the functorial behaviour described in [5, Prop. 3.5(1)] it is
therefore enough to prove that each element TQ(L,/Q, 1) vanishes.
We claim next that TQ(L¢/Q,1) belongs to the subgroup Ko(Z[G¢],Q)tor
of Ko(Z[G(],R). Indeed, since TQ°¢(L;/Q,1) vanishes the equality of [5,
Theorem 5.2] implies TQ(L¢/Q,1) = g, (TQ(Le/Q,0)) where ¢, is the
involution of Ko(Z[G(],R) defined in [5, §2.1.4] and TQ(L,/Q,0) the ele-
ment of Ko(Z[G¢],R) defined in [5, §4]. Now 15, preserves the subgroup
Ko(Z]G¢),Q)tor and from [5, Prop. 4.4(ii)] one knows that TQ(L,/Q,0) be-
longs to Ko(Z[G¢], Q)tor if the ‘strong Stark conjecture’ of Chinburg is valid
for Ly/Q. Tt thus suffices to recall that, since every complex character of Gy is
rational valued, the strong Stark conjecture for L;/Q has been proved by Tate
in [26, Chap. 1.
We write F; for the maximal abelian extension of Q in L, (and note that
Fy/Q is biquadratic). Then, since the element TQ(Ly/Q,1) belongs to
Ko(Z]G¢),Q)tor, the result of [10, Lemma 4] implies TQ(L,/Q, 1) vanishes
if it belongs to the kernels of both the natural projection homomorphism
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q : Ko(Z[G¢],R) — Ko(Z[Gal(Fy/Q)],R) and the connecting homomorphism
82[@]& 1 Ko(Z]Ge],R) = Ko(Z[Gy)).

Now from [5, Prop. 3.6(ii)] one knows that TQ(L,;/Q, 1) belongs to ker(ag[Gl]yR)
if Chinburg’s ‘Q;-Conjecture’ [13, Question 3.2] is valid for L,/Q. In addition,
the equality of [13, (3.2)] shows that the 2;-Conjecture is valid for L,/Q if
the ‘Qs-Conjecture’ [13, Conj. 3.1] and ‘Qo-Conjecture’ [13, Question 3.1] are
both valid for Ly/Q. But Chinburg proves the Q3-Conjecture for L,;/Q in [14]
and, since Ly/Q is tamely ramified, the validity of the 2-Conjecture for L;/Q
follows directly from [13, Theorems 3.2 and 3.3].

At this stage it suffices to prove that TQ(Ly/Q, 1) belongs to ker(q). But, by
[5, Prop. 3.5(ii)], this is equivalent to asserting that [5, Conj. 3.3] is valid for
the extension Fy/Q and since Fy/Q is abelian this follows from Corollary 1.3.
This completes the proof of Corollary 1.4.
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ABSTRACT. We study structure properties of reductive group schemes
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1 INTRODUCTION

In the present paper we prove the Grothendieck-Serre conjecture on rationally
trivial torsors for group schemes of type Fy whose generic fiber has trivial g3
invariant. The Grothendieck-Serre conjecture [Gr58], [Gr68], [S58] asserts that
if R is a regular local ring and if G is a reductive group scheme defined over
R then a G-torsor over R is trivial if and only if its fiber at the generic point
of Spec (R) is trivial. In other words the kernel of a natural map H},(R,G) —
H},(K,G) where K is a quotient field of R is trivial.
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Many people contributed to this conjecture by considering various particular
cases. If R is a discrete valuation ring the conjecture was proved by Y. Nis-
nevich [N]. If R contains a field k and G is defined over & this is due to J.-L.
Colliot-Thélene, M. Ojanguren [CTO] when k is infinite perfect and it is due
to M. S. Raghunathan [R94], [R95] when k is infinite. The case of tori was
done by J.-L. Colliot-Thélene and J.-L. Sansuc [CTS]. For certain simple sim-
ply connected group of classical type the conjecture was proved by Ojanguren,
Panin, Suslin and Zainoulline [PS], [OP], [Z], [OPZ]. For a recent progress on
isotropic group schemes we refer to preprints [PSV], [Pa09], [PPS].2

In the paper we deal with a still open case related to group schemes of type Fj.
Recall that if G is a group of type Fj defined over a field k of characteristic
# 2,3 one can associate (cf. [S93], [GMS03], [PetRac], [Ro]) cohomological in-
variants f3(G), f5(G) and g3(G) of G in H3(k, pa), H®(k, u2) and H3(k,Z/37)
respectively. The group G can be viewed as the automorphism group of a cor-
responding 27-dimensional Jordan algebra J. The invariant g3(G) vanishes if
and only if J is reduced, i.e. it has zero divisors. The main result of the paper
is the following.

THEOREM 1. Let R be a regular local ming containing a field of characteristic 0.
Let G be a group scheme of type Fy over R such that its fiber at the generic point
of Spec (R) has trivial g3 invariant. Then the canonical mapping H},(R,G) —
H},(K,G) where K is a quotient field of R has trivial kernel.

We remark that for a group scheme G of type Fy we have Aut (G) ~ G, so that
by the twisting argument the above theorem is equivalent to the following:

THEOREM 2. Let R be as above and let Gy be a split group scheme of type
Fy over R. Let H},(R,Go)g—0y C H}(R,Go) be the subset consisting of
isomorphism classes [T of Go-torsors such that the corresponding twisted group
(TGo)k has trivial g3 invariant. Then a canonical mapping

Helt(Ra Go){gs=0} — Helt(Kv Go)

is injective, i.e. two Go-torsors in H},(R, Go){gs=0y are isomorphic over R if
and only if they are isomorphic over K.

The characteristic restriction in the theorem is due to the fact that the purity
result [ChP] is used in the proof and the latter is based on the use of the
main result in [P09] on rationally isotropic quadratic spaces which was proven
in characteristic zero only (the resolution of singularities is involved in that
proof). We remark that if the Panin’s result is true in full generality (except
probably characteristic 2 case) then our arguments can be easily modify in such
way that the theorem holds for all regular local rings where 2 is invertible.?

2We also remark that experts know the proof of the conjecture for group schemes of type
G2 but it seems to us that a proof is not available in the literature.

31. Panin has informed the author that his main theorem in [P09] holds for quadratic
spaces defined over a regular local ring containing an infinite perfect field.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 147-169



GROTHENDIECK—SERRE CONJECTURE FOR Fj 149

The proof of the theorem heavily depends on the fact that group schemes of
type F4 with trivial g3 invariant are split by an étale quadratic extension of the
ground ring R. This is why the main body of the paper consists of studying
structure properties of simple group schemes of an arbitrary type over R (resp.
K) splitting by an étale quadratic extension S/R (resp. L/K) which is of
independent interest.

We show that the structure of such group schemes is completely determined
by a finite family of units in R which we call structure constants of G. These
constants depend on a chosen maximal torus T' C G defined over R and splitting
over S. Such a torus is not unique in G. Giving two tori T and 7" we find
formulas which express structure constants of G related to T' in terms of that
of related to T” and this leads us quickly to the proof of the main theorem.
Of course we are using a group point view. It seems plausible that our proof
can be carried over in terms of Jordan algebras and their trace quadratic forms,
but we do not try to do it here.

The paper is divided into four parts. We begin by introducing notation, termi-
nology that are used throughout the paper as well as by reminding properties
of algebraic groups defined over a field and splitting by a quadratic field exten-
sion. This is followed by two sections on explicit formulas for cohomological
invariants f3 and f5 in terms of structure constants for groups of type Fy and
their classification. In the third part of the paper we study structure properties
of group schemes splitting by an étale quadratic extension of the ground ring.
The proof of the main theorem is the content of the last section.

NOTATION. Let R be a (commutative) ring. We let Gy denote a split reductive
group scheme over R and we let Ty C Gy denote a maximal split torus over
R. We denote by ¥(Gg,Tp) the root system of Gy with respect to Tp. We use
standard terminology related to algebraic groups over rings. For the definition
of reductive group schemes (and in particular split reductive group schemes),
maximal tori, root systems of split group schemes and their properties we refer
to [SGA3|.

We number the simple roots as in [Bourb68].

Acknowledgments. We thank the referee for useful comments and remarks
which helped to improve the exposition.

2 LEMMA ON REPRESENTABILITY OF UNITS BY QUADRATIC FORMS

Throughout the paper R denotes a (commutative) ring where 2 is invertible and
R* denotes the group of invertible elements of R. Also, all fields considered in
the paper have characteristic # 2.

If R is a local ring with the maximal ideal M we let k = R = R/M. Similarly,
if V is a free module on rank n over Rwelet V=V ®r R =V ®g k and for
a vector v € V weset v = v® 1. If Ris a regular local ring it is a unique
factorization domain ([Ma, Theorem 48, page 142]). Throughout the paper a
quotient field of R will be denoted by K.
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Let f = Y, a;z? be a quadratic form over R where a1,...,a, € R* given
on a free R-module V. If I C {1,...,n} is a non-empty subset we denote by
fr=c; aix? the corresponding subform of f. If v = (v1,...,v,) € V we set

fr(v) = X,c; aiv?. Finally, let g = []; fi where the product is taken over all
non-empty subsets of {1,...,n}. For a vector v we set g(v) = [[; fr(v).

LEMMA 3. Let f and g be as above. Assume that (the residue field) k is infinite.
Let a € R* be a unit such that f(v) = a for some vector v € V. Then there
exists a vector w € V such that f(u) = a and g(u) is a unit.

Proof. If n = 1, v has the required properties. Hence me may assume n > 2.
If w € V is a vector whose length f(w) with respect to f is a unit we denote
by 7., an orthogonal reflection with respect to w given by

Tu(z) = 2 — 2f (2, w) f (w) " w

for all vectors x in V. Since orthogonal reflections preserve length of vectors it
suffices to find vectors wy, ..., ws € V such that g(7, -+ Tw,(v)) is a unit. For
that, in turn, it suffices to find Wy, ..., ws € V such that g(g, - - - 7o, (V) # 0.
It follows that we can pass to a vector space V over k. Consider a quadric

Qe={zeV|flx)=a}

defined over k. We have 7 € Qg(k), hence Qg(k) # 0 implying Qg is a rational
variety over k.

Let U C V be an open subset given by g(z) # 0. It is easy to see that
QzNU # 0 (indeed, if we pass to an algebraic closure k of k then obviously
we have U(k) N Qz(k) # (). Since k is infinite, k-points of Q5 are dense in
Qa. Hence Qz(k) N U is nonempty. Take a vector w € Qz(k) N U. Since the
orthogonal group O(f) acts transitively on vectors of Qg there exists 5 € O(f)
such that w = 3(v). It remains to note that orthogonal reflections generate

o(f). O

3 ALGEBRAIC GROUPS SPLITTING BY QUADRATIC FIELD EXTENSIONS

The aim of this section is to remind structure properties of a simple simply con-
nected algebraic group G defined over a field K and splitting over its quadratic
extension L /K. There is nothing special in type Fy and we will assume in this
section that G is of an arbitrary type of rank n. The only technical restriction
which we need later on to simplify the exposition of the material on the struc-
ture of such groups relates to the Weyl group W of G. Namely, we will assume
that W contains —1, i.e. an element which takes an arbitrary root a into —a.*
Let 7 be the nontrivial automorphism of L/K. If B, C G, is a Borel subgroup
over L in G, in generic position then By, N 7(By) = T is a maximal torus in

4For groups G splitting over a quadratic extension of the ground field and whose whose
Weyl group doesn’t contain —1 the Galois descent data looks more complicated; for instance,
Lemma 4 doesn’t hold for them.
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Gy, Clearly, it is defined over K and splitting over L (because it is contained
in By, and all tori in By, are L-split).

LEMMA 4. T is anisotropic over K.

Proof. The Galois group of L/K acts in a natural way on characters of 7' and
hence on the root system ¥ = X(Gg,T) of Gk with respect to Tx. Thus we
have a natural embedding Gal (L/F) — W which allows us to view 7 as an
element of . Since the intersection of two Borel subgroups By, and 7(Br) is
a maximal torus in G, one of them, say 7(Byr,), is the opposite Borel subgroup
to the second one B with respect to the ordering on ¥ determined by the
pair (Tf, Br). One knows that W contains a unique element which takes By,
to 7(Br) = Bf. Since —1 € W such an element is necessary —1. Of course
this implies 7 = —1, hence 7 acts on characters of T" as —1. In particular T is
K -anisotropic. O

Our Borel subgroup By, determines an ordering of the root system X of Gp,
hence the system of simple roots Il = {a,...,a,}. Let ¥ (resp. 37) be the
set of positive (resp. negative) roots. Let us choose a Chevalley basis [St]

{Ho,, . -Ha,, Xo, €3} (5)

in the Lie algebra g;, = £L(G1,) of G, corresponding to the pair (77, By,). Recall
that elements from (5) are eigenvectors of Ty, with respect to the adjoint repre-
sentation ad : G — End (gr.) satisfying some additional relations; in particular
for each t € T}, we have

tXot = a(t) X, (6)

where o € ¥ and tH,,t~' = H,,. A Chevalley basis is unique up to signs and
automorphisms of g7, which preserve By, and T, (see [St], §1, Remark 1).
Since G, is a Chevalley group over L, the structure of G(L) as an abstract
group, i.e. its generators and relations, is well known. For more details and
proofs of all standard facts about G(L) used in this paper we refer to [St]. Recall
that G(L) is generated by the so-called root subgroups Uy = (zq(u) | u € L),
where a € ¥ and T is generated by the one-parameter subgroups

To =TNG, =Imh,

Here G is the subgroup generated by Ui, and hy : Gr,,p — 171 is the cor-
responding cocharacter (coroot) of T'. Furthermore, since G, is a simply con-
nected group, the following relations hold in G, (cf. [St], Lemma 28 b), Lemma
20 ¢)):

1) T ~T, X+ xXTy ;
1 n?

(ii) for any two roots a, 8 € ¥ and t,u € L we have
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where (8, a) =2(8,a)/(a,«) and

ha(t)Xﬂha(t)_l = t<67a>XB (7)

If A C X7 is a subset, we let Ga denote the subgroup generated by U+, o € A.
We shall now describe explicitly the K-structure of G, i.e. the action of 7 on

the generators {zq(u), @ € X} of Gr. As we already know 7(«) = —a for any
«a € ¥ and this implies T, ~ R(Ll/)K(GmyL) (see [V, 4.9, Example 6]).
Let @ € ¥. Since 7(a) = —a there exists a constant ¢, € L* such that 7(X,) =

caX—q. It follows that the action of 7 on G(L) is determined completely by the
family {c., o € £}. We call these constants by structure constants of G with
respect to T and Chevalley basis (5). Of course, they depend on the choice of
T and a Chevalley basis. We summarize their properties in the following two
lemmas (for their proofs we refer to [Ch, Lemmas 4.4, 4.5, 4.11]).

LEMMA 8. Let o € X.. Then we have

(i) c-a =c5'

(ii) cq € K*;

(ili) if B € X is a root such that o+ B € &, then co+p = —cq cg; in particular,
the family {cq, o € X} is determined completely by its subfamily {cay, .- -, Ca,, }-

LEMMA 9. (i) T[za(u)] = z_a(caT(u)) for every u € L and every o € 3.

(i) Let L = K(V/d). Then the subgroup Go of G is isomorphic to SL (1, D)
where D is a quaternion algebra over K of the form D = (d,cq).

4  MOVING TORI

We follow the notation of the previous section. The family {c,, o € X} deter-
mining the action of 7 on G(L) depends on a chosen Borel subgroup By, and the
corresponding Chevalley basis. Given another Borel subgroup and Chevalley
basis we get another family of constants and we now are going to describe the
relation between the old ones and the new ones.

Let B7 C Gr be a Borel subgroup over L such that the intersection 7" =
B} N7(B}) is a maximal K-anisotropic torus. Clearly both tori T' and T’ are
isomorphic over K (because both of them are isomorphic to the direct prod-

uct of n copies of RS/) #(Gm,)). Furthermore, there exists a K-isomorphism

A : T — T’ preserving positive roots, i.e. which takes (X)* = X(G,T)"
into X* = X(G,T)". Any such isomorphism can be extended to an inner
automorphism

ig: G — G, r—grg
for some g € G(Kj), where K, is a separable closure of K, which takes By,
into B}, (see [Hum]|, Theorem 32.1). Note that g is not unique since for any
t € T'(K) the inner conjugation by gt also extends A and it takes By, into B .
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LEMMA 10. The element g can be chosen in G(L).

Proof. Take an arbitrary ¢’ € G(K,) such that i, extends A and iy (Br) = B},
Since the restriction ¢y |7 is a K-defined isomorphism, we have

te=(g")"1"7 € T(K,)

for any 0 € Gal(Ks/K). The family {t,, 0 € Gal(K,/F)} determines a
cocycle ¢ = (t,) € Z1(K,T). Since T splits over L, resy,(£) viewed as a cocycle
in T is trivial, by Hilbert’s Theorem 90. It follows there is z € T'(K) such that
t, = 2179, 0 € Gal(Ks/L). Then g = ¢’z is stable under Gal (Ks/L). This
implies g € G(L) and clearly we have gBrg~! = B}. O

Let g be an element from Lemma 10 and let ¢t = g~ 1*7. Since t € T/(L), it can
be written uniquely as a product t = hq, (t1) - - - hq, (tn), where t1, ... t, € L™
are some parameters.

LEMMA 11. We have tq,...,t, € K*.

Proof. We first note that, by the construction of ¢, we have t7(t) = 1. Since
7 acts on characters of T as multiplication by —1 we have 7(hq,(t;)) =
ha;(1/7(t;)) for every ¢ = 1,...,n. Also, the equality ¢7(t) = 1 implies
ha; (ti)ha,; (1/7(t;)) = 1, hence t; = 7(¢;). O

The set
{H,, =gHa9",....H, =gHa,g ', X, =9Xag ', a €T} (12)

is a Chevalley basis related to the pair (77, B} ). Let {c,,, @ € £} be the corre-
sponding structure constants of G with respect to T” and Chevalley basis (12).

LEMMA 13. For every root a € ¥ one has ¢, = t;<a’a1> . ~t;<a’a"> e

o

1

Proof. Apply 7 to the equality X!, = gX,9~ " and use relation (7). O

Our element g constructed in Lemma 10 has the property ¢~ '*7 € T(L).
Conversely, it is easy to see that an arbitrary g € G(L) with this property
gives rise to a new pair (B} ,T”) and hence to the new structure constants {c,,}
which are given by the formulas in Lemma 13. Thus we have

LEMMA 14. Let g € G(L) be an element such that t = g7 € T(L). Then
T = gTg™ ' is a K-defined mazximal torus splitting over L and the restriction
of the inner automorphism iy to T is a K-defined isomorphism. The structure
constants {cl,} related to T’ are given by the formulas in Lemma 13.

EXAMPLE 15. Let G, T be as above and let ¥ = ¥(G,T). Take an element

g =T_o(—cav)Ta <&> (16)

1 — couT(v)
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where a € ¥ is an arbitrary root and v € L* is such that 1 —c,v7(v) # 0. One

easily checks that
1
—147 _ h
9 ¢ (1 — cavr(v)>

1

and hence g gives rise to a new torus 7V = ¢T¢~ ! and to a new structure

constants.

DEFINITION 17. We say that we apply an elementary transformation of T
with respect to a root a and a parameter v € L* when we move from T to
T' = gTg~! where g is given by (16) and 1 — cqu(v) # 0.

REMARK 18. The main property of an elementary transformation with respect
to a root « is that the new structure constant 023 with respect to T’ doesn’t
change (up to squares) if § is orthogonal to a or (8, a) = £2 and it is equal to
(1—couT(v))cp (up to squares) if (5, a) = £1. Thus in the context of algebraic
groups this an analogue of an elementary chain equivalence of quadratic forms.

REMARK 19. An arbitrary reduced norm in the quaternion algebra D = (d, ¢,)
can be written as a product of two elements of the form 1 — ¢,v7(v), hence in
the case (8, a) = £1 we can change c¢g by any reduced norm in D.

5 COHOMOLOGICAL INTERPRETATION

While considering cohomological invariants of G of type Fj sometimes it is
convenient to consider G as a twisting group. Let G%? be the corresponding
adjoint group. Note that groups of type Fy are simply connected and adjoint so
that for them we have G = G. Let G (resp. G&%) be a K-split simple simply
connected (resp. adjoint) group of the same type as G and let Ty C Gy (resp.
T¢d C G¢4) be a maximal K-split torus. We denote by ¢ € Aut(Gy) an element
such that ¢ = 1 and c(t) = ¢! for every t € Ty (it is known that such an
automorphism exists, see e.g. [DG], Exp. XXIV, Prop. 3.16.2, p. 355). We
assume additionally that ¢ € Ngaa (Tg).

REMARK 20. In general case ¢ can not be lifted to Ng,(Tp). However it is
known that if GGy has type D4 or Fy such an element can be chosen inside the

normalizer Ng,(Tp) of Tp. So when we deal with such groups we will assume
that ¢ € Ng,(To).

LEMMA 21. Let t € T§4K) and let a, = ct. Then & = (a,) is a cocycle in
ZY(L/K,G§U(L)).

Proof. We need to check that a,7(a;) = 1. Indeed,
a;7(ar) =ctr(ct) =ctet =t 't =1

as required. O
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For further reference we note that every cocycle n € Z1(K, G¢¢) acts by inner
conjugation on both Gy and G¢¢ and hence we can twist "G, "G both groups.
Since G¢¢ is adjoint the character group of Tg? is generated by simple roots
{ai,...,a,} of the root system ¥ = X(Ga?, Tg9) of G&% with respect to T,
Choose a decomposition T¢¢ = Gy, x --- x G,, such that the canonical em-
beddings 7; : Gy, — T¢? onto the ith factor, i = 1,...,n, are the cocharacters
dual to aq,...,an,.

PROPOSITION 22. Let G be as above with structure constants cq,, - -, Ca, - Let
¢ = (ar;) where a; = ct and t = [[; mi(ca;). Then the twisted group Gy is
isomorphic to G over K.

Proof. Tt is known that cX,c™! = X _, and according to (6) we have tX,t~! =
a(t) X4 for every root o € ¥. Since the cocharacters 71, ..., m, are dual to the
roots ai, ..., y, we have (m;, o ) = 05, hence

T (cai )Xaiﬂ-i (cai )_1 = caiXai

and
T (Caq, )onj T (cai)_l = onj

if i # j. Thus for the twisted group Gy the structure constant for the simple
root ay, © =1,...,n, is ¢, because

Xo; = ar Xo,a; " = (CHWi(Caq,))Xai (CHWi(Caq,))_l = Ca; Xy

If @« € ¥ is an arbitrary root, then by Lemma 8 the structure constant c,
of €Gy can be expressed uniquely in terms of the constants cq,,. .., Ca,, SO
that the twisted group ¢Gy has the same structure constants as G. It follows
that the Lie algebras £(G) and L£(*Gy) of G and *Gy have the same Galois
descent data. This yields £(G) ~ L(*Gp) and as a consequence we obtain that
their automorphism groups (and in particular their connected components) are
isomorphic over K as well. O

REMARK 23. Assume that R is a domain where 2 is invertible with a field of
fractions K and G is a split group scheme over R. Let S = R(\/E) be an étale
quadratic extension of R where d is a unit in R. Let 7 be the generator of
Gal (S/R). Assume that cq,,...,Cq, € R*. Then we may view £ = (a,) where
ar = c[[; mi(ca,) as a cocycle in Z'(S/R,G%(S)) and hence the twisted group

Gy is a group scheme over R whose fiber at the generic point of Spec (R) is
isomorphic to Gk .

As an application of the above proposition we get

LEMMA 24. Let G and G’ be groups over K and splitting over L with structure
constants {Cayy- .. Ca, } and {co,u1,...,Ca, Un} where uy,... u, are in the
image of the norm map Np i : L* — K*. Then G and G’ are isomorphic
over K.
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Proof. Let u; = Ny, (v;). By Proposition 22, we have G and G’ are twisted
forms of Gy by means of cocycles & = (a,) and & = (a.) with coefficients in
G¢4(S) where a, = c[];mi(ca;) and a.. = ][, mi(ca;ui). Since Tg? is a K-
split torus and since 7; is a K-defined morphism we have 7(m; (v;)) = m;(7(v;)).

Also, we have ¢2 = 1 and cm;(v;)c™! = m;(v; ). Then it easily follows

ar = (H m(w)) ar <H m—(%—))

and this implies £ is equivalent to £’. o
The statement of the lemma can be equivalently reformulated as follows.

COROLLARY 25. Let T' C G be a mazimal torus with the structure constants
{car,-++s¢a,} and let uy,...,un € Npjg(L*). Then G contains a mazimal
torus T' whose structure constants are {Co, U1, . . ., Co, Un }-

6 STRONGLY INNER FORMS OF TYPE Dy

For later use we need some classification results on strongly inner forms of
type 'Dy; in other words we need an explicit description of the image of
HY(K,Go) — HY(K,Aut(Go)) where Gy is a simple simply connected group
over a field K of type Dy.

For an arbitrary cocycle ¢ € Z'(K,Gy) the twisted group G = Gy is iso-
morphic to Spin(f) where f is an 8-dimensional quadratic form having trivial
discriminant and trivial Hasse-Witt invariant. By Merkurjev’s theorem [M], f
belongs to I? where I is the fundamental ideal of even dimensional quadratic
forms in the Witt group W(K). We may assume that f represents 1 (because
Spin(f) ~ Spin(af) for a € K*). Since dim f = 8, by the Arason-Pfister
Hauptsatz, f is a 3-fold Pfister form over K and as a consequence we obtain
G is splitting over a quadratic extension L/K of K, say L = K(/d).

LEMMA 26. There exist parameters uq,...,us € K* such that G ~ "Gy where
n is of the form n = (a;) and ar = c[]; ha, (uw;).

Proof. By Remark 20 we may assume that ¢ € Ng,(Tp). Let £ be the image
of ¢ in H'(K,G4%) and let ¢’ be the image of ¢ in G¢2. By Proposition 22, we
may assume that ¢ is of the form & = (a’) where a/. = ¢'[], mi(ca,) and cq,
are structure constants of G4 = glGSd with respect to some maximal torus in
G defined over K and splitting over L.

The element ¢ gives rise to a cocycle A = (b,) € Z(L/K,Go(L)) where b, = c.
Twisting Gog by A yields a commutative diagram

HY(K,Gy) —L— HY(K, Gy

l l

HY(K,Gat) —Ls HY(K,*Gy)
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where f1 and f5 are the canonical bijections. Let fo(€') = £”. It is of the form
¢’ = (a))) where a/ =[], mi(ca,); hence fo(¢’) takes values in a maximal torus
Ted = ATgd of A(G&?) defined over K and splitting over L.

Let Z be the center of Gy. We have an exact sequence

0= Z = My -1 51

It induces a morphism f3 : H(K,T) — H?(K,Z). Since ¢’ and &' can be
lifted to Go, we have f3(¢”) = 0. Hence ¢” has a lifting into the torus *7Tp, say
i € H'(L/K, ). Going back to H'(K,Ty) we see that n = f;*(}) has the
required property. O

Since we are interesting in the description of G = Gy we may assume without
loss of generality that &€ = n. It is known that Z ~ us X ps (see [PR94, §6.5]),
hence Z contains three elements of order 2. They give rise to three homo-
morphisms ¢; : Go — SO(fo) where i = 1,2,3 and fj is a split 8-dimensional
quadratic form. The images ¢;(¢), i = 1,2,3, of € in Z*(K,SO(fo)) corre-
spond to three quadratic form f1, f2, f3 and we are going to give an explicit
description of f; in terms of the parameters w1, us, us, uq4 and d.

LEMMA 27. Up to numbering we have f1 = usf, fo = uaf and f3 = usuqf
where f = ({d,v1,v2)) and v; = uluglull, vo = us. In particular G is split
over a field extension E/K if and only if so is fg.

Proof. One easily checks that Z is generated by
hay (—1)has(—1) and ha, (—1)hqa,(—1).
We now rewrite the cocycle £ = (a,) in the form
ar = chg, (V1)ha, (V2) 2122
where v; = ulug_lull, vy = ug and

Z1 = hal (u3)h043 (U3), 2 = hal (u4)h044 (U4)

Using relation (7) we find that the structure constants of G with respect to the
twisted torus T = €T}, up to squares are co, = v1 and Co; = Cay = Cqy = V2.
Also, applying the same twisting argument as in [ChS, 4.1] we find that up to
numbering we have f1 = usf, fo = usf and f3 = uguyf where

[= <<d,U1,U2>> = <<daca1aca2 >>
O

We are now going to show that we don’t change the equivalence class [£] if we
multiply the parameters ug, u4 in the expression for £ by elements in K * rep-
resented by f. Let V, Vi, V5, V3 be 8-dimensional vector space over K equipped
with the quadratic forms f, f1, f2, f3.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 147-169



158 V. CHERNOUSOV

PRrOPOSITION 28. Let wi,wy € V be two anisotropic vectors and let a =
flwr), b= f(ws). Let & = (al.) where al, = chqy, (v1)ha, (v2)2125 and

21 = ha, (aug)hog(aug), 2o = ha, (bug)ha, (bug).
Then &' is equivalent to &.

Proof. Consider two embeddings 11 ¥ : us — Go given by
—1 = hay (=1)has(—1)

and
—1 = ha, (=1)he, (—1).

Up to numbering we may assume that

Go/tr1(p2) = SO(f1) and  *Go/vha(p2) = SO(f2).

We also have a canonical bijection H'(K,Gq) — H'(K,*Gy) (translation by
&) under which £’ goes to ) = (ha, (@)has(@)ha, (b)ha, (b)) and we need to show
that 7 is trivial in H'(K,*Go).

We now note that n is the product of two cocycles 11 = (hq,(a)hay(a)) and
N2 = (hay (b)ha, (b)) first of which being in the image of ¢} : HY(K, u2) —
H'(K,%Gy) induced by 1; and the second one being in the image of ¥} :
HY(K,up) — HY(K,*Gp) induced by . We may identify H'(K,pus) =
K*/(K*)2. Tt is known that Kerv? (resp. Kerej) consists of spinor norms
of f1 (resp. fa2). Thus the statement of the proposition is amount to saying
that a, b are spinor norms for the twisted group G = ¢Gy with respect to the
quadratic forms f; and fy respectively. Since spinor norms of f; are gener-
ated by fi(s1)fi(s2) where s1,s2 € V; are anisotropic vectors and since f; is
proportional to f we are done. O

REMARK 29. Assume that R and S are as in Remark 23. Take a cocycle £ =
(ar) in ZY(S/R,Go(S)) given by a, = cha, (u1) -+ ha,(us) where uq, ..., us €
R*. Then arguing literally verbatim we find that the twisted group G =
@) is isomorphic to Spin(f) where f is a 3-fold Pfister form given by f =
({d,u2,urusuy )y and that for all units a,b € R* represented by f the cocycle
¢’ from Proposition 28 is equivalent to &.

PROPOSITION 30. Let G be as above and let f = ((d,v1,v2)) be the correspond-
ing 3-fold Pfister form. Assume that f has another presentation f = ({d,a,b))
over K. Then there exists a mazimal torus T' C G defined over K and splitting
over L such that structure constants of G with respect to T (up to squares) are
W, = a and ¢, =b.

Coy

Proof. We proved in Lemma 27 that the structure constants of G with respect
to the torus T' = ¢T} are Cay = V2 and ¢, = v1. We now construct a sequence of
elementary transformations of T with respect to the roots o and g such that
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at the end we arrive to a torus with the required structure constants. Recall
that, by Remarks 18 and 19, an application of an elementary transformation
of T with respect to a; (resp. agz) does not change c,, (resp. cu,) modulo
squares and multiplies c,, (resp. ¢4, ) by a reduced norm from the quaternion
algebra (d, cq,) (resp. (d,ca,))-

By Witt cancellation we may write a in the form a = wicq, +waca, —W3Cay Cay
where wy, wa, w3 € Np/g(L*). By Corollary 25, passing to another maximal
torus and Chevalley basis (if necessary) we may assume without loss of gen-
erality that w; = wy = 1 and hence we may assume that a is of the form
a = Cq, (1 —w3ca,) + Ca, Where ws is still in Ny, /i (L).

If 1 —wscq, = 0 then a = ¢,, and we pass to the last paragraph of the
proof. Otherwise applying a proper elementary transformation with respect to
a2 we pass to a new torus with structure constants ¢, = ca, (1 — w3ca,) and

Cty = Cay- Thus abusing notation without loss of generality we may assume

4= Cq; + Cay = Cal(]- - (76041)716042)'
Applying again a proper elementary transformation with respect to a; we can
pass to a torus whose second structure constant is (—ca, )~ Ca,, S0 that we may
assume a = ¢y, (1 — ¢q,). Lastly, applying an elementary transformation with
respect to as we pass to a torus such that a = c,, .
We finally observe that from

<<dvca1aca2 >> = <<d7aab>> = <<d7ca1’b>>

it follows that b is of the form b = we,, where w € Nrd (d, ¢, ). So a proper
elementary transformation with respect to oy completes the proof. O

7 ALTERNATIVE FORMULAS FOR f3 AND f5 INVARIANTS

We are going to apply the previous technique to produce explicit formulas for
the f3 and f5 invariants of a group G of type Fj over a field K of characteristic
# 2 with trivial g3 invariant. Recall (cf. [S93], [GMS03], [PetRac]) that given
such G one can associate the cohomological invariants f3(G) € H3(K, uz2) and
[5(G) € H5(K, u2) with the following properties (cf. [Sp], [Ra]):

(a) The group G is split over a field extension E/K if and only if f3(G) is
trivial over E;

(b) The group G is isotropic over a field extension E/K if and only if f5(G) is
trivial over E.

These two invariants f3, f5 are symbols given in terms of the trace quadratic
form of the Jordan algebra J corresponding to G and hence we may associate
to them 3-fold and 5-fold Pfister forms. Abusing notation we denote them by
the same symbols f3(G) and f5(G). It is well known that f3(G) and f5(G)
completely classify groups of type F, with trivial g3 invariant (see [Sp], [S93])
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and we would like to produce explicit formulas of f35(G) and f5(G) in group
terms only in order to generalize them later on to the case of local rings.

It follows from (a) that our group G is splitting by a quadratic extension.
Indeed, if f3(G) = (d) U (a) U (b) then passing to L = K(v/d) we get G, has
trivial f3 invariant and as a consequence G is L-split by property (a).

We next construct a subgroup H in G of type Dy and compute structure
constants of G and H. By Proposition 22 we may view G as a twisted group
£Go where ¢ = (a,), a, = c]_[?:1 he,(u;) and ug,...,ug € K* where Gy is a
split group of type Fy. Looking at the tables in [Bourb68] we find that the
subroot system ¥’ in 3(Go, Tp) generated by the long roots has type D4. One
checks that

Bi=—€1—€, Po=a1, Bz=a2 Ba=€e3+e

is its basis. Since €3 + €4 = as + 2a3 and €1 + €2 = 21 + 3as + 4daz + 2au, it
follows that the cocharacters he,te, and h¢, 4+, are equal to

h63+64 = ha2 + has and h61+62 = 2hOtl + 3ha2 + 2h0‘3 + ha4

so that
hegtes (u) = ha, (u)ha3 (u) (31)
and
heytes(u) = ha, (UQ)haz (U3)ha3 (“2)ha4 (u) (32)

for all parameters u € L*.
These relations shows that a, can be rewritten in the form

ar = Ch/al (Ul)hag (UQ) [h61+62 (UB)hag (U3)] [h63+64 (1}4)ha2 (1}4)] (33)

where vy, v, 03,04 € K.

Let Hy be the subgroup in Gy generated by ¥'. It is stable with respect to
the conjugation by a,, hence G contains the subgroup H = ¢Hj of type Djy.
Using (7) we easily find that modulo squares in K> one has c¢o, = vov3 and
Cay = V4 and ¢,y = V2, Cq, = v1; in particular c,,, o, don’t depend on vs, vy
modulo squares.

Recall that two n-fold Pfister forms, say g; and go, are isomorphic over the
ground field K if and only if ¢; is hyperbolic over the function field of K(g2)
of gs.

THEOREM 34. One has f3(G) = (d) U (cay) U (Cas)-

Proof. Let f = ({d,ca,,Ca, )) and let E be the function field of f. According
to property (a), it suffices to show that G is split over E or H is split over E.
But in Lemma 27 we showed that H ~ Spin(f) and so we are done. O

The following proposition shows that the structure constants c,, are c,, of G
are well defined modulo values of f = f3(G) = ((d, cay;Cas ))-
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PrOPOSITION 35. Let a,b € K* be represented by f over K. Then there exists
a mazimal torus T C G defined over K and splitting over L such that modulo
squares G has structure constants oy, Cos, ACay, bCa, with respect to T'.

Proof. According to Proposition 28, if multiply the parameters vs, vy in the
expression (33) by a, b respectively we obtain a cocycle equivalent to &, so the
result follows. O

THEOREM 36. One has f5(G) = (d) U (Cay) U (Cas) U (Cas) U (Cay)-

Proof. Let g = ({(d, CayyCassCass Cay ). Arguing as in Theorem 34 and using
property (b) we may assume that ¢ is split and we have to prove that G is
isotropic. Since g is split we may write co, in the form

Cay = a (1 = beay) (37)

where a, b are represented by f = ((d, cqa;, Cay )). Our aim is to pass (with the
use of elementary transformations) to a new torus 77 C G defined over K and
splitting over L such that the new structure constant c,, related to 7" is equal
to 1 modulo squares. The last would imply that the corresponding subgroup
G, of G is isomorphic to SLy by Lemma 9 (ii) and this would show that G is
isotropic as required.

By Proposition 35 there exists a maximal torus 7" in G such that two last
structure constants related to T” are c,, = bcq, and c,, = acq,. Then by (37)
we have ¢, = 1 —¢,,. Applying a proper elementary transformation with
respect to a3 we pass to the third torus 7" for which ¢, = 1 modulo squares
and we are done. O

8 CLASSIFICATION OF GROUPS OF TYPE Fjy WITH TRIVIAL g3 INVARIANT

The theorem below is due to T. Springer [Sp]. In this section we produce an
alternative short proof which can be easily adjusted to the case of local rings.

THEOREM 38. Let G be a split group of type Fy over a field K. A mapping
H},(K, Go) =0y — H* (K, p12) x H*(K, 12)

given by G — (f3(G), f5(G)) is injective.

We need the following preliminary result.

PROPOSITION 39. Let G be a group of type Fy defined over K and splitting over
L with structure constants cq,, . . ., Cay With respect to a torusT'. Let a € K* be
represented by g = {(d, Cay,Cas, Cas )) over K. Then there is a mazimal torus
T’ C G such that the corresponding structure constants are Ca,, CassCos, ACay
modulo squares.
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Proof. Write a in the form a = a1(1 — asca,) where a1, aq are represented by
f = {{d,cay,cCay)). By Proposition 35 the structure constants co, and cq,
are well defined modulo values of f. Hence passing to another maximal torus
in G we may assume without loss of generality that a; = a2 = 1 so that
a =1=cqn,. Since 1 — cq, is a reduced norm in the quaternion algebra (d, ca,)
a proper elementary transformation with respect to ag lead us to a torus whose
first three structure constants are the same modulo squares and the last one is
(1= cay)Cay- O

Proof of Theorem 38. Let G,G’ be two groups of type Fy over K such that
f3(G) = f3(G") and f5(G) = f5(G’). Choose a quadratic extension L/K split-
ting f5(G). It splits both G and G’. Our strategy is to show that G, G’ contain
maximal tori defined over K and splitting over L with the same structure
constants.

Choose arbitrary maximal tori T C G, 7" C G’ defined over K and split-
ting over L. Let cqay,...,Cay and ¢, ,...,c,, be the corresponding structure
constants. As we know, G, G’ contain subgroups H, H' of type D4 over K gen-
erated by the long roots. By Theorem 34 we have f3(G) = (d) U (cq,) U (Cas)
and f3(G") = (d) U (c,,) U (c,,), hence

aq

<<da Cayy Cay >> = <<d7 Clalaclag >>

Then according to Proposition 30 applied to H' and f = ((d, ¢ca,, Cay )) We may
assume without loss of generality that ¢, = ¢,, and cq, = ¢,,.

We next show that up to choice of maximal tori in G and G’ we also may
assume that c,, = c,,. Since f5(G) = f5(G") we get

<<da CaiyCasyCazs Cay >> = <<d7 Caucazvclagaclou; >> (40)

By Witt cancellation we can write c'a3 in the form c’a3 = G1Ca3+02Ca, —A3Ca4Ca,
where a1, ag, az are values of f. By Proposition 35 we may assume without loss
of generality that a; = as = 1. Arguing as in Proposition 30 we may pass to
another maximal torus in G’ such that the corresponding structure constants
are
r_ /o r_
Coy = Cars Coy = Cans Coy = Cag-

Finally, from (40) it follows that c,, = aca, for some a € K* represented by
g = {(d,Cay,Cas,Cas ))- Application of Proposition 39 completes the proof. [

9 GROUP SCHEMES SPLITTING BY ETALE QUADRATIC EXTENSIONS

We now pass to a simple simply connected group scheme G of an arbitrary
type of rank n defined over a local ring R where 2 is invertible and splitting by
an étale quadratic extension S = R(y/u) =~ R[t]/(t?> — u) of R where u € R*.
We assume that R is a domain with a quotient field K and with a residue field
k and we assume u is not square in K*. We also denote L = S ®r K and
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I = S®prk. Abusing notation we denote the nontrivial automorphisms of S/R,
L/K and l/k by the same letter 7.
Let g be the Lie algebra of G. As usual we set

g9s=9g®RrS, gk =9®r K, gL =g®rL

and
=0k =0®Rrk, 05 =0 =9s sl

Let bg be a Borel subalgebra in gg. We say that it is in a generic position if
bsN7(bg) is a Cartan subalgebra in §;. This amounts to saying that bg N7 (bs)
has dimension n over [.

We will systematically use below the fact that in a split simple Lie algebra
defined over a field the intersection of two Borel subalgebras contains a split
Cartan subalgebra; in particular this intersection has dimension at least n.

LEMMA 41. The Lie algebra gs contains Borel subalgebras in generic position.

Proof. Let B and B be the varieties of Borel subalgebras in the split Lie algebras
gs and g; respectively. Passing to residues we have a canonical mapping B — B
whose image is dense (because gg is split). Let U C B be an open subset in
Zariski topology consisting of Borel subalgebras b; such that b; N 7(b;) has
dimension n. Since B(S) is dense in B there exists a Borel subalgebra bg in gg

over S whose image in B is contained in U. O

LEMMA 42. Let bg C gs be a Borel subalgebra in generic position. Then a
submodule tg = bg N7(bg) of bs has rank n.

Proof. Let Mg C S be a maximal ideal. Our subalgebra tg is given as an
intersection of two free submodules in gg of codimensions m, where m is the
number of positive roots in gg, each of them being a direct summand in gg. So
tg consists of all solutions of a linear system of m equations in m +n variables.
The space of solutions of this system modulo M coincides with the intersection
bs N 7(bs) and hence it has dimension n. This implies that the linear system
has a minor of size m x m whose determinant is a unit in S and we are done. [

Our next aim is to show that the Galois descent data for the generic fiber G
of G described in previous sections can be pushed down at the level of R. As
usual we will assume that the Weyl group of G contains —1.

PROPOSITION 43. Let bg C gs be a Borel subalgebra in generic position and
let ts = bg N 7(bg). Then tg is a split Cartan subalgebra of gs contained in
bs.

Proof. Let ug be the ideal in bg consisting of nilpotent elements. It is com-
plimented in bg by a split Cartan algebra and hence bg/ug is isomorphic to a
split Cartan subalgebra in bg. We want to show that a canonical projection
p:bgs — bg/ug restricted at tg is an isomorphism.
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Let by, = bs®gL be a generic fiber of bg. We already know that t;, = byN7(by)
has dimension n over L, so it is a split Cartan algebra in g;. Since tg embeds
into tr, it is a commutative Lie subalgebra contained in bg and consisting of
diagonalizable semisimple elements. So injectivity of p follows.

As for surjectivity, it suffices to prove it modulo maximal ideal Mr C R. In
the course of proving of Lemma 42 we saw that tg is the space of solutions of
the linear system of m equations in m + n variables whose matrix modulo M
has rank m. It follows tg modulo M has dimension n and we are done. O
Let now tg be as in Proposition 43 and let t = t<ST> be the invariant subspace.
By descent we have t ®g S = tg, hence t is an R-defined Cartan subalgebra
splitting over S. Let Bg be a Borel subgroup in GGg corresponding to bg. The
connected component of the automorphism group of a pair (bg,ts) gives rise
to a maximal torus Ts in Bg. It is R-defined and S-split because so is t. Let
us choose a Chevalley basis

{Hy,,...Hq., Xo, a €5}

in gg corresponding to (Ts, Bs). Since W contains —1, we know that 7 acts on
the root system ¥ = 3(Gg,Ts) as —1. Now repeating verbatim the arguments
in [Ch] we easily find that for every root a € ¥ there exists a constants ¢, € R
such that 7(X,) = coX_o and hence the action of 7 on G(S) is determined
completely by the family {c,, « € X}. We call these constants by structure
constants of G with respect to T

As in [Ch] one checks that the structure constants satisfy the relations given
in Lemmas 8, 9. Also, as in Example 15 we may obviously define the notion
of an elementary transformation with respect to a root a € ¥ (because root
subgroups U, are defined over 5).

REMARK 44. We note that the structure constants { ¢, | @« € ¥} are units in
R. Indeed, by our construction we have surjections bg — bg and bg N T(bs) —
bs N 7(bs). Hence the residues of ¢, are structure constants of G = G ®@p k in
the corresponding basis.

10 PROOF OF THEOREM 2

Let R be a ring satisfying all hypothesis in Theorem 2. As usual we denote
its quotient field by K. Let Gy be a split group of type Fy over R and let
(€] € HY(R, Go){gy=0}- We first claim that the twisted group G = Gy is split
by an étale quadratic extension of R. The proof is based on the following.

LEMMA 45. There exist u,v,w € R* such that f3(Gx) = (u) U (v) U (w).

Proof. Let f3(Gg) = (a) U (b) U (c) where a,b,c € K*. By [ChP] the functor
of 3-fold Pfister forms satisfies purity, hence it suffices to show that f3(G) is
unramified at prime ideals of R of height 1.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 147-169



GROTHENDIECK—SERRE CONJECTURE FOR F} 165

Let p C R be a prime ideal of height 1 and let v = v, be the corresponding
discrete valuation on K with the residue field k(v) = R/p. We need to show
that the image of f3(Gk) under the boundary map 0, x : H3(K,Z/2) —
H?(k(v),Z/2) is trivial. Consider the following commutative diagram:

HY(R,Go) —2 HY(K.Go) =% H3(K,u%?) 25 H2(k(v), o)

| | | -

Rao, Ky

HY(R,,Go) —2— HY(K,,Go) —2 H3(K,, p&%) =5 H2(k(v), i)

Here R¢, is the Rost invariant for Go (see [GMS03]). Since g3(Gx) = 0 and
since G = (5Go)x we have f3(Gk) = Ra,.x(¢1(£)). By [G0O0, Theorem 2],
we also have 0, i, o Ray. i, © ¢2 = 0. This yields immediately (0, x © Ray, Kk ©
$1)(€) = 0 as required. O

PROPOSITION 46. G is split by an étale quadratic extension of R.

Proof. By Lemma 45 we have f3(Gg) = (u) U (v) U (w) where u,v,w € R*.
Take S = R(y/u) and we claim Gg is split. One of the following two cases
occurs.

If u € (K*)? then we have f3(Gk) = 0. It follows Rg, ([€x]) = f3(Gk) = 0.
Since the kernel of the Rost invariant for split groups of type Fy defined over K
is trivial we have [{x] = 0. Since by [CTO], [R94], [R95] Grothendieck—Serre
conjecture holds for Gy we conclude £ = 0, i.e. G is already split over R.
Assume now that u & (K*)2. Let L be a quotient field of S. Arguing along
the same lines we first get Re,([£r]) = 0 and then Gy is split. O

The following lemma is an R-analogue of Corollary 25.

LEMMA 47. Let T C G be a mazimal torus with the structure constants
{Car--+sCas} and let uy,...,uqy € Ng/g(S™). Then G contains a mazimal
torus T' whose structure constants are {Co,u1, ..., Ca, U}

Proof. Apply the same argument as in Lemma 24 with the use of Remark 23.
O

Proof of Theorem 2. Let [¢],[¢'] € HY(R, Go){gs=0} be two classes and let G, G’
be the corresponding twisted group schemes over R. Assume that the generic
fibers Gg, G% of G and G’ are isomorphic over K. If Gx is K-split, there
is nothing to prove, because Grothendieck-Serre conjecture is already proven
for Gy, and so we may assume that Gk, G/ are not split over K (and hence
G,G' are not split over R) which amounts to saying that f3(Gg) # 0 and
f3(G) # 0.

By Proposition 46 there exists an étale quadratic extension S = R(\/E), where
d € R*, splitting G. Of course, it is split G’ as well. It now suffices to show
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that G, G’ contain maximal tori T, T’ defined over R and splitting over S and
such that the corresponding structure constants for G and G’ are the same.

Let T,T’ be arbitrary R-defined and S-splitting maximal tori in G,G’. Let
Cays--1Cay and ¢, ..., c,, bestructure constants of G, G’ with respect to T

and T’. By Theorem 34 we have f3(Gk) = (d) U (o, ) U (Cay) and f3(GY) =
(d) U (c,,) U (c,,). Since f3(Gk) = f3(G’%) we get

[e5]

K

<<dvca1aca2 >>K <<dvclalaclo¢2 >>K

and hence R
<<d) CCE17CO(2 >> = <<d7 61041501012 >>

We first claim that up to choice of T and T’ we may assume that c,, =

¢, and cq, = c,,. The proof of the claim is completely similar to that of

«

Prloposition 30. Namely, by Witt cancellation and by Lemma 3 we may write
¢y, in the form ¢, = wicqa, +wacCa, — W3Ca, Ca, Where wi, wz, w3 € Ng/r(S™)
and w1Cq; —W3Cq, Cay is a unit in R. By Lemma 47, passing to another maximal
torus in G (if necessary) we may assume that w; = ws = 1 and then ¢, =
Cay (1 = w3cCa,) + Ca, Where w3 is still in Ng/p(S*) and 1 — wscq, is a unit in
R. The rest of the proof is the same as in Proposition 30.
We next claim that up to choice of T' and T’ we may additionally assume that
Cas = Cu,- To prove it we are just copying the related part of the proof of
Theorem 38. Arguing as in Proposition 22 we conclude that up to equivalence
¢ and & are of the form ¢ = (a;) and &' = (a}) where a, = ¢[[}_; ha, (u;) and
al, = c[[i-; ha,(u}), so that, by Remark 29, G and G’ contain simple simply
connected subgroups H and H’ generated by long roots such that H ~ H' ~
Spin (f) where f = ((d, ca;, Ca, )). Furthermore arguing as in Proposition 35
with the use of the second part of Remark 29 we see that the structure constants
Casy Cays Cayy C, are well defined modulo units in R represented by f.

Since f5(Gk) = f5(G'%) we get

K

<<dﬂca1vca2aca3ﬂca4 >> <<d,Ca1,Ca2,CiX3,C;4 >>

and hence
/

(dCay s Cans Cars Cas ) 2 ((dsCay Cans €y €, ) (48)
By Witt cancellation we can write cgg in the form 0;3 = (1Ca3+02Ca, —A3Ca4Cay,
where a1, ag, as are units in R represented by f and ai1ca, — a3¢q4Ca, is also
a unit in R. Since cq,, Cq, are defined modulo values of f passing to another
maximal torus in G we may assume without loss of generality that a; = ay = 1.
The rest of the proof is the same as in Proposition 30.
Finally we claim that we may assume that c,, = c,,. Indeed, from (48)
and Witt cancellation we conclude that ¢, is of the form ¢, = aca, where
a is a unit in R represented by ((d,ca,,Cas,Cas)). Copying the proof of
Proposition 39 we easily complete the proof of the claim. Thus Theorem 2
is proven. O
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ABSTRACT. Our starting point is Mumford’s conjecture, on represen-
tations of Chevalley groups over fields, as it is phrased in the pref-
ace of Geometric Invariant Theory. After extending the conjecture
appropriately, we show that it holds over an arbitrary commutative
base ring. We thus obtain the first fundamental theorem of invari-
ant theory (often referred to as Hilbert’s fourteenth problem) over
an arbitrary Noetherian ring. We also prove results on the Grosshans
graded deformation of an algebra in the same generality. We end with
tentative finiteness results for rational cohomology over the integers.
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1 INTRODUCTION

The following statement may seem quite well known:

THEOREM 1. Let k be a Dedekind ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AC is
then a finitely generated k-algebra.
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paper.
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Indeed, R. Thomason proved [21 Theorem 3.8] the statement for any Noethe-
rian Nagata ring k. Thomason’s paper deals with quite a different theme, that
is the existence of equivariant resolutions by free modules. Thomason proves
that equivariant sheaves can be resolved by equivariant vector bundles. He thus
solves a conjecture of Seshadri [I9, question 2 p.268]. The affirmative answer
to Seshadri’s question is explained to yield Theorem [I] in the same paper [19,
Theorem 2 p.263]. The finesse only illustrates that the definition of geometric
reductivity in [19] does not suit well an arbitrary base. Indeed, Seshadri does
not follow the formulation in Mumford’s book’s introduction [GIT) Preface],
and uses polynomials instead [I9, Theorem 1 p.244]. This use of a dual in
the formulation seems to be why one requires Thomason’s result [21I] Corollary
3.7]. One can rather go back to the original formulation in terms of symmetric
powers as illustrated by the following:

DEFINITION 2. Let k be a ring and let G be an algebraic group over k. The
group G is power-reductive over k if the following holds.

PROPERTY (Power reductivity). Let L be a cyclic k-module with trivial G-
action. Let M be a rational G-module, and let ¢ be a G-module map from M
onto L. Then there is a positive integer d such that the d-th symmetric power
of p induces a surjection:

(S4M)E — SeL.

We show in Section Blthat power-reductivity holds for Chevalley group schemes
G, without assumption on the commutative ring k. Note that this version of
reductivity is exactly what is needed in Nagata’s treatment of finite generation
of invariants. We thus obtain:

THEOREM 3. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AC is
then a finitely generated k-algebra.

There is a long history of cohomological finite generation statements as well,
where the algebra of invariants A¢ = H%(G, A) is replaced by the whole algebra
H*(G, A) of the derived functors of invariants. Over fields, Friedlander and
Suslin’s solution in the case of finite group schemes [§] lead to the conjecture in
[13], now a theorem of Touzé [22]. In Section Bl we generalize to an arbitrary
(Noetherian) base Grosshans’ results on his filtration [9]. These are basic tools
for obtaining finite generation statements on cohomology. In Section [6 we
apply our results in an exploration of the case when the base ring is Z. Section
[ presents results of use in Section [l and Section Bl Our results support the
hope that Touzé’s theorem extends to an arbitrary base.
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2 POWER REDUCTIVITY AND HILBERT’S 14TH

2.1 POWER SURJECTIVITY

To deal with the strong form of integrality we encounter, we find it convenient
to make the following definition.

DEFINITION 4. A morphism of k-algebras: ¢ : S — R is power-surjective if
every element of R has a power in the image of ¢. It is universally power-
surjective if for every k-algebra A, the morphism of k-algebras A ® ¢ is power-
surjective, that is: for every k-algebra A, for every x in A® R, there is a positive
integer n so that x™ lies in the image of A ® ¢.

If k contains a field, one does not need arbitrary positive exponents n, but only
powers of the characteristic exponent of k (compare [20, Lemma 2.1.4, Exercise
2.1.5] or Proposition El below). Thus if k is a field of characteristic zero, any
universally power-surjective morphism of k-algebras is surjective.

2.2 CONSEQUENCES

We start by listing consequences of power reductivity, as defined in the intro-
duction (Definition [2).

Convention 5. An algebraic group over our commutative ring k is always as-
sumed to be a flat affine group scheme over k. Flatness is essential, as we
tacitly use throughout that the functor of taking invariants is left exact.

ProPOSITION 6 (Lifting of invariants). Let k be a ring and let G be a power-
reductive algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If J is
an invariant ideal in A, the map induced by reducing mod J:

AC — A/ D¢
18 power-surjective.

For an example over Z, see [2.3.2

Remark 7. Let G be power reductive and let ¢ : A — B be a power-surjective
G-map of k-algebras. One easily shows that A — B is power-surjective.

THEOREM 8 (Hilbert’s fourteenth problem). Let k be a Noetherian ring and
let G be an algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If G is
power-reductive, then the subring of invariants AS is a finitely generated k-
algebra.

Proof. We apply [20, p. 23-26]. It shows that Theorem [ relies entirely on the
conclusion of Proposition [f] which is equivalent to the statement [20, Lemma
2.4.7 p. 23] that, for a surjective G-map ¢ : A — B of k-algebras, the induced
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map on invariants A® — BS is power-surjective. To prove that power reduc-
tivity implies this, consider an invariant b in B, take for L the cyclic module
k.b and for M any submodule of A such that ¢(M) = L. We conclude with a
commuting diagram:

(STM)G —— (S94)¢ —— 4G
ls% l Lqﬁc
5[, —— (5?B)¢ — BO.
O

THEOREM 9 (Hilbert’s fourteenth for modules). Let k be a Noetherian ring
and let G be a power-reductive algebraic group over k. Let A be a finitely
generated commutative k-algebra on which G acts rationally, and let M be a
Noetherian A-module, with an equivariant structure map AQ M — M. If G is
power-reductive, then the module of invariants M is Noetherian over AC.

Proof. As in [14, 2.2], consider either the symmetric algebra of M on A, or
the ‘semi-direct product ring’ A x M as in Proposition 57} whose underlying
G-module is A @ M, with product given by (a1, m1)(az, m2) = (a1asz,a1ms +
asmyq). O

2.3 EXAMPLES

2.3.1

Let k = Z. Consider the group SLs acting on 2 x 2 matrices <Z Z) by

conjugation. Let L be the line of homotheties in M = My(Z). Write V#
to indicate the dual module Homgz(V,Z) of a Z-module V. The restriction:
M# — L# extends to

Z[M] = Zla,b, ¢, d] — Z[\] = Z[L)].
Taking SLs-invariants:
Zla,b, e, d = Z[t, D] - ZN],

the trace t = a +d is sent to 2, so A does not lift to an invariant in M#. The
determinant D = ad — bc is sent to A\? however, illustrating power reductivity
of SLs.

2.3.2

Similarly, the adjoint action of SLs on sl is such that u(a) := <(1) (1z> sends
X,H,Y € sl, respectively to X +aH —a?Y, H—2aY,Y. This action extends to
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the symmetric algebra S*(slz), which is a polynomial ring in variables X, H, Y.
Take k = Z again. The mod 2 invariant H does not lift to an integral invariant,
but H2 +4XY is an integral invariant, and it reduces mod 2 to the square H?
in Fo[X, H,Y]. This illustrates power reductivity with modules that are not
flat, and the strong link between integral and modular invariants.

2.3.3

Consider the group U of 2 x 2 upper triangular matrices with diagonal 1: this is
just an additive group. Let it act on M with basis {z,y} by linear substitutions:
u(a) sends z,y respectively to z,ax + y. Sending z to 0 defines M — L, and
since (S*M)Y = k[z], power reductivity fails.

2.4 EQUIVALENCE OF POWER REDUCTIVITY WITH PROPERTY (INT)

Following [14], we say that a group G satisfies (Int) if (A/J)¢ is integral over
the image of A® for every A and J with G action. Note that if (4/J)¢
is a Noetherian A%-module (compare Theorem [, it must be integral over
the image of A®. As explained in [I4, Theorem 2.8], when k is a field, the
property (Int) is equivalent to geometric reductivity, which is equivalent to
power-reductivity by [20, Lemma 2.4.7 p. 23]. In general, property (Int) is still
equivalent to power-reductivity. But geometric reductivity in the sense of [19]
looks too weak.

PROPOSITION 10. An algebraic group G has property (Int) if, and only if, it is
power-reductive.

Proof. By Proposition [6] power reductivity implies property (Int). We prove
the converse. Let ¢ : M — L be as in the formulation of power reductivity
in Definition Pl Choose a generator b of L. Property (Int) gives a polynomial
t" + ait" ! + --- + a, with b as root, and with a; in the image of S*(i) :
(S*M)E — S*L. As b is homogeneous of degree one, we may assume a; €
Sip((STM)%). Write a; as r;b* with r; € k. Put r = 1+ + ---7,. Then
rb" = 0, and #(»~1" annihilates b™. Since a?!/i lies in the image of S™¢ :
(S™M)% — S™L, the cokernel of this map is annihilated by r:-“/i. Together
r(®=D' and the 7“?!/ ‘ generate the unit ideal. So the cokernel vanishes. o
Ezample 11. Let G be a finite group, viewed as an algebraic group over k.
Then A is integral over A%, because a is a root of [Iyec(® —g(a)). (This goes

back to Emmy Noether [18].) Property (Int) follows easily. Hence G is power
reductive.

3 MUMFORD’S CONJECTURE OVER AN ARBITRARY BASE

This section deals with the following generalization of the Mumford conjecture.
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THEOREM 12 (Mumford conjecture). A Chevalley group scheme is power-
reductive for every base.

By a Chevalley group scheme over Z, we mean a connected split reductive
algebraic Z-group Gz, and, by a Chevalley group scheme over a ring k, we
mean an algebraic k-group G = Gy obtained by base change from such a G7.
We want to establish the following:

PROPERTY. Let k be a commutative ring. Let L be a cyclic k-module with
trivial G-action. Let M be a rational G-module, and let p be a G-module map
from M onto L. Then there is a positive integer d such that the d-th symmetric
power of ¢ induces a surjection:

(S4M)E — SeL.

3.1 REDUCTION TO LOCAL RINGS

We first reduce to the case of a local ring. For each positive integer d, consider
the ideal in k formed by those scalars which are hit by an invariant in (S¢M),
and let:

Jak):={zeck|ImeN, 2™ 5L c S%((STM)%)}

be its radical. Note that these ideals form a monotone family: if d divides d’,
then J4 is contained in Jp. We want to show that J4(k) equals k for some d.
To that purpose, it is enough to prove that for each maximal ideal 9 in k, the
localized J4(k)(on) equals the local ring k(o) for some d. Notice that taking
invariants commutes with localization. Indeed the whole Hochschild complex
does and localization is exact. As a result, the localized J4(k)n) is equal to
the ideal Jg(kon)). This shows that it is enough to prove the property for a
local ring k.

For the rest of this proof, k denotes a local ring with residual characteristic p.

3.2 REDUCTION TO COHOMOLOGY

As explained in Section 3.5 we may assume that G is semisimple simply con-
nected. Replacing M if necessary by a submodule that still maps onto L, we
may assume that M is finitely generated.

We then reduce the desired property to cohomological algebra. To that ef-
fect, if X is a G-module, consider the evaluation map on the identity idx:
Homy (X, X)# — k (we use V# to indicate the dual module Homy(V, k) of a
module V). If X is k-free of finite rank d, then S¢(Homy (X, X)#) contains
the determinant. The determinant is G-invariant, and its evaluation at idy is
equal to 1. Let b a k-generator of L and consider the composite:

¢ : Homy (X, X)# -k — kb= L.
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Its d-th power S%) sends the determinant to b%. Suppose further that v lifts to
M by a G-equivariant map. Then, choosing d to be the k-rank of X, the d-th
power of the resulting map S¢(Homy (X, X)#) — S?M sends the determinant
to a G-invariant in SM, which is sent to b through S%p. This would establish
the property.

Homy (X, X)#
R
%/
M=————1

The existence of a lifting would follow from the vanishing of the extension
group:
Ext¢ ((Homy (X, X)#, Keryp),

or, better, from acyclicity, i.e. the vanishing of all positive degree Ext-groups.
Inspired by the proof of the Mumford conjecture in [6] (3.6)], we choose X to be
an adequate Steinberg module. To make this choice precise, we need notations,
essentially borrowed from [6] 2].

3.3 NOTATIONS

We decide as in [I1], and contrary to [I2] and [6], that the roots of the standard
Borel subgroup B are negative. The opposite Borel group BT of B will thus
have positive roots. We also fix a Weyl group invariant inner product on the
weight lattice X (T"). Thus we can speak of the length of a weight.

For a weight A in the weight lattice, we denote by A as well the corresponding
one-dimensional rational B-module (or sometimes Bt-module), and by Vj
the costandard module (Schur module) indg)\ induced from it. Dually, we
denote by Ay the standard module (Weyl module) of highest weight A. So
Ay = ind%, (—A\)#. We shall use that, over Z, these modules are Z-free [IT} II
Ch. 8.

We let p be half the sum of the positive roots of G. It is also the sum of the
fundamental weights. As G is simply connected, the fundamental weights are
weights of B.

Let p be the characteristic of the residue field of the local ring k. When p is
positive, for each positive integer r, we let the weight o, be (p” — 1)p. When
p is 0, we let o, be rp. Let St, be the G-module V,,_ = indga,.; it is a usual
Steinberg module when k is a field of positive characteristic.

3.4

We shall use the following combinatorial lemma:

LEMMA 13. Let R be a positive real number. If r is a large enough integer, for
all weights u of length less than R, o, + p is dominant.
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So, if r is a large enough integer to satisfy the condition in Lemma [I3] for all
G-modules M with weights that have length less than R, all the weights in
0, ® M are dominant. Note that in the preceding discussion, the G-module M
is finitely generated. Thus the weights of M, and hence of Kery, are bounded.
Thus, Theorem [T2is implied by the following proposition.

PROPOSITION 14. Let R be a positive real number, and let r be as in Lemma
[Z3 . For all local rings k with characteristic p residue field, for all G-module
N with weights of length less than R, and for all positive integers n:

Extg ((Homy (St,, St,)#,N) =0 .

Proof. First, the result is true when k is a field. Indeed, we have chosen St,
to be a self-dual Steinberg module, so, for each positive integer n:

Ext?, ((Homy(St,, St.)#,N) = H"(G, St, @ St, @ N) = H"(B, St, ® o, @ N).

Vanishing follows by [6l, Corollary (3.3”)] or the proof of [6 Corollary (3.7)].
Suppose now that N is defined over Z by a free Z-module, in the following
sense: N = Ny ®zV for a Z-free Gz-module Nz and a k-module V' with trivial
G action. We then use the universal coefficient theorem [4, A.X.4.7] (see also
[11} 1.4.18]) to prove acyclicity in this case.

Specifically, let us note Yz := Homg((St,)z, (St,)z) ® Nz, so that, using base
change (Proposition [I6] for A = o,.):

Ext?((Homy (St,., St,)#, N) = H"(G, Yz @ V).

This cohomology is computed [7, I1.3] (see also [I1, 1.4.16]) by taking the
homology of the Hochschild complex C(G,Y7z ® V). This complex is isomor-
phic to the complex obtained by tensoring with V' the integral Hochschild
complex C(Gz,Yz). Since the latter is a complex of torsion-free abelian
groups, we deduce, by the universal coefficient theorem applied to tensor-
ing with a characteristic p field k, and the vanishing for the case of such
a field, that: H"(Gz,Yz) ® k = 0, for all positive n. We apply this when
k is the residue field of Z(,y; note that if p = 0 the residue field k is just
Q. Since the cohomology H"(Gz,Yz) is finitely generated [II, B.6], the
Nakayama lemma implies that: H"(Gz,Yz) ® Zg,) = 0, for all positive n.
And H"(Gz,Yz) ® Lpy = H"(Gz,Yz ® Z(p)) because localization is exact. The
complex C(Gz,Yz ® Z,)) is a complex of torsion-free Z,y-modules, we thus
can apply the universal coefficient theorem to tensoring with V. The vanishing
of Hn(G, Ys, ® Z(p) ®V)= Hn(G, Ys, ® V) follows.

For the general case, we proceed by descending induction on the highest weight
of N. To perform the induction, we first choose a total order on weights
of length less than R, that refines the usual dominance order of [I1} II 1.5].
Initiate the induction with N = 0. For the induction step, consider the highest
weight © in N and let N, be its weight space. By the preceding case, we
obtain vanishing for A,, ®z N,,. Now, by Proposition 21} A, ®z N, maps to
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N, and the kernel and the cokernel of this map have lower highest weight. By
induction, they give vanishing cohomology. Thus Homy (St,., St,) ® N is in an
exact sequence where three out of four terms are acyclic, hence it is acyclic. O

This concludes the proof of Theorem

3.5 REDUCTION TO SIMPLY CONNECTED GROUP SCHEMES

Let Zz be the center of Gz and let Z be the corresponding subgroup of G. It is
a diagonalisable group scheme, so M% — L is also surjective. We may replace
M with MZ and G with G/Z, in view of the general formula M¢ = (M?%)%/%,
see [I1}, T 6.8(3)]. So now G has become semisimple, but of adjoint type rather
than simply connected type. So choose a simply connected Chevalley group
scheme G‘Z with center ZZ so that @Z/ZZ = (Gz. We may now replace G with
G.

Remark 15. Other reductions are possible, to enlarge the supply of power
reductive algebraic groups. For instance, if G has a normal subgroup N so
that both N and G/N are power reductive, then so is G (for a proof, use
Remark [7). And if k — R is a faithfully flat extension so that Gg is power
reductive, then G is already power reductive. So twisted forms are allowed,
compare the discussion in [19] p. 239].

4 (GENERALITIES

This section collects known results over an arbitrary base, their proof, and
correct proofs of known results over fields, for use in the other sections. The
part up to subsection is used, and referred to, in the previous section.

4.1 NOTATIONS

Throughout this paper, we let G be a semisimple Chevalley group scheme over
the commutative ring k. We keep the notations of Section[3.3l In particular, the
standard parabolic B has negative roots. Its standard torus is 7', its unipotent
radical is U. The opposite Borel BT has positive roots and its unipotent radical
is UT. For a standard parabolic subgroup P its unipotent radical is R, (P).
For a weight A in X (T), Vy = ind§A and Ay = indG; (—=\)#.

4.2

We first recall base change for costandard modules.

PROPOSITION 16. Let A be a weight, and denote also by A = Az ® k the B-
module k with action by \. For any ring K, there is a natural isomorphism:

ind{;?\z ® k = indj\
In particular, indg)\ is monzero if and only if A is dominant.
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Proof. First consider the case when X is not dominant. Then indg)\ vanishes
when k is a field [11] II1.2.6], so both indg';)\z and the torsion in Rlindgi)\z

must vanish. Then indg)\ vanishes as well for a general k by the universal
coeflicient theorem.
In the case when A is dominant, RlinngAZ vanishes by Kempf’s theorem [T,

IT 8.8(2)]. Thus, by [IT, 1.4.18b)]: ind%*A\z ® k 2 ind§A. O

PROPOSITION 17 (Tensor identity for weights). Let A be a weight, and denote
again by A the B-module k with action by A\. Let N be a G-module. There is
a natural isomorphism:

indG(A @ N) = (ind§\) @ N.

Remark 18. The case when N is k-flat is covered by [II
1.4.8]. We warn the reader against Proposition 1.3.6 in the
1987 first edition of the book. Indeed, suppose we always had
ind4(M ® N) = (ind§M) ® N. Take k = Z and N = Z/pZ. The uni-
versal coefficient theorem would then imply that RlindgM never has torsion.
Thus R'ind§ M would never have torsion for positive 4. It would make [T, Cor.
2.7] contradict the Borel-Weil-Bott theorem.

Proof. Recall that for a B-module M one may define ind$ (M) as (k[G]® M),
where k[G] ® M is viewed as a G x B-module with G acting by left translation
on k[G], B acting by right translation on k[G], and B acting the given way on
M. Let Niy denote N with trivial B action. There is a B-module isomorphism
P K[G] @ A® N — k[G] ® A ® Ngyiv, given in non-functorial notation by:

P(fR1on):z— f(z)®1®zn.

So 1 is obtained by first applying the comultiplication N — k[G] ® N, then
the multiplication k[G] ® k[G] — k[G]. Tt sends (k[G] @ A®@ N)Z to (k[G]@A®
Niriv)? = (Z]Gz) ®2 )7 27 Niwiv ). Now recall from the proof of Proposition [I6]
that the torsion in Rlindgi‘)\z vanishes. By the universal coefficient theorem
we get that (Z[Gz] ®z Az ®z Niriv) P equals (k[G] ® A\)? @ Niyiy. To make these
maps into G-module maps, one must use the given G-action on N as the action
on Niiy. S0 B acts on N, but not Ny, and for G it is the other way around.
One sees that (K[G] ® \)Z ® Ny is just (ind§A) @ N. O

PRO+POSITION 19. For a G-module M, there are only dominant weights in
MU,

Proof. Let A be a nondominant weight. Instead we show that —\ is no weight
of MY, or that Hompg(—\, M) vanishes. By the tensor identity of Propo-
sition I Homp(—\, M) = Homp(k,A ® M) = Homg(k,ind§ (A @ M)) =
Homg (k, ind%\ ® M) which vanishes by Proposition O

PROPOSITION 20. Let A\ be a dominant weight. The restriction (or evaluation)
map indg)\ — X to the weight space of weight X is a T-module isomorphism.
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Proof. Over fields of positive characteristic this is a result of Ramanathan [12]
A.2.6]. It then follows over Z by the universal coefficient theorem applied to
the complex indg;:)\z — Az — 0. For a general k, apply proposition [I6l O

PROPOSITION 21 (Universal property of Weyl modules). Let A be a dominant
weight. For any G-module M, there is a natural isomorphism

Homg(A,\,M) = H0m3+ ()\,M)

In particular, if M has highest weight A\, then there is a matural map from
Ay, ®z My to M, its kernel has lower weights, and A is not a weight of its
cokernel.

Proof. By the tensor identity Proposition IZ ind§, (—A® M) = ind%, (=) ®
M. Thus Homg(Ay, M) = Homg(k, indG+ (—A\)@ M) = Homp+ (k, ~A@ M) =
Homp+ (A, M). If M has highest weight A, then M) = Homp+ (A, M). Tracing
the maps, the second part follows from Proposition O

4.3 NOTATIONS

We now recall the notations from [I3] §2.2]. Let the Grosshans height function
ht : X(T') — Z be defined by:

hty =Y (v,a").
a>0

For a G-module M, let M<; denote the largest G-submodule with weights
A that all satisfy: ht A < 7. Similarly define M; = M<;_;. For instance,
M<o = M%. We call the filtration

0C M<co C M<y---

the Grosshans filtration, and we call its associated graded the Grosshans graded
gr M of M. We put: hully (gr M) = indG MY .

Let A be a commutative k-algebra on which G acts rationally through k-algebra
automorphisms. The Grosshans graded algebra gr A is given in degree i by:

gr; A= Agz/A<'L

4.4 ERRATUM

When k is a field, one knows that gr A embeds in a good filtration hull, which
Grosshans calls R in [10], and which we call hully (gr A):

hully (gr A) = indgAU+ .

When k is a field of positive characteristic p, it was shown by Mathieu [16, Key
Lemma 3.4] that this inclusion is power-surjective: for every b € hully (gr A),
there is an 7 so that b?" lies in the subalgebra gr A.
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This result’s exposition in [I3| Lemma 2.3] relies on [I2, Sublemma A.5.1].
Frank Grosshans has pointed out that the proof of this sublemma is not con-
vincing beyond the reduction to the affine case. Later A. J. de Jong actually
gave a counterexample to the reasoning. The result itself is correct and has
been used by others. As power surjectivity is a main theme in this paper, we
take the opportunity to give a corrected treatment. Mathieu’s result will be
generalized to an arbitrary base k in Section

ProprosITION 22. Let k be an algebraically closed field of characteristic p > 0.
Let both A and B be commutative k-algebras of finite type over k, with B finite
over A. PutY = Spec(A), X = Spec(B). Assume X — Y gives a bijection
between k valued points. Then for all b € B there is an m with bP" € A.

Proof. The result follows easily from [I5] Lemma 13]. We shall argue instead
by induction on the Krull dimension of A.

Say B as an A-module is generated by d elements by, ..., bg. Let p1, ...ps be
the minimal prime ideals of A.

Suppose we can show that for every 4, j we have m; ; so that bfmw € A+p,B.
Then for every i we have m; so that ¥ * € A + p; B for every b € B. Then
T e At p1---psB for every b € B. As p;---py is nilpotent, one finds
m with b»" € A for all b € B. The upshot is that it suffices to prove the
sublemma for the inclusion A/p; C B/p;B. [It is an inclusion because there is
a prime ideal q; in B with ANq; = p;.] Therefore we further assume that A is
a domain.

Let v denote the nilradical of B. If we can show that for all b € B there is m
with b?" € A+, then clearly we can also find a v with b?" € A. So we may as
well replace A C B with A C B/t and assume that B is reduced. But then at
least one component of Spec(B) must map onto Spec(A), so bijectivity implies
there is only one component. In other words, B is also a domain.

Choose t so that the field extension Frac(A) C Frac(ABP") is separable. (So it
is the separable closure of Frac(A) in Frac(B).) As X — Spec(ABP) is also
bijective, we have that Spec(ABP') — Spec(A) is bijective. It clearly suffices
to prove the proposition for A C ABP". So we replace B with ABP" and further
assume that Frac(B) is separable over Frac(A).

Now X — Y has a degree which is the degree of the separable field extension.
There is a dense subset U of Y so that this degree is the number of elements
in the inverse image of a point of U. [Take a primitive element of the field
extension, localize to make its minimum polynomial monic over A, invert the
discriminant.] Thus the degree must be one because of bijectivity. So we must
now have that Frac(B) = Frac(A).

Let ¢ = { b€ B | bB C A } be the conductor of A C B. We know it
is nonzero. If it is the unit ideal then we are done. Suppose it is not. By
induction applied to A/c C B/c (we need the induction hypothesis for the
original problem without any of the intermediate simplifications) we have that
for each b € B there is an m so that b*" € A+ ¢ = A. O

my
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4.5

This subsection prepares the ground for the proof of the theorems in Section
We start with the ring of invariants k[G/U] of the action of U by right
translation on k[G].

LEMMA 23. The k-algebra k|G /U] is finitely generated.

Proof. We have:

kel = @ MeUla= @ kalen®= @ Vi

AEX(T) AEX(T) AEX(T)

By Proposition [I6] this equals the sum @,V over dominant weights A only.
When G is simply connected, every fundamental weight is a weight, and the
monoid of dominant A is finitely generated. In general, some multiple of a
fundamental weight is in X (7') and there are ounly finitely many dominant
weights modulo these multiples. So the monoid is still finitely generated by
Dickson’s Lemma [5, Ch. 2 Thm. 7]. The maps V) ® V, — V4, are
surjective for dominant A, u, because this is so over Z, by base change and
surjectivity for fields [II], IT, Proposition 14.20]. This implies the result. O

In the same manner one shows:

LEMMA+24. If the k-algebra AV is finitely generated, so is hully grA =
indgAU .

Proof. Use that AU g isomorphic to AV as k-algebra. O

LEMMA 25. Suppose k is Noetherian. If the k-algebra A with G action is
finitely generated, then so is AY.

Proof. By the transfer principle [9, Ch. Twol:
AY = Homy (k, A) = Homg(k,indSA) = (A ® k[G/U))C.
Now apply Lemma 23] and Theorem O

LEMMA 26. If M is a G-module, there is a natural injective map
gr M < hully (gr M) = ind§M7" .

Proof. By Lemmal[I9 the weights of M U" are dominant. If one of them, say A,
has Grosshans height ¢, the universal property of Weyl modules (Proposition
21) shows that (M Ut )a is contained in a G-submodule with weights that do not
have a larger Grosshans height. So the weight space (M U+) A is contained in
M<;, but not M;. We conclude that the T-module ®;(gr; M)U+ may be identi-
fied with the T-module MY It remains to embed gr; M into ind§(gr; M)V,

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 171-195



184 V. FRANJOU AND W. VAN DER KALLEN

The T-module projection of gr; M onto (gr; M )[fr may be viewed as a B-
module map, and then, it induces a G-module map gr; M — ind%((gr; M)V"),

which restricts to an isomorphism on (gr; M )UJr by Proposition20. So its kernel
has weights with lower Grosshans height, and must therefore be zero. O

In the light of Lemma 26l one may write:

DEFINITION 27. A G-module M has good Grosshans filtration if the embedding
of gr M into hully (gr M) is an isomorphism.

It is worth recording the following characterization, just like in the case where
k is a field.

PROPOSITION 28 (Cohomological criterion). For a G-module M, the following
are equivalent.

i. M has good Grosshans filtration.
ii. HY(G, M @ k|G /U]) vanishes.
iii. H"(G, M ® k[G/U]) vanishes for all positive n.

Proof. Let M have good Grosshans filtration. We have to show that M ®
k[G/U] is acyclic. First, for each integer ¢, gr, M ® k[G/U] is a direct sum of
modules of the form indg)\ ® indgu ® N, where G acts trivially on N. Such
modules are acyclic by [IT], B.4] and the universal coefficient theorem. As each
gr; M ® k[G/U] is acyclic, so is each M<; ® k[G/U], and thus M ® k[G/U] is
acyclic.

Conversely, suppose that M does not have good Grosshans filtration. Choose ¢
so that M.; has good Grosshans filtration, but M<; does not. Choose A so that
Hom (A, hull(gr; M)/ gr, M) is nonzero. Note that A has Grosshans height be-
low i. As Hom(Ay, hull(gr; M)) vanishes, Extg(Ay, gr; M) = HY(G, gr; M @
V) does not. Since M<; @ k|G/U] = @, gominantM<i ® Vu is acyclic,
HY(G,M<; ® V,) is nonzero as well. Now use that Hom(Ay, M/M<;) van-
ishes, and conclude that H!(G, M ® k[G/U]) does not vanish. O

5 (GROSSHANS GRADED, GROSSHANS HULL AND POWERS

5.1

When G is a semisimple group over a field k, Grosshans has introduced a
filtration on G-modules. As recalled in Section 3] it is the filtration associated
to the function defined on X (T') by: hty =3~ (v, a"). Grosshans has proved
some interesting results about its associated graded, when the G-module is a k-
algebra A with rational G action. We now show how these results generalize to
an arbitrary Noetherian base k, and we draw some conclusions about H*(G, A).
All this suggests that the finite generation conjecture of [I3] (see also [14])
deserves to be investigated in the following generality.
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PROBLEM. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. Is the cohomology ring H*(G, A) a
finitely generated k-algebra?

Let k be an arbitrary commutative ring.

THEOREM 29 (Grosshans hull and powers). The natural embedding of gr A in
hully (gr A) is power-surjective.

This will then be used to prove:

THEOREM 30 (Grosshans hull and finite generation). If the ring k is Noethe-
rian, then the following are equivalent.

i. The k-algebra A is finitely generated;

i. For every standard parabolic P, the k-algebra of invariants A%=(F) s
finitely generated;

15. The k-algebra gr A is finitely generated;
iv. The k-algebra hully (gr A) is finitely generated.

Remark 31. Consider a reductive Chevalley group scheme G. As the Grosshans
height is formulated with the help of coroots ', only the semisimple part of
G is relevant for it. But of course everything is compatible with the action of
the center of G also. We leave it to the reader to reformulate our results for
reductive G. We return to the assumption that G is semisimple.

THEOREM 32. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, there is a positive integer n so that:

nhully (gr A) C gr A.
In particular H (G, gr A) is annihilated by n for positive i.
This is stronger than the next result.

THEOREM 33 (generic good Grosshans filtration). Let A be a finitely generated
commutative k-algebra. If k is Noetherian, there is a positive integer n so
that A[1/n] has good Grosshans filtration. In particular H'(G, A) ® Z[1/n] =
H!(G, A[1/n]) vanishes for positive i.

Remark 34. Of course A[1/n] may vanish altogether, as we are allowed to take
the characteristic for n, when that is positive.

THEOREM 35. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, for each prime number p, the algebra map gr A — gr(A/pA) is
power-surjective.
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5.2

We start with a crucial special case. Let k = Z. Let A € X(T') be dominant.
Let S’ be the graded algebra with degree n part:

S! = Vax = I(G/B, L(n\)).

Let us view Ay as a submodule of V) with common A\ weight space (the
‘minimal admissible lattice’ embedded in the ‘maximal admissible lattice’).
Let S be the graded subalgebra generated by A in the graded algebra S’. If
we wish to emphasize the dependence on A, we write S"(A) for S’, S(A) for S.
Consider the map

G/B — P5(T(G/B, L(N)¥)

given by the ‘linear system’ V) on G/B. The projective scheme Proj(S’)
corresponds with its image, which, by direct inspection, is isomorphic to G/ P,
where P is the stabilizer of the weight space with weight —\ of Vf. Indeed
that weight space is the image of B/B, compare Proposition20land [T}, I1.8.5].
The inclusion ¢ : S < S’ induces a morphism from an open subset of Proj(S’)
to Proj(S). This open subset is called G(¢) in [EGATI| 2.8.1].

LEMMA 36. The morphism Proj(S’) — Proj(S) is defined on all of G/P =
Proj(s’).

Proof. As explained in [EGA TI, 2.8.1], the domain G(¢) contains the principal
open subset D, (s) of Proj(S’) for any s € S;. Consider in particular a gen-
erator s of the \ weight space of V. It is an element in S, and, by Lemma
20 it generates the free k-module T'(P/P, £L())). Thus, the minimal Schubert
variety P/P is contained in D4 (s). We then conclude by homogeneity: s is
also U™ invariant, so in fact the big cell @ = Ut P/P is contained in D4 (s),
and the domain G(¢) contains the big cell . Then it also contains the Weyl
group translates w2, and thus it contains all of G/P. O

LEMMA 37. The graded algebra S’ is integral over its subalgebra S.

Proof. We also put a grading on the polynomial ring S’[z], by assigning de-
gree one to the variable z. One calls Proj(S’[z]) the projective cone of
Proj(S’) [EGATII 8.3]. By [EGATIL 8.5.4], we get from Lemma that
& : Proj(9'[z]) — Proj(S[z]) is everywhere defined. Now by [EGATII Th
(5.5.3)], and its proof, the maps Proj(S’[z]) — Spec Z and Proj(S[z]) — SpecZ
are proper and separated, so ® is proper by [EGATI Cor (5.4.3)]. But now
the principal open subset D, (z) associated to z in Proj(S’[z]) is just Spec(S’),
and its inverse image is the principal open subset associated to z in Proj(S[z]),
which is Spec(S) (compare [EGA II, 8.5.5]). So Spec(S) — Spec(S’) is proper,
and S’ is a finitely generated S-module by [EGA III, Prop (4.4.2)]. O

LEMMA 38. There is a positive integer t so that tS’ is contained in S.

Proof. Clearly S’ @ Q = S ® Q, so the result follows from Lemma [37 O
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Let p be a prime number. Recall from E4] the result of Mathieu [I6, Key
Lemma 3.4] that, for every element b of S’'/pS’, there is a positive r so that
b e (S +pS")/(pS") C §'/pS".

By Lemma B8 and Proposition Bl below this implies

LEMMA 39. The inclusion S — S’ is universally power-surjective.

5.3

We briefly return to power surjectivity for a general commutative ring k.

DEFINITION 40. Let ¢t be a positive integer and let f : @ — R a k-algebra
homomorphism. We say that f is t-power-surjective if for every x € R there is
a power t" with zt" € f(Q).

PROPOSITION 41. Let f : @ — R be a k-algebra homomorphism and Y a
variable.

o If f@K[Y] : QY] — R[Y] is power-surjective, then Q@ — R/pR is p-
power-surjective for every prime p;

o Assume t is a positive integer such that tR C f(Q). If @ — R/pR
is p-power-surjective for every prime p dividing t, then f is universally
power-surjective.

Proof. First suppose f ® k[Y] : Q[Y] — R[Y] is power-surjective. Let x €
R/pR. We have to show that 27" lifts to Q for some n. As R[Y] — (R/pR)[Y]
is surjective, the composite Q[Y] — (R/pR)[Y] is also power-surjective. Choose
n prime to p and m so that (z +Y)™" lifts to Q[Y]. Rewrite (z + Y)"?" as
(zP" +YP")" and note that the coefficient nz?” of Y (»=DP™ must lift to Q.
Now use that n is invertible in k/pk.

Next suppose tR C f(Q) and Q — R/pR is p-power-surjective for every prime
p dividing ¢. Let C be a k-algebra. We have to show that f@C : Q®C — RRC
is power-surjective. Since f @ C': Q ® C — R ® C satisfies all the conditions
that f : @ — R does, we may as well simplify notation and suppress C. For
x € R we have to show that some power lifts to Q). By taking repeated powers
we can get  in f(Q) + pR for every prime p dividing ¢. So if p1,...,p, are
the primes dividing ¢, we can arrange that z lies in the intersection of the
f(Q) + piR, which is f(Q) + p1 - - pmR. Now by taking repeated py - - - pp,-th
powers, one pushes it into f(Q) + (p1 -+ pm)" R for any positive n, eventually
into £(Q) +tR C £(Q). O

5.4

We come back to the k-algebra A, and consider the inclusion grA <
hully (gr A), as in Theorem 29
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Notations 42. Let A be a dominant weight and let b € AU be a weight vector
of weight A\. Then we define 1, : S'(\) ® k — hully(gr A) as the algebra map
induced by the B-algebra map S'(\) ® k — AU which sends the generator
(choose one) of the A weight space of V) to b.

LEMMA 43. For each c in the image of Uy, there is a positive integer s so that
c¢® egrA.

Proof. The composite of S @ k — S’ ® k with ¢ factors through gr A, so this
follows from Lemma O

Proof of Theorem[29. For every b € hully(gr A), there are by,..., bs of re-
spective weights Aj,..., As so that b lies in the image of ¢y, ® --- ® ¢p,. As
Qi_, S(\i) = ®;_; S’ (\;) is universally power-surjective by lemma[39, lemma
[43] easily extends to tensor products. O

LEMMA 44. Suppose k is Noetherian. If hully(gr A) is a finitely generated
k-algebra, so is gr A.

Proof. Indeed, hully(gr A) is integral over gr A by Theorem Then it is
integral over a finitely generated subalgebra of gr A, and it is a Noetherian
module over that subalgebra. O

LEMMA 45. If gr A is finitely generated as a k-algebra, then so is A.

Proof. Say ji, ..., jn are nonnegative integers and a; € A<, are such that the
classes a; + A<j, € gr;, A generate gr A. Then the a; generate A. O

LEMMA 46. Suppose k is Noetherian. If AV is a finitely generated k-algebra,
so is A.

Proof. Combine Lemmas 24] [d4] O

LEMMA 47. Let P be a standard parabolic subgroup. Suppose k is Noetherian.
Then A is a finitely generated k-algebra if and only if A%+(P) 4s one.

Proof. Let V' be the intersection of U with the semisimple part of the standard
Levi subgroup of P. Then U = VR, (P) and AV = (AR«("))V Suppose that
A is a finitely generated k-algebra. Then AV = (Af(P))V is one also by
Lemma 28] and so is A%+(") by Lemma @6 (applied with a different group and
a different algebra).

Conversely, if A%«(P) is a finitely generated k-algebra, Lemma (with that
same group and algebra) implies that AV = (AR«(P))V ig finitely generated,

and thus A is as well, by Lemma (46 O
Proof of Theorem[30l. Combine Lemmas 47 23] 24] E4] O
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Proof of Theorem[32. Let k be Noetherian and let A be a finitely generated
k-algebra. By Theorem B0, the k-algebra hully(gr A) is finitely generated.
So we may choose by,...,bs, so that 1y, ® -+ ® p, has image hully (gr A).
By extending Lemma to tensor products, we can argue as in the proof of
Lemma [43] and Theorem 29, and see that there is a positive integer n so that
nhully (gr A) C gr A. Now, hully (gr A) ® k[G/U] is acyclic by Proposition 28]
and thus its summand hully (gr A) is acyclic as well. It follows that H (G, gr A)
is a quotient of H~1(G, hully (gr A)/ gr A), which is annihilated by n. O

Proof of Theorem[33. Take n as in Theorem B2 and use that localization is
exact. O

Proof of Theorem [34. It suffices to show that the composite:
grA — gr(A/pA) — hully (gr(4/pA))
is power-surjective. It coincides with the composite

gr A — hully(gr(A)) — hully (gr(A/pA)).

Now AV — (A/ pA)U+ is p-power-surjective by a combination of Theorem [I2],
Proposition [l Proposition 1] and the transfer principle [9, Ch. Two] as used
in After inducing up, hully(gr(A)) — hully(gr(A4/pA)) is still p-power-
surjective, indeed the same p-power is sufficient. And gr A — hully(gr(4)) is
power-surjective by Theorem O

6 FINITENESS PROPERTIES OF COHOMOLOGY ALGEBRAS

In this section we study finiteness properties of H*(G, A), primarily when the
base ring k is Z. We shall always assume that the commutative algebra A is
finitely generated over the ring k, with rational action of a Chevalley group
scheme G. Further, M will be a noetherian A-module with compatible G-
action. Torsion will refer to torsion as an abelian group, not as an A-module.
We say that V' has bounded torsion if there is a positive integer that annihilates
the torsion subgroup Viors.

LEMMA 48. A noetherian module over a graded commutative ring has bounded
torsion. O

Recall that we call a homomorphism f: R — S of graded commutative algebras
noetherian if f makes S into a noetherian left R-module. Recall that CFG
refers to cohomological finite generation. The main result of this section is the
following.

THEOREM 49 (Provisional CFG). Suppose k = Z.

o Every H™(G, M) is a noetherian A% -module.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 171-195



190 V. FRANJOU AND W. VAN DER KALLEN

o I[fH*(G,A) is a finitely generated algebra, then H*(G, M) is a noetherian
H*(G, A)-module.

e H*(G,gr A) is a finitely generated algebra.

o If H*(G,A) has bounded torsion, then the reduction H®V*(G, A) —
Hever (G, A/pA) is power-surjective for every prime number p.

o [fH™V"(G, A) — H®*"(G, A/pA) is noetherian for every prime number
p, then H*(G, A) is a finitely generated algebra.

Remark 50. Note that the first statement would fail badly, by [11, T 4.12], if
one replaced G with the additive group scheme G,. This may explain why our
proof is far from elementary.

We hope to show in the future that H*V*"(G, A) — H*V*"(G, A/pA) is noethe-
rian for every prime number p. The theorem suggests to ask:

PROBLEM. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A, @Q be finitely generated commutative k-algebras on which G acts
rationally through algebra automorphisms. Let f : A — Q be a power-surjective
equivariant homomorphism. Is H*(G, A) — H*(G, Q) power-surjective?

We will need the recent theorem of Touzé [22, Thm 1.1], see also [22] Thm 1.5],

THEOREM 51 (CFG over a field). If k is a field, then H*(G, A) is a finitely
generated k-algebra and H*(G, M) is a noetherian H*(G, A)-module.

Remark 52. If k is a commutative ring and V is a Gkx-module, then the co-
multiplication V' — V ®x Kk[G] gives rise to a comultiplication V' — V ®z Z|G]
through the identification V ®x k[G] = V ®z Z[G]. So one may view V as a Gz-
module. Further H*(Gx, V) is the same as H*(Gz, V), because the Hochschild
complexes are the same. So if k is finitely generated over a field F', then the
conclusions of the (CFG) theorem still hold, because H*(G, A) = H*(GF, A).
We leave it to the reader to try a limit argument to deal with the case where
k is essentially of finite type over a field.

First let the ring k be noetherian. We are going to imitate arguments of
Benson-Habegger [3]. We thank Dave Benson for the reference.

LEMMA 53. Let m > 1, n > 1. The reduction H®V"(G, A/mnA) —
HeV™ (G, A/nA) is power-surjective.

Proof. We may assume m is prime. By the Chinese Remainder Theorem we
may then also assume that n is a power of that same prime. (If n is prime
to m the Lemma is clear.) Let z € H®V*™(G, A/nA). We show that some
power ™ of z lifts. Arguing as in the proof of Proposition @Il we may assume
x is homogeneous. Let I be the kernel of A/mnA — A/nA. Note that m
annihilates I, hence also H*(G,I). Further I is an A/nA-module and the
connecting homomorphism 0 : H (G, A/nA) — H'TY(G, I) satisfies the Leibniz
rule. So d(z™) = ma™ 19(x) = 0 and 2™ lifts. O
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ProposiTION 54. If H*(G,A) has bounded torsion, then H®V™(G,A) —
Hever (G, A/pA) is power-surjective for every prime number p.

Proof. Assume H*(G, A) has bounded torsion. Write HP®S for @, H’. Let p
be a prime number. Choose a positive multiple n of p so that nHP*(G, A) =0
and nAios = 0. We have an exact sequence

- — HY(G, Ators) — H(G, A) — H(G, A/ Ators) —

Multiplication by n? is zero on HP(G, A/Ators), so HP(G, A/Aiors) —
HPOS(G, A/n2 A + Aiors). We have exact sequences

2
0= AfAiors =5 A— A/n*A =0

and
0 A/n?A + Awors < A/ntA — A/n%A = 0.

Consider the diagram

H2 (G, A) H2 (G, A/n2A) —2 H2H(G, A/ Agors)

| | |

H2 (G, A/n* A) —= H¥(G, A/n? A) — 2= B2 (G, A/n? At Ayors)

If + € H%*(G,A/n%A), put i = jn?. The image n2z" 182( ) in
H2 (G, A/n?A + Apors) of 2" vanishes, hence 9;(z"") vanishes in
H*TY(G, A/ Asors), and 2" lifts to H*(G,A). As H(G,A/n*A) —
Heven (G, A/pA) is power-surjective by Lemma B3] we conclude that for every
homogeneous y € H*V*"(G, A/pA) some power lifts all the way to H*V*"(G, A).
We want to show more, namely that H®V*" (G, A) — H®V*"(G, A/pA) is univer-
sally power-surjective. By Proposition 1] we need to show that the power of
y may be taken of the form y? . Localize with respect to the multiplicative
system S = (1 + pZ) in Z. The p-primary torsion is not affected and all
the other torsion disappears, so n may be taken a power of p. The proofs
then produce that some y?" lifts to H®V*"(G,S~'A). Now just remove the
denominator, which acts trivially on y. O

We now restrict to the case k = Z. (More generally, one could take for k a
noetherian ring so that for every prime number p the ring k/pk is essentially
of finite type over a field.)

PROPOSITION 55. Suppose k = Z. If H*(G,A) has bounded torsion, then
H*(G, A) is a finitely generated algebra.

Proof. By Theorem [33] we may choose a prime number p and concentrate on
the p-primary part. Say by tensoring Z and A with Z,). So now HP*(G, A)
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is p-primary torsion and A is a Z,)-algebra. We know that H®V*"(G, A) —
Hever (G, A/pA) is power-surjective. By power surjectivity and the (CFG) The-
orem [5Il we choose an A%-subalgebra C of H*(G, A), generated by finitely
many homogeneous elements, so that C — H*(G, A/pA) is noetherian. Again
by the (CFG) Theorem [E1lit follows that H*(G, A/pA) — H*(G, A/pA+ Ators)
is noetherian, so that C' — H*(G, A/pA + Aiors) is also noetherian.

Let N be the image of HP*(G, A/Ators) in HP(G, A/pA + Ators)). As a C-
module, it is isomorphic to HP?S(G, A/Ators)/PHP (G, A/ Ators). Choose ho-
mogeneous v; € HP*(G, A/Ators) so that their images generate N. Say V is
the C-span of the v;. We have HP**(G, A/Ators) +V C pHPS(G, A/ Ators) + V.
Iterating this we get HP*S(G, A/Ators) + V' C p"HPS(G, A/ Ators) + V for any
r > 0. But H*(G, A) and H*(G, Ators) have bounded torsion, so H*(G, A/Ators)
also has bounded torsion. It follows that HP**(G, A/Aiors) = V. We conclude
that HPS(G, A/Ators) is a noetherian C-module.

Now let us look at HP?S (G, Ayors). Filter Agors 2 pAsors 2 p*Ators 2 -+ 2 0. By
the (CFG) theorem HP(G, p’ Ators/p" ™ Ators) is a noetherian H* (G, A/pA)-
module, hence a noetherian C-module. So HP?(G, Aiors) is also a noetherian
C-module and thus H*(G, A) is one. It follows that H*(G, A) is a finitely
generated A%-algebra. And A itself is finitely generated by Theorem Bl O

PROPOSITION 56. Let k =7Z. Then H*(G, gr A) is a finitely generated algebra.

Proof. By Theorem [32 the algebra H*(G, gr A) has bounded torsion, so Propo-
sition B3] applies. O

PROPOSITION 57. Let k = Z. Then H™(G, M) is a noetherian A% -module.

Proof. Form the ‘semi-direct product ring’ A x M whose underlying G-module
is A@® M, with product given by (a1, m1)(az, ms2) = (a1a2,a1ma + agmy). It
suffices to show that H™(G, A x M) is a noetherian H°(G, A x M )-module.
In other words, we may forget M and just ask if H™(G, A) is a noetherian
A% module. Now H*(G, gr A) is a finitely generated algebra and HO(G, gr A) =
gro A , so in the spectral sequence

E(A): EY =HY (G, gr_; A) = HY (G, A)

the ,, ;—, E¥ are noetherian A%-modules for each ¢. So for fixed ¢ there are

only finitely many nonzero Ei’tii and the result follows. O

PROPOSITION 58. Let k = Z. If H*V*"(G, A) — H®V°"(G, A/pA) is noetherian
for every prime number p, then H*(G, A) is a finitely generated algebra.

Proof. We argue as in the proof of Proposition We may no longer
know that H*(G, A) has bounded torsion, but for every m > 0 we know
that H™(G, A/Aiors) is a noetherian A%-module, hence has bounded tor-
sion. Instead of HP%(G, A/Ators) + V' C pHP®(G, A/Ators) + V., we use
H™ (G, A/Ators)+V C pH™ (G, A/ Ators)+V. We find that H™(G, A/ Ators) C V
for all m > 0 and thus HP**(G, A/Ators) = V again. Finish as before.
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COROLLARY 59. Let k = Z. If HV*"(G,A) — H®™(G, A/pA) is power-
surjective for every prime number p, then H*(G, A) is a finitely generated al-
gebra.

PROPOSITION 60. Let k =7Z. If H*(G, A) is a finitely generated algebra, then
H*(G, M) is a noetherian H*(G, A)-module.

Proof. Let H*(G, A) be a finitely generated algebra. So it has bounded torsion
and H*V™ (G, A) — H®*"(G, A/pA) is power-surjective for every prime number
p. We argue again as in the proof of Proposition G5

By Theorem B3] applied to A x M, we may choose a prime number p and
concentrate on the p-primary part, so HP*$(G, M) is p-primary torsion and A
is a Z,-algebra. Write C' = H*(G, A). By power surjectivity and the (CFG)
Theorem B, C — H*(G, A/pA) is noetherian. Again by the (CFG) Theorem
B it follows that H*(G, M/pM + Mios) is a noetherian H*(G, A/pA)-module,
hence a noetherian C-module.

Let N be the image of HP?S (G, M /Miors) in HPS(G, M/pM + Mios)). As a
C-module, it is isomorphic to HP? (G, M /Miors)/pHP (G, M /Miors). Choose
homogeneous v; € HP*(G, M /M;o,s) so that their images generate N. Say V is
the C-span of the v;. We have H™ (G, M /Miors) +V C pH™ (G, M /Miors) +V
for m > 0. Tterating this we get H™ (G, M/Miors)+V C p"H™(G, M/Miors)+V
for any r > 0, m > 0. But H™(G, M/M;ors) is a noetherian A%-module, hence
has bounded torsion. It follows that H™ (G, M /M;ors) € V for all m > 0, and
HP (G, M /Miors) = V. So HPS(G, M /Mors) is a noetherian C-module.

Now let us look at HP(G, Mios). Filter Miors 2 pMiors 2 p*Miors 2
-+ 2 0. By the (CFG) theorem HP(G,p‘ Miors/p" ™ Miors) is a noetherian
H*(G, A/pA)-module, hence a noetherian C-module. So HP?(G, M) is also
a noetherian C-module and thus H*(G, M) is one. O

Theorem [49] has been proven.
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ABSTRACT. We construct two families of refinements of the (projec-
tivized) support variety of a finite dimensional module M for a finite
group scheme G. For an arbitrary finite group scheme, we associate
a family of non-mazimal rank varieties T7(G)p, 1 < 57 < p—1, to
a kG-module M. For G infinitesimal, we construct a finer family of
locally closed subvarieties V&(G)ys of the variety of one parameter
subgroups of G for any partition g of dim M. For an arbitrary finite
group scheme G, a kG-module M of constant rank, and a cohomol-
ogy class ¢ in H'(G, M) we introduce the zero locus Z(¢) C TI(G).
We show that Z(() is a closed subvariety, and relate it to the non-
maximal rank varieties. We also extend the construction of Z(¢) to
an arbitrary extension class ¢ € Extg (M, N) whenever M and N are
kG-modules of constant Jordan type.

2010 Mathematics Subject Classification: 16G10, 20C20, 20G10

0. INTRODUCTION

In the remarkable papers [21], D. Quillen identified the spectrum of the (even
dimensional) cohomology of a finite group Spec H*(G, k) where k is some field
of characteristic p dividing the order of the group. The variety Spec H*(G, k)
is the “control space” for certain geometric invariants of finite dimensional kG-
modules. These invariants, cohomological support varieties and rank varieties,
were initially introduced and studied in [1] and [6]. Over the last twenty five
years, many authors have been investigating these varieties inside Spec H*(G, k)
in order to provide insights into the structure, behavior, and properties of kG-
modules. The initial theory for finite groups has been extended to a much
more general family of finite group schemes, starting with the work of [13] for
p-restricted Lie algebras. The resulting theory of support varieties for modules
for finite group schemes satisfies all of the axioms of a “support data” of tensor

Lpartially supported by the NSF # DMS 0909314
2partially supported by the NSF # DMS 0800950
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triangulated categories as defined in [2]. Thus, for example, this theory pro-
vides a classification of tensor—ideal, thick subcategories of the stable module
category of a finite group scheme G.

In this present paper, we embark on a different perspective of geometric invari-
ants for kG-modules for a finite group scheme G. We introduce a new family of
invariants, “generalized support varieties”, which stratify the support variety
of a finite dimensional kG-module M. The construction comes from consid-
ering ranks of nilpotent operators on M which leads to an alternative name
non-mazximal rank varieties. As finer invariants, they capture more structure
of a module M and can distinguish between modules with the same support
varieties. In particular, the generalized support varieties are always proper sub-
varieties of the control space Spec H*(G, k) whereas the support variety often
coincides with the entire control space. On the other hand, they necessarily lack
certain good behavior with respect to tensor products and distinguished trian-
gles in the stable module category of kG. However, as we shall try to convince
the reader, these varieties provide interesting and useful tools in the further
study of the representation theory of finite groups and their generalizations.
Since the module category of a finite group scheme G is wild except for very
special G, our goals are necessarily more modest than the classification of all
(finite dimensional) kG-modules. Two general themes that we follow when
introducing our new varieties associated to representations are the formula-
tion of invariants which distinguish various known classes of modules and the
construction of modules with specified invariants.

In Section 1, we summarize some of our earlier work, and that of others, con-
cerning support varieties of kG-modules. We emphasize the formulation of
support varieties in terms of 7-points, since the fundamental structure under-
lying our new invariants is the scheme II(G) of equivalence classes of 7-points.
Also in this section, we recall maximal Jordan types of kG-modules and the
non-maximal subvariety I'(G)y C M refining the support variety II(G), for
a finite dimensional kG-module M.

If G is an infinitesimal group scheme, one formulation of support varieties
is in terms of the affine scheme V(G) of infinitesimal subgroups of G. For
any Jordan type a = Y %_, a;[i] and any finite dimensional kG-module M
(with G infinitesimal), we associate in Section 2 subvarieties V=¢(G)y and
V(@) of V(G). Determination of these refined support varieties is enabled
by earlier computations of the global p-nilpotent operator O : M @k[V(G)] —
M ® k[V(G)] which was introduced and studied in [17].

We require a refinement of one of the main theorems of [18] recalled as Theorem
1.5. Section 3 outlines the original proof due to A. Suslin and the authors, and
points out the minor modifications required to establish the fact that whether
or not a kG-module has maximal j-rank at a m-point depends only upon the
equivalence class of that m-point (Theorem 3.6). This is the key result needed
to establish that the non-maximal rank varieties are well-defined for all finite
group schemes.
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In Section 4, we consider closed subvarieties I'V(G)y C II(G) for any finite
group scheme, finite dimensional kG-module M, and integer j,1 < j < p, the
non-maximal rank varieties. We establish some properties of these varieties
and work out a few examples to suggest how these invariants can distinguish
certain non-isomorphic kG-modules.

In the concluding Section 5, we employ m-points to associate a closed subvariety
Z(¢) C TI(G) to a cohomology class ¢ € H'(G, M) provided that M is a kG-
module of constant rank. One of the key properties of Z(() is that Z(¢) = 0
if and only if the extension 0 - M — E; — k — 0 satisfies the condition
that E; is also a kG-module of constant rank. We show that Z({) is often
homeomorphic to I''(G)g, which allows us to conclude that Z(() is closed.
Taking M to be an odd degree Heller shift of the trivial module k, we recover
the familiar zero locus of a class in H*"(G, k) in the special case M = k.
Finally, we generalize this construction to extension classes £ € Ext¢ (M, N)
for kG-modules M and N of constant Jordan type and any n > 0.

We abuse terminology in this paper by referring to a (Zariski) closed subset
of an affine or projective variety as a subvariety. Should one wish, one could
always impose the reduced scheme structure on such “subvarieties”.

We would like to thank Jon Carlson for pointing out to us that maximal ranks
do not behave well under tensor product, Rolf Farnsteiner for his insights into
components of the Auslander-Reiten quiver, and the referee for several useful
comments. The second author gratefully acknowledges the support of MSRI
during her postdoctoral appointment there.

1. RECOLLECTION OF II-POINT SCHEMES AND SUPPORT VARIETIES

Throughout, k& will denote an arbitrary field of characteristic p > 0. Unless
explicit mention is made to the contrary, G will denote a finite group scheme
over k with finite dimensional coordinate algebra k[G]. We denote by kG the
Hopf algebra dual to k[G], and refer to kG as the group algebra of G. Thus,
(left) kG-modules are naturally equivalent to (left) k[G]-comodules, which are
equivalent to (left) rational G-modules (see [20, ch.1]). If M is a kG-module
and K/k is a field extension, then we denote by Mg the KG-module obtained
by base change.

We shall identify H*(G, k) with H*(kG, k).

DEFINITION 1.1. ([16]) The II-point scheme of a finite group scheme G is the
k-scheme of finite type whose points are equivalence classes of m-points of G
and whose scheme structure is defined in terms of the category of kG-modules.
In more detail,

(1) A m-point of G is a (left) flat map of K-algebras ax : K[t]/t? — KG
for some field extension K/k with the property that there exists a
unipotent abelian subgroup scheme ¢ : Cx C G defined over K such
that ag factors through i, : KCx - KGx = KQG.
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(2) If ax : K[t]/tP — KG, B : L[t]/t? — LG are two w-points of G,
then ak is said to be a specialization of Sy, provided that for any fi-
nite dimensional kG-module M, o}, (M) being free as K[t]/tP-module
implies that 33 (Mp) is free as L[t]/tP-module.

(3) Two m-points ax : K[t]/t? — KG, Br : L[t]/t* — LG are said to
be equivalent, written ax ~ (g, if they satisfy the following condition
for all finite dimensional kG-modules M: o} (Mk) is free as K|[t]/tP-
module if and only if 8} (M) is free as L[t]/tP-module.

(4) A subset V C II(G) is closed if and only if there exists a finite dimen-
sional kG-module M such that V equals

II(G)a = {[ak] | a3 (Mk) is not free as K[t]/t? — module}

The closed subset II(G)r C II(G) is called the II-support of M.

(5) The topological space II(G) of equivalence classes of 7-points can be
endowed with a scheme structure based on representation theoretic
properties of G (see [16, §7]).

We denote by
H'(G, k) _ He (Ga k)a 1fp = 2;
H®(G,E) ifp>2.

The cohomological support wvariety |G|y of a kG-module M is the
closed subspace of SpecH®(G,k) defined as the variety of the ideal
AnnH-(G,k) EXtE (M, M) - H.(G, k)

THEOREM 1.2. [16, 7.5] Let G be a finite group scheme, and M be a finite
dimensional kG-module. Denote by ProjH®*(G, k) the projective k-scheme as-
sociated to the commutative, graded k-algebra H*(G, k). Then there is an iso-
morphism of k-schemes

O : ProjH* (G, k) ~ TI(G)

which restricts to a homeomorphism of closed subspaces
Proj(|G|a) ~ IH(G) i

for all finite dimensional kG-modules M .
We (implicitly) identify ProjH®(G, k) with II(G) via this isomorphism.
We consider the stable module category stmod kG. Recall that the Heller shift
Q(M) of M is the kernel of the minimal projective cover P(M) — M, and
the inverse Heller shift Q=1 (M) is the cokernel of the embedding of M into its
injective hull, M < I(M).
The objects of stmod kG are finite dimensional kG-modules. The morphisms

are equivalence classes where two morphisms are equivalent if they differ by a
morphism which factors through a projective module,

Homstmod kG (M, N) = HomkG (]\47 N)/PHOInkG (]\47 N)

The stable module category has a tensor triangulated structure: the triangles
are induced by exact sequences, the shift operator is given by the inverse Heller
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operator 97!, and the tensor product is the standard tensor product in the
category of kG-modules. Two kG-modules M, N are stably isomorphic if and
only if they are isomorphic as kG-modules up to a projective direct summand.
The association M +— II(G)y; fits the abstractly defined “theory of supports”
for the stable module category of G (as defined in [2]). Some of the basic
properties of this theory are summarized in the next theorem (see [16]).

THEOREM 1.3. Let G be a finite group scheme and let M, N be finite dimen-
sional kG-modules.

1) TI(G)ar = 0 if and only if M is projective as a kG-module.
(2) I(G)men =1(G)n UILG) N
(3) I(G )M@N =I(G)m NI(G) N
(4) I(G)m = I(G)am -

5) If M — N — Q — Q7'M is an exact triangle in the stable module
category stmod(kG) then II(G)n C II(G)pm UII(G)q

(6) If p does not divide the dimension of M, then II(G)y = I(G).

The last property of Theorem 1.3 indicates that M — II(G)ys is a somewhat
crude invariant.
We next recall the use of Jordan types in order to refine this theory. The
isomorphism type of a finite dimensional k[t]/tP-module M is said to be the
Jordan type of M. We denote the Jordan type of M by JType(M), and write
JType(M) = Y"%_, a;[i]; in other words, as a k[t]/tP-module M ~ @F_, ([i])®*
where [i] = k[t]/t!. Thus, we may (and will) view a Jordan type JType(M) as
a partition of m = dim M into subsets each of which has cardinality < p.
We shall compare Jordan types using the dominance order. Let n = [ng >
. >ng >mn], m = [mg > ... > ma > mq] be two partitions of N. Then n
dominates m, written n > m, iff

k k
(1.3.1) doni = > ma
i=j i=j

for all j, 1 < j < k. For k[t]/tP-modules M, N, we say that JType(M) >
JType(N) if the partition corresponding to JType(M) dominates the partition
corresponding to JType(N). The dominance order on Jordan types can be
reformulated in the following way.

LEMMA 1.4. Let M, N be k[t]/tP-modules of dimension m. Then JType(M) >
JType(N) if and only if

tk(t/, M) > rk(t?, N)
for all j, 1 < j < p, where tk(t?, M) denotes the rank of the operator t/ on M.
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P
Proof. Tt JType(M) = Y a;]i], then
i=1

P
(1.4.1) rk(t, M) = Y ai(i - j).

i=j+1
The statement now follows from [10, 6.2.2]. O

The following theorem plays a key role in our formulation of geometric in-
variants for a kG-module M that are finer than the II-support II(G)a. In
Section 3, we outline the proof of this theorem in order to prove the re-
lated, but sharper, Theorem 3.6. We say that a w-point ax has maximal
Jordan type for a kG-module M if there does not exist a m-point S such that
JType(aj(Mk)) < JType(BL(ML)).

THEOREM 1.5. [18,4.10] Let G be a finite group scheme over k and M a finite
dimensional kG-module. Let ax : K[t]/tP — KG be a m-point of G which
has mazimal Jordan type for M. Then for any w-point 1, : L[t]/t? — LG
which specializes to ak, the Jordan type of af;(My) equals the Jordan type of
B3 (Mr); in particular, if ax ~ Br, then the Jordan type of o (Mg) equals
the Jordan type of B3 (ML).

The following class of kG-modules was introduced in [8] and further studied in
(7, (9], (4], [5].

DEFINITION 1.6. A finite dimensional kG-module M is said to be of constant
Jordan type if the Jordan type of o (M) is the same for every m-point o of
G. By Theorem 1.5, M has constant Jordan type a if and only if for each point
of II(G) there is some representative ax of that point with JType(af, (M)) = a.

Theorem 1.5 justifies the following definition (see [18, 5.1]).

DEFINITION 1.7. ([18, 5.1]) Let M be a finite dimensional representation of a
finite group scheme G. We define I'(G) s C TI(G) to be the subset of equiva-
lence classes of m-points ay : K[t]/t? — KG such that JType(aj (Mg)) is not
maximal among Jordan types JType(8} (Mr)) where 8z runs over all 7-points
of G.

To conclude this summary, we recall certain properties of the association M +—
I'(G)um-

PROPOSITION 1.8. Let G be a finite group scheme and let M, N be finite di-
mensional kG-modules. Then T'(G)p C II(G) is a closed subvariety satisfying
the following properties:
(1) If M and N are stably isomorphic, then T'(G)py = T(G)n.
2) T'(G)m C II(G) m with equality if and only if II(G) pm # II(G).
3) I(G)wm is empty if and only if M has constant Jordan type.
4) If M has constant Jordan type, then I'(G)paon =T(G)N.
5) IfII(G) is irreducible, then N has constant non-projective Jordan type
if and only if T(G)men = T(G)p for any kG-module M.
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(6) IfII(G) is irreducible, then
NG uen = T(G)u UT(G)n) N (IH(G)m NIHG)N).

Proof. If M and N are stably isomorphic then M = N@ Por N = M & P
with P projective. Since projective modules have constant Jordan type, (1)
becomes a special case of (4). The fact that I'(G)r C II(G) is closed is proved
in [18, 5.2]. Properties (2) and (3) follow essentially from definitions. Property
(4) follows from the additivity of the dominance order. Properties (5) and (6)
are the statements of [8, 4.9] and [8, 4.7] respectively. O

2. GENERALIZED SUPPORT VARIETIES FOR INFINITESIMAL GROUP SCHEMES

Before considering refinements of I'(G)ys C II(G) in Section 3 for a general fi-
nite group scheme G, we specialize in this section to infinitesimal group schemes
and work with the affine variety V(G). First, we recall some definitions and
several fundamental results from [23], [24].

A finite group scheme is called infinitesimal if its coordinate algebra k[G] is
local. Important examples of infinitesimal group schemes are Frobenius kernels
of algebraic groups (see [20]). An infinitesimal group scheme is said to have
height less or equal to r if for any  in Rad(k[G]), 27" = 0.

Let G, be the additive group, and G, be the 7-th Frobenius kernel of G,. A
one-parameter subgroup of height r of G over a commutative k-algebra A is a
map of group schemes over A of the form y1 : Go(),4 — Ga. Here, Go() 4, Ga
are group schemes over A defined as the base changes from k to A of G, G.
Let k[G,(y] = k[T]/T*", and kG () = klug, ..., up—1]/(uf), ..., ub_,), indexed
so that the Frobenius map F' : Gy — Gg() satisfies Fi(u;) = ui—1,4 >
0; Fi(up) = 0. We define

(2.0.1) €: klu]/u? — kGay = klug, ... ur—1]/(uf, ..., ub_y)

to be the map sending w to u,_1. Thus, € is a map of group algebras but not
of Hopf algebras in general. In fact, the map € is induced by a group scheme
homomorphism if and only if » = 1 in which case € is an isomorphism.

THEOREM 2.1. [23] Let G be an infinitesimal group scheme of height < r. Then
there is an affine group scheme V(G) which represents the functor sending a
commutative k-algebra A to the set Homgy sch/a(Ga(r),a,Ga)-

Thus, a point v € V(G) naturally corresponds to a 1-parameter subgroup
Mo : Gagr) k(o) —= Gr(v)
where k(v) is the residue field of v.

THEOREM 2.2. [24] (1). The closed subspaces of V(G) are the subsets of the
form

V(G)m ={v e V(G)| € py(Myyy) is not free as a module over k(v)[u]/uP}

for some finite dimensional kG-module M .
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(2). There is a natural p-isogeny V(G) — Spec H* (G, k) which restricts to a
homeomorphism V(G)ar =~ |G| for any finite dimensional kG-module M.

Theorem 1.2 implies that the spaces II(G) and Projk[V(G)] are also homeo-
morphic (see [16] for a natural direct relationship between II(G) and V(G) for
an infinitesimal group scheme).

Let piox : k(v)Gy(ry — k(v)G be the map on group algebras induced by the one-
parameter subgroup i, : Goy — G. We denote by 6, the nilpotent element
of k(v)G which is the image v under the composition

k(v)[u] JuP ——= k(v)[uo, . .., ur_1]/(UB, ... uP_ ) L k(0)G
So, 0y = s (ur—1) € k(v)G. For a given kG-module M we also let
91} : Mk(v) — Mk(v)

denote the associated p-nilpotent endomorphism. Thus, JType(e* s (Mp,)))
is the Jordan type of 0, on My,,).

DEFINITION 2.3. Let M be a kG-module of dimension m. We define the local
Jordan type function

(2.3.1) JTypey : V(G) — N*P,
by sending v to (a1,...,ap), where (6,)* (M) ~ >0 aili].
DEFINITION 2.4. For a given a = (a1, ..., ap) € N*? we define

VG = {v € V(G)| ITypey (v) = a},

VLG = {v € V(G)| JTypey (v) < a}.

As we see in the following example, V%(G)yy is a generalization of a nilpotent
orbit of the adjoint representation (and V =¢(G), is a generalization of an orbit
closure).

EXAMPLE 2.5. Let G = GLy(;) and let M be the standard N-dimensional
representation of GLy. Then JType;; sends a p-nilpotent matrix X to its
Jordan type as an endomorphism of M. Consequently, JType,, has image
inside N*P consisting of those p-tuples a = (a1, ..., a,) such that >, a;-i = N.
The locally closed subvarieties V&(G)ar C Np(gly) are precisely the adjoint
GLy-orbits inside the p-nilpotent cone N, (gly) of the Lie algebra gl .

EXAMPLE 2.6. Let ¢ € H*"'(G, k) be a non-zero cohomology class of odd
degree. Let L¢ be the Carlson module defined as the kernel of the map
0%+ 1(k) — k corresponding to ¢ (see [3, 11.5.9]). The module Q%1 (k) has con-
stant Jordan type m[p]+[p—1]. Let a = m[p]+[p—2] and b = (m—1)[p|+2[p—1].
Then the image of JTyper  equals {a,b} € N*P. Moreover, V4(G)r, is open
in V(G), with complement V2(G)L,.
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REMARK 2.7. An explicit determination of the global p-nilpotent operator ©y; :
M ® k[V(GQ)] - M ® kE[V(G)] of [17, 2.4] immediately determines the local
Jordan type function JType,,;. Namely, to any v € V(G) we associate the
nilpotent linear operator 0, : My ) — My, defined by 6, = On Qv
k(v). The local Jordan type of M at the point v is precisely the Jordan type
of the linear operator 6,.

The reader should consult [17] for many explicit examples of kG-modules M
for each of the four families of examples of infinitesimal group schemes: (i.) G
of height 1, so that M is a p-restricted module for Lie(G); (ii.) G = Gg,; (iii.)
GLn(.,.); and (1V) SL2(2).

We provide a few elementary properties of these refined support varieties.

PROPOSITION 2.8. Let M be a kG-module of dimension m and let a =
(a1,...,ap) such that Y% _ a;-i=m.

(1) If m = p-m/, then V(G)\ V(G)yr = V©O0m)N(GQ) s otherwise,
V(G)=V(G)um-

(2) M has constant Jordan type if and only if V(G)p = V&(G)nr for some
a € N*P (in which case a is the Jordan type of M ).

(3) V=¢(Q)yr = {v e V(G) | JTypey (v) < a} is a closed subvariety of
V(G).

(4) V&(G) s is a locally closed subvariety of V(G), open in VS2(G) .

(5) V=(G)y C V=G, if b < a, where “ <7 is the dominance
order on Jordan types.

Proof. Properties (1) and (2) follow immediately from the definitions of V/(G) s
and of constant Jordan type. Property (5) is immediate.

To prove (3) we utilize 0, = O Qp(v)v(a)) (V) : My — My, described in
Remark 2.7. Applying Nakayama’s Lemma as in [17, 4.11] to Ker{@g\/l}, 1<
j < p, we conclude that rk(6J, M),1 < j < p — 1, is lower semi-continuous.
Consequently, (1.3.1) and Lemma 1.4 imply that V<¢(G)ys is closed.
Property (4) follows from the observation that V(G)as is the complement
inside V=4(G) s of the finite union V<&(GQ) s = Uy <, V=2, which is closed by
(3). O

It is often convenient to consider the stable Jordan type of a k[t]/tP-module M:
if a1[1] + ... + ap[p] is the Jordan type of M, then the stable Jordan type of
M is a1[1]+ ...+ ap—1[p — 1] (equivalently, the isomorphism class of M in the
stable module category stmod k[u]/uP). We define the stable local Jordan type
function

JType, : V(G) — N*P=L v (ag, ... ap-1)
by sending v to the stable Jordan type of 6} (Mj(,)).

The following proposition relates the Jordan type function for a module M and
its Heller twist.
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PrOPOSITION 2.9. For a stable Jordan type a = f;ll a;[i], denote by a* the
“flip” of a,
p—1
at = Zap_i[i].
i=1
Then

JTypeQ(M) (v) = JTypeM(v)L, v e V(G).

Proof. For any v € V(G), u; : (k(v)G — mod) = (k(v)Gg(y — mod) is exact.
Moreover, €* : (kG4 () — mod) — (k[u]/uP — mod) is also exact. Consequently,
the existence of a short exact sequence of the form 0 — QM — P — M — 0
with JTypep(v) = Np| for some N implies the assertion. O

ExaMPLE 2.10. Let g be a restricted Lie algebra with restricted enveloping
algebra u(g) (which is isomorphic to the group algebra of an infinitesimal
group scheme of height 1). Let ¢ be an even dimensional cohomology class
in H*(u(g), k), and L¢ be the Carlson module defined by ¢. Then L. has two
local Jordan types: it is generically projective (that is, the local Jordan type
is m[p] on a dense open set), and has the type r[p] + [p — 1] + [1] on the hyper-
surface (¢ = 0) in Spec H*(u(g), k). Let M be a g-module of constant Jordan
type a. Then the module L ® M has two local Jordan types: it is generically
projective, and has the “stably palindromic” type a + a* + [proj] on (¢ = 0).

We conclude this section with the following cautionary example which shows
why the construction of our local Jordan type function does not apply to kG-
modules M for finite groups G.

EXAMPLE 2.11. ([18, 2.3]) Let E = Z/p x Z/p, and write kE = k[z, y]/(zP, yP).
Let M = kE/(z — y?). Then

a: k[t]/tP - kE, t—x
and
o Ek[/tP — kE, tex—y?
are equivalent as m-points of E. However, the Jordan type of a*(M) equals

[251] + [E£1], whereas the Jordan type of o (M) is p[1].

3. MAXIMAL J—RANK FOR ARBITRARY FINITE GROUP SCHEMES

We begin with the following definition.

DEFINITION 3.1. Let G be a finite group scheme, ax : K[t]/t? — KG be a
m-point of GG, and j a positive integer with 1 < j < p. Then ax is said to
be of maximal j-rank for some finite-dimensional kG-module M provided that
the rank of ax (/) = ax(t)’ : Mg — My is greater or equal to the rank of
Br(t?) : My, — My, for any w-point 8z, : L[t]/t? — LG.
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The purpose of this section is to establish in Theorem 3.6 that maximality
of j-rank at ayx implies maximal j-rank at 8p for any S ~ agx. The proof
consists of repeating almost verbatim the proof by A. Suslin and the authors
in [18] of Theorem 1.5, so that we merely indicate here the explicit places at
which the proof of Theorem 1.5 should be modified in order to prove Theorem
3.6.

The following theorem provides the key step.

THEOREM 3.2. Let k be an infinite field, M be a finite-dimensional k-vector
space, and a, a1, ..., Qn, B1, ..., Bn be a family of commuting nilpotent k-linear
endomorphisms of M. Let 1 < j <p—1, and assume that

rka? > rk(a+ Aog + ...+ )\nan)j
for any field extension K/k and any n-tuple (\1,...,\,) € K™. Then
rko? = rk(a +aif + ...+ anBn).
In particular, if p(x,x1,...,2,) is any polynomial without constant or linear
term then
tka? =rk(a + pla, ay,...,a,)) .

Proof. For j = 1, this is [18, 1.9]. For general j, the statement follows by
applying Corollary 1.11 of [18]. O

For any m-point ax : K[t]/tP — KG, we denote by rk(ak (t/), Mk) the rank
of the K-linear endomorphism a (/) : Mg — M.

In the next 3 propositions, we consider the special cases in which G is an
elementary abelian p-group, an abelian finite group scheme, and an infinitesimal
finite group scheme. In this manner, we follow the strategy of the proof of
Theorem 1.5.

ProproOSITION 3.3. Let E be an elementary abelian p-group of rank r, let M
be a finite dimensional kE-module, and let ax be a m-point of E which is of
mazximal j-rank for M. Then for any Br ~ ag,

rk(ag (1), M) = rk(BL(¢), ML).
Proof. The proof of [18, 2.7] applies verbatim provided one replaces references

to [18, 1.12] by references to [18, 1.9]. O

PROPOSITION 3.4. Let C' be an abelian finite group scheme over k, let M be a
finite dimensional kC'-module, and let age be a w-point of C' which is of mazimal
j-rank for M. Then for any Br ~ ag,

I‘k(OéK(tj),MK) = I‘k(ﬁL(tj),ML).

Proof. The proof of [18, 2.9] applies verbatim provided one replaces references
to [18, 2.7] by references to Proposition 3.3 and references to [18, 1.12] by
references to Theorem 3.2. a
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PROPOSITION 3.5. Let G be an infinitesimal group scheme over k and let M
be a finite dimensional kG-module. Let Br, : L[t]/tP — LG be a w-point of G
with the property that the j-rank of B3 (My) is mazimal for M. Then for any
m-point ak : K[t]/t? — KG which specializes to Sy,

rk(ag (), Mx) = rk(BL(t7), ML).

Proof. The proof of [18, 3.5] applies verbatim provided one replaces references
to [18, 2.9] by references to Proposition 3.4. O

We now state and prove the assertion that maximality of j-rank at ax implies
maximality of j-rank at 8y, for any S, ~ ak. This statement for all j,1 < j < p,
implies the maximality of Jordan type as asserted in Theorem 1.5.

THEOREM 3.6. Let G be a finite group scheme over k and let M be a finite
dimensional kG-module. Let ax : K[t]/t? — KG be a m-point of G which
is of mazimal j-rank for M. Then for any m-point Br : L[t]/t? — LG that
specializes to ag, we have

I‘k(OéK(tj),MK) = I‘k(ﬁL(tj),ML).

Proof. The proof of [18, 4.10] applies verbatim provided one replaces refer-
ences to [18, 2.9] by references to Proposition 3.4 and references to [18, 3.5] by
references to Proposition 3.5. g

We can now generalize the modules of constant j-rank as defined for infinitesimal
group schemes in [17] to all finite group schemes.

DEFINITION 3.7. A finite dimensional kG-module M is said to be of constant j-
rank, 1 < j < p, if for any two m-points ai : K[t]/t? — KG, B, : L[t]/t? — LG,
we have

I‘k(OéK(lf])7 MK) = I‘k(ﬁL(tj), ML).

REMARK 3.8. By Theorem 3.6, M has constant j-rank n if and only if for each
point of II(G) there is some 7-point representative ax with rk(a g (t7), M) =
n.

Evidently, a kG-module has constant Jordan type if and only if it has constant
j-rank for all 5,1 < j < p (see (1.3.1)).

We shall say that M is a module of constant rank if it has constant 1-rank.
Every module of constant Jordan type has, by definition, constant rank. On
the other hand, there are numerous examples of modules of constant rank which
do not have constant Jordan type. For example, if ( € H2i+1(G, k) is non-zero
and p > 2, then the Carlson module L is a kG-module of constant rank but
not of constant Jordan type.

We finish this section with a cautionary example that illustrates that not all
properties of maximal or constant Jordan type have natural analogues for max-
imal or constant rank. Recall that a generic Jordan type of a kG-module M is
the Jordan type at a m-point which represents a generic point of II(G). By the
main theorem of [18], it is well-defined. If II(G) is irreducible, we can there-
fore refer to the generic Jordan type of M. We can similarly define a generic
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j-rank of a kG-module to be rk(ak (t7), Mk ) for a m-point a of G representing
a generic point of II(G). By [18, 4.2], generic j-rank is well-defined.

EXAMPLE 3.9. Throughout this example we are using the formula for the tensor
product of Jordan types (see, for example, [8, Appendix]).

(1). Let a =3 a4i], b = b;[i] be two Jordan types (or partitions) such that
S a;-i =73 b;-i. In [8, 4.1] the authors showed that ¢ > b implies a®c > b®¢
for any Jordan type c. The analogous statement is not true for ranks.

Indeed, let a = 3[2], b = [3] + 3[1], and ¢ = [2]. Then

rka =3 >rkb=2.
Since a ® ¢ = 3[3] + 3[1] and b ® ¢ = [4] + 4]2], we have
rka®c=6<rkb®c="7.

(2). Part (1) of this example illustrates a common failure of the upper semi-
continuity property of the ranks of partitions with respect to tensor product.
Since this fails for partitions, it is reasonable to expect the same property to
fail for maximal ranks of modules. The following is an explicit realization by
kG-modules of this failure of upper semi-continuity. This example also shows
that M ® N can fail to have maximal rank at a w-point at which both M and N
have maximal rank. This should be contrasted with the situation for maximal
Jordan types ( [8, 4.2]).

Let G = G;ﬁ) so that kG ~ k[x,y]/(aP,yP). Consider the kG-module M of

Example [8, 2.4], pictured as follows:

/\/\ e
\’\/ / ’\ /

Recall that II(G) ~ Proj H'(G, k) ~ P! A point [A; : A2] on P! is represented
by a m-point « : k[t]/tP — kG such that a(t) = Mz + Aay.
For p > 5, the module M has two Jordan types: the generic type 4[3] + 1[1]
and the singular type 3[3] + 2[2], which occurs at [1 : 0] and [0 : 1] (see [8,
2.4]). Hence, M has constant rank. We compute possible local Jordan types
of M ® M using the fact that p,. : k(v)[t]/(#?) — k(v)G is a map of Hopf
algebras for any v € V(G):

(i) (4[3] + 1[1])®2 = 16[5] + 24[3] + 17[1],

(ii) (3[3] + 2[2])®% = 9[5] + 12[4] + 13[3] + 12[2] + 13[1].
By [18, 4.4], the first type is the generic Jordan type of M ® M. Hence, the
generic (and maximal) rank of M ® M is 112. On the other hand, the rank
of the second type is 110. Hence, the rank of M at the points [1 : 0],[0 : 1] is
maximal, but the rank of M ® M is not.

N
/
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(3). Yet another result in [8], a direct consequence of the result on the tensor
products of maximal types mentioned in (2), states that a tensor product of
modules of constant Jordan type is a module of constant Jordan type. This
distinguishes the family of modules of constant Jordan type from the modules
of constant rank, for which this property fails. Let M be the same as in (2).
The calculation above shows that M is of constant rank but M ® M is not.

We also give an example of a different nature, avoiding point by point calcula-
tions of Jordan types. This example was pointed out to us by the referee. Let
M be a cyclic kG-module of dimension less than p (e.g., M = k[x,y]/(2%,v)).
We have a short exact sequence 0 — QM — kG — M — 0. This implies that
the Jordan type of QM at any m-point necessarily has p blocks, and, hence,
QM has constant rank. Since QM @ Q~'k ~ M & [proj], we conclude that the
tensor product of two modules of constant rank produces a module which is
not of constant rank.

4. NON-MAXIMAL RANK VARIETIES FOR ARBITRARY FINITE GROUP SCHEMES

In this section, we introduce the non-maximal rank varieties I'V(G)s for an
arbitrary finite group scheme, finite dimensional kG-module M, and integer
j,1 < j < p. The non-maximal rank varieties, a type of generalized support
variety defined for any finite dimensional module over any finite group scheme,
are defined in terms of ranks of local p-nilpotent operators. These are well
defined thanks to Theorem 3.6. After verifying a few simple properties of these
varieties, we investigate various explicit examples.

DEFINITION 4.1. Let G be a finite group scheme, and let M be a finite dimen-
sional kG-module. Set

(G = {[ak] € TI(G) | tk(ax (), Mk) is not maximal},
the non-maximal j-rank variety of M.

Our first example demonstrates that {I'V(G)/} is a finer collection of geometric
invariants than II(G) .

ExAMPLE 4.2. Let G = GL(3,F,) with p > 3. By [21], the irreducible com-
ponents of II(G) are indexed by the conjugacy classes of maximal elementary
p-subgroups of G which are represented by subgroups of the unipotent group
U(3,F,) of strictly upper triangular matrices. There are 3 such conjugacy
classes, represented by the following subgroups:

1 a b 1 b 1 0 b
0 1 a |abel, 0 0 |abeF, 0 1 a |abel,
0 0 1 0 1 0 0 1

Let M be the second symmetric power of the standard 3-dimensional (rational)
representation of G. Then the generic Jordan type of M indexed by the first
of these maximal elementary abelian subgroups of G is [3] 4+ 3[1], whereas

o~ Qe
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the Jordan types indexed by each of the other conjugacy classes of maximal
elementary abelian p—subgroups are [2] + 4[1].

Thus, II(G) pr = II(G) provides no information about M.

On the other hand, T'(G)y = I''(G)pr = I'*(G) M equals the union of the two
irreducible components of II(G) corresponding to the second and third maximal
elementary abelian p—subgroups, whereas I''(G) = 0 for i > 2.

Our second example shows that T'“(G)y and I'V(M) can be different, proper
subsets of II(G).

EXAMPLE 4.3. In [18, 4.13] A. Suslin and the authors constructed an example of
a finite group G and a finite dimensional G-module M, such that II(G) = XUY
has two irreducible components and the generic Jordan types of M at the
generic points of X and Y respectively are incomparable. Let G and M satisfy
this property, and let ax and 81, be generic m-points of X and Y respectively.
If JType(aj(Mk)) and JType(B8; (Mr)) are incomparable, then Lemma 1.4
implies that there exist i # j such that rk(a g (t*), M) > rk(B(t}), M1) but
rk(ax (t7), M) < tk(Br(t7), My). Hence, I'*(G)as is a proper subvariety that
contains the irreducible component Y whereas I'V(G), is a proper subvariety
that contains the irreducible component X.

Our third example is a simple computation for a general finite group scheme.
It provides another possible “pattern” for the varieties I''(G) .

EXAMPLE 4.4. Let ¢4 € H"(G,k) be an even dimensional class, and (» €
H" (G, k) be an odd dimensional class. Consider L¢ = L¢, ¢,, the kernel of the
map

GQ+G:QEdQ™k -k
The local Jordan type of L¢ at a m-point « is given in the following table:

r[p] + [p — 1], a*(C1) #0
rp] + [p — 2] + [1], a*(C1) =0, a*(G2) # 0
(r=1pl+2lp—-1]+[1], a*(G)=0a*()=0

Hence, T'(G)r, = ... = T?7*(G)r, = Z(G1), whereas T"~H(G)r, = Z(¢1) N
Z((2), where Z((1) denotes the zero locus of a class (1 € H*(G, k) and Z((2)

for ¢, € H°YY(G, k) is defined in (5.3).

We next verify a few elementary properties of M ~— I'V(G)ys. Some of them
are analogous to the properties of I'(G)as stated in Prop 1.8.

PROPOSITION 4.5. Let G be a finite group scheme and M a finite dimensional
kG-module.
(1) T9(G)r is a proper closed subset of II(G) for 1 < j < p.
) T9(G)pr = 0 if and only if M has constant j-rank.
) If M and N are stably isomorphic, then TV (G)y = T7(G) N
) If M is a module of constant j-rank, then T7(G)yen = T(G)N.
) T9(G)ar = T7(G)az ().
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(6) D(G)m = Ui<jpl?(G)ur-
(7) If M has the Jordan type mp] alt some generic w-point, then
FI(G)M =...= Fp_l(G)M = H(G)M

Proof. By definition, IV (G)y C II(G) can never equal II(G), so it is a proper
subvariety. Moreover, assertions (2) and (6) also immediately follow from defi-
nitions and Lemma 1.4. Assertion (4) follows from the additivity of ranks and
of the functor o} : KG — mod — K[t]/t? — mod induced by a m-point ak.
Property (3) is proved exactly as in the proof of Proposition 1.8(1).

For (5), observe that a m-point ax induces an exact functor on the module
categories and hence commutes with the Heller operator 2. The statement
now follows from the observation that for K[t]/tP-modules, applying Q2 does
not change the stable Jordan type.

To prove that IV (G)y C II(G) is closed as asserted in (1), we repeat the proof
of [18, 5.2] establishing that I'(G)as is closed. Indeed, the reduction in that
proof to the special case in which G is infinitesimal applies without change.
The proof in the special case of GG infinitesimal uses the affine scheme of 1-
parameter subgroups; this proof applies with only one minor change: the set of
equations on the ranks of powers of fa : A[t]/t? — Enda(M) (in the notation
of that proof) is replaced by the set of equations on rank of only one, the j-th,
power of fa.

If M is generically projective as in (7), then I'(G)y = II(G)ym. Let ax ¢
I'(G)m so that the Jordan type of aj (M) is m[p], and let S, € I'(G)ar. Let
> b;[i] be the Jordan type of 87 (My). The statement follows easily from the
formula (1.4.1): we have

P
rk(ak (), M) =m(p—34) > Y bi(i—j) = rk(BL(t)), My),
i=j+1
where the inequality in the middle follows by downward induction on j from
P ,
the assumption mp = dimM = > b;i. Thus, I'Y(G)y = I'(G)y for each
i=1
J1<j<p.
a

EXAMPLE 4.6. We point out that the “natural” analog of 1.8(5) is not true for
modules of constant rank. Namely, Fl(G) Men does not have to be equal to
I'Y(G)y for M of constant rank. Indeed, let M be as in Example 3.9. Then M
has constant rank and T'*(E)y = 0. But TN (E)ygan # 0 since M ® M is not
a module of constant rank.

Using a recent result of R. Farnsteiner [12, 3.3.2], we verify below that the
non-maximal subvarieties I''(G)ys C II(G) of an indecomposable kG-module
M do not change when we replace M by any N in the same component as M of
the stable Auslander-Reiten quiver of G. This is a refinement of a result of J.
Carlson and the authors [8, 8.7] which asserts that if M is an indecomposable
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module of constant Jordan type than any N in the same component of the
stable Auslander-Reiten quiver of G as M is also of constant Jordan type.

PROPOSITION 4.7. Let k be an algebraically closed field, and G be a finite group
scheme over k. Let © C I's(G) be a component of the stable Auslander-Reiten
quiver of G. For any two modules M, N in ©, and any j,1 <j<p-—1,

(G =T (G)n

Proof. Recall that II(GQ) is connected. If dimII(G) = 0, then II(G) is a single
point so that I'V(G) s is empty for any kG-module M.

Now, assume that II(G) is positive dimensional. Since k is assumed to be
algebraically closed, to show that IV (G)y; = IV (G)y, it’s enough to show that
their k-valued points are the same. For this reason, we shall only consider
m-points defined over k.

Let M be a kG-module in the component ©, and write the Jordan type of
a*(M) as Y0 a;(M)[i]. By [12, 3.1.1], each component © determines non-
negative integer valued functions d; on the set of m-points (possibly different on
equivalent 7-points) and a positive, integer valued function f on the modules
occurring in © such that

{ o (M) =di()f(M) for 1 <i<p—1

(4.7.1) o (M) = L(dim M — d(a) f(M))

Assume [$] € T7(G)ur, so that there exists a m-point a : k[t]/t” — kG such that
rk(a? (t), M) > rk(57(t), M). By (1.4.1), this is equivalent to the inequality

p
> (M) — ) Z Bi(M)(i — j).
j=it1 j=it1

Using formula (4.7.1), we rewrite this inequality as

S di) (M) — )+ %(dimM — dy(e) F(M))(p— ) >
j=i+1
S dB G- )+ (i 01 — dy(8)S (M) (p )

j=i+1
Simplifying, we obtain
(4.7.2)
(Y dil)i—i)— L)) > (Y diB)i—5) -T2 d, (8) £ (M).
St p j=it1 p

Now, let N be any other indecomposable kG-module in the component ©. Mul-
tiplying the inequality (4.7.2) by the positive, rational function f(N)/f(M),
we obtain the same inequality as (4.7.2) with M replaced by N. Thus,
3] € TV(G)y. Interchanging the roles of M and N, we conclude that
(G =T9(GQ)y- O
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For an infinitesimal group scheme G, the closed subvarieties IV (G)y C II(G)
admit an affine version V7 (G) C V(G) defined as follows

DEFINITION 4.8. Let GG be an infinitesimal group scheme, M a finite dimen-
sional kG-module, and j a positive integer, 1 < j < p. We define

VI(G)m = {v € V(G)| tk(0), My(y) is not maximal} U {0} C V(G).

(see §2 for notations). So defined, VI(G)yr — {0} equals pr—1(I'V(G) ), where
pr: V(G) — {0} = II(G) is the natural (closed) projection (see [16]).

REMARK 4.9. We can express V7 (G)ys in terms of the locally closed subvari-
eties V(@) introduced in §2. Namely, V7 (G)y is the union of V&(G)y C
V(G) indexed by the Jordan types a with >-% | a; - i = dim(M) satisfying
the condition that there exists some Jordan type b with V2(G)y # {0} and
Zﬁ;j bl(l - .7) > Z;in>j ai(i - .7)

Our first representative example of V(G is a continuation of (2.5).

EXAMPLE 4.10. Let G = GLy(1), let M be the standard representation of
GLy, and assume p does not divide N. Recall that V(GLy (1)) ~ N, where
N, is the p-restricted nullcone of the Lie algebra gl ([24, §6]). The maximal
Jordan type of M is r[p] + [N — rp], where rp is the greatest non-negative
multiple of p which is less or equal to N (see [18, 4.15]). Hence, the maximal
j-rank equals r(p — j) + (N —rp—j) if N —rp > j and r(p — j) otherwise.
For simplicity, assume k is algebraically closed so that we only need to consider
k-rational points of N,. For any X € N, Ox : M — M is simply the endo-
morphism X itself. Consequently, if N —rp < j, VI(G)nm C N, consists of
0 together with those non-zero p-nilpotent N x N matrices with the property
that their Jordan types have strictly fewer than r blocks of size p; if N —rp > j,
then V7(G)p consists of 0 together with 0 # X € N, whose Jordan type is
strictly less than r[p] + [N — rp].

Hence, the pattern for varieties V7 (M) in this case looks like

OV AV Gar = ... =V (G)ar C VY G)ar = ... = VP Y G)ar € V(G)

where n = N — rp.

Computing examples of V7 (G) ) is made easier by the presence of other struc-
ture. For example, if G' = G,y, the rt"-Frobenius kernel of the algebraic group
G and if the kG-module M is the restriction of a rational G-module, then we
verify in the following proposition that V7 (G)ys is G-stable, and thus a union
of G-orbits inside V(G).

LEMMA 4.11. Let G be an algebraic group, and let G be the r*" Frobenius kernel
of G for somer > 1. If M is a finite dimensional rational G-module, then each
VI(G)n, 1 <5 <p,is aG-stable closed subvariety of V(G).

Proof. Composition with the adjoint action of G on G determines an action
GxV(G) = V(Q).
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Observe that for any field extension K/k and any x € G(K), the pull-back of
My via the conjugation action v, : Gxg — G is isomorphic to Mg as a KG-
module. Thus, the Jordan type of (poe€)*(Mg) equals that of (y,0poe)*(Mk)
for any 1-parameter subgroup u : Gy, x — Gk- O

Using Lemma 4.11, we carry out our second computation of V7(G), with G
infinitesimal, this time for G of height 2.

EXAMPLE 4.12. Let G' = SLy(y). For simplicity, assume k is algebraically
closed. Recall that

V(G) - {(040,041) | 1,02 € SZQaaf - 0/27 - [041,042] = 0}7

the variety of pairs of commuting p-nilpotent matrices ([23]). The algebraic
group SLs acts on V(G) by conjugation (on each entry).

0 1
Let e = [ 0 0
V(G) with respect to the conjugation action are parameterized by P!, where
[so : s1] € P! corresponds to the orbit represented by the pair (sge, s1€).
Let S\ be a simple SLy-module of highest weight A, 0 < A < p? — 1. Since
S, is a rational SLy-module, the non-maximal rank varieties V7(G)g, are SLo-
stable by Proposition 4.11. Hence, to compute the non-maximal rank varieties
for Sy it suffices to compute the Jordan type of Sy at the orbit representa-
tives (spe, s1€). By the explicit formula ([17, 2.6.5]), the Jordan type of Sy
at (soe, s1e) is given by the Jordan type of the nilpotent operator sje + sge(”)
(here, e?) is the divided power generator of k SLy(2) as described in [17, 1.4]).
The non-maximal rank varieties V7(G)s, depend upon which of the following
three conditions \ satisfies.

(1) . In this case, the Jordan type of e € kSLyy) as an

operator on Sy is [\ + 1]. On the other hand, the action of e is
trivial. Hence, if j > A + 1, then the action (sie + sge(p))j is trivial
for any pair (sg,s1). For 1 < j < A, the j-rank is maximal (and
equals A + 1 — j) whenever s; # 0. We conclude that for j > A, we
have V7 (G)s, = 0, and for 1 < j < A\, VI(G)s, is the orbit of V(G)
parametrized by [1 : 0].

(2) [p<A<p?—1]| Let A = \g + pA1. By the Steinberg tensor product

theorem, we have Sy = Sy, ® Sg\ll). Observe that e acts trivially on Sg\ll)

} An easy calculation shows that the non-trivial orbits of

and e®) acts trivially on S o Moreover, the Jordan type of e as an
operator on Sgll) is the same as the Jordan type of e as an operator on

Sh,. Hence, the Jordan type of sle—i—sge(p) as an operator on Sy, ®S§\11)
is [Ao + 1] ® [A\1 + 1] when sps; # 0. If s9 = 0 or s; = 0 we get the
types [Ao + 1] ® (triv) or (triv) ® [A\1 + 1] respectively.
(a) For 0 < X\p, \1 < p—1, the tensor product formula for Jordan types
(see [8, Appendix]) implies that the j-rank of [Ag + 1] ® [A; + 1] is
strictly greater than that of [A\g + 1] ® (triv) or (triv) ® [A; + 1] for

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME SUSLIN (2010) 197-222



216 ERIC M. FRIEDLANDER AND JULIA PEVTSOVA

7 < A1+ Ap. Hence, the non-maximal j-rank variety in the case
when j < A1+ Ao is a union of two orbits, parameterized by [1 : 0]
and [0 : 1]. If j > Ay + Ag, then the non-maximal j-rank variety is
trivial since the j-rank is 0 at every point.

(b) If Ay = 0, then Sy ~ Sgll). Hence, the computation for S, for
A < p implies that the non-maximal j-rank variety in this case is
the orbit corresponding to [0 : 1] for j < A\; and is trivial otherwise.

(¢) For A\g = p—1or Ay = p—1, the non-maximal j-rank variety is the
same as the support variety for any j, since the support variety is
a proper subvariety of V(@) in this case. The support varieties for
these modules were computed in [24, §7] (see also [17, 1.17(4)]).

(3) . In this case, Sy is the Steinberg module for SLy(5). Hence,

it is projective, so the non-maximal rank varieties are all trivial.

We summarize our calculations in the table below. Let A = Ao 4+ pA1, and
A=Xo+ M. If j > A, then VI(G)g, = 0. For j <\, we have

{(060,0)} (@] {(O,al)} if0< X, i<p-—1

V](G) _ {(Oco,())} if)\o#o,)\1200r>\0=p—1,)\1#p—1
T {0, a0)) ifAo=0 M £Oor Ao#p—L A\ =p—1
0 if/\oZ/\lzpfl.

where «g, a1 run over all nilpotent matrices in sls. In particular, for a given
A = Ao + pA1 we get the following pattern for M = S):

VG DV Gy = =VNGy DV = =VPHG)y = {0}

Observe that the only simple modules of constant rank are the trivial module
and the Steinberg module. An interested reader may find it instructive to
compare this calculation to the calculation of support varieties for SLa(2y ([17,
1.18(4)], see also [24, §7]).

5. SUBVARIETIES OF II(G) ASSOCIATED TO INDIVIDUAL Ext-CLASSES

For M a kG-module of constant rank, we associate to a cohomology class ¢ in
H' (G, M) a closed subvariety Z(¢) C TI(G) which generalizes the construction
of the zero locus Z(¢) C SpecH®*(G, k) of a homogeneous cohomology class.
We show that this construction is closely related to the non-maximal rank
variety, and establish some “realization” results for non-maximal varieties as
an application. Unless otherwise indicated, throughout this section G will
denote an arbitrary finite group scheme over k.

LEMMA 5.1. Let M be a finite dimensional kG-module, and let ¢ be a coho-
mology class in Hl(G7 M). Consider the corresponding extension

C:0—> M — Ec—k—0.
For any m-point ay : K[t]/tP — KG, the following are equivalent:
(i) the cohomology class o’ (Crc) € H' (K [t]/t?, M) is trivial.
(i) rk(aj (1), B¢) = rk(aj(t), M).
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(iii) JType(aj (B¢ k) = JType(aj (Mk)) + 1[1].

Proof. Recall that o} (—) is exact (by definition, ax is flat); moreover, the
sequence o’ (¢) splits if and only if o (¢) = 0 in H'(K[t]/t?, K). Thus, it
suffices to prove that a short exact sequence 0 - M — E — K — 0 of K[t]/tP-
modules splits if and only if rk(¢, M) = rk(¢, E) if and only if JType(E) =
JType(M)+1[1]. Let b= >""_, b;[i] be the Jordan type of E anda = Y>_F_, a;]i]
be the Jordan type of M. Then this short exact sequence splits if and only if
the map E — k factors through the summand b;[1] of E which occurs if and
only if b; = a;,7 > 1 which is equivalent to rk(¢, M) = rk(¢, E). O

PROPOSITION 5.2. Let M be a kG-module of constant rank, and let { be a
cohomology class in HI(G, M). Consider the corresponding extension

(:0—>M— E:—k—0.

(1) If E: has constant rank equal to that of M, then o} ((kx) €
HY(K[t]/t?, M) is trivial for every m-point ax : K[t]/t* — KG.

(2) If E¢ has constant rank greater than that of M, then o} (Cx) €
HY(K[t]/t?, M) is non-trivial for every m-point ax : K[t]/tP — KG.

(3) If E¢ does not have constant rank, then o () is trivial if and only if
lak] € TY(G) g, C II(G).

(4) For any two equivalent w-points o, Br of G, (k) is trivial if and
only if 87 (Cr) is trivial.

Proof. Assertions (1) and (2) follow immediately from Lemma 5.1. Assertion
(3) also follows from Lemma 5.1: if E¢ does not have constant rank, then
the complement of I''(G)p, in II(G) consists of those equivalence classes of
m-points ok satisfying Lemma 5.1(ii.).

To prove that the vanishing of o (Cx) depends only upon the equivalence
class of a, we examine each of the three cases considered above. In case (1),
o (Cx) = 0 for all m-points ak: on the other hand, in case (2) a}((x) # 0
for all m-points ai. Finally, the assertion in case (3) follows immediately from
Theorem 3.6. O

Proposition 5.2(4) justifies the following definition.

DEFINITION 5.3. For M a module of constant rank, and ¢ € H (G, M), we
define

(5.3.1) Z(¢) = {lox] [ ak(¢) =0} < I(G).
For ¢ € H"(G, k), we define
(5.3.2) Z(¢) = {lax] | ak(¢) =0} C IH(G).

Since H™ (G, k) ~ HY(G, Q'~™k), the definition of (5.3.2) is a special case of
that of (5.3.1). For m = 2n even, Z(¢) corresponds under the isomorphism
II(G) ~ ProjH®*(G, k) with the hypersurface (¢ = 0) in Spec H*(G, k).
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REMARK 5.4. We point out that Definition 5.3 is not as straight-forward as it
might appear.

e Let G =Z/p x Z/p with p > 2, write kG = k[z,y|/(2P,y?) and con-
sider M = kG/(z — y?) as in Example 2.11. Consider the short exact
sequence

0 — Rad(M) - M -k — 0,

with associated extension class ¢ € H'(G,Rad(M)). Consider the
equivalent m-points «, o’ : k[t]/t? — kG of Example 2.11. Then,
a*(¢) # 0, yet &*(¢) = 0. Thus, the “zero locus” of ¢ is not a well
defined subset of II(G).

e Let ¢ € H*(G, k) represented by ¢ : 92"k — k. By definition of Le,
we have an extension

€: 05 Le— 0k S k0,
corresponding to a cohomology class & € Hl(G, L¢). Then for any -

point ag : K[t]/tP — KG, o’ (€) splits if and only if o’ (L¢) is free if
and only if [ak] & II(G)r, if and only of af (¢) # 0. Thus, the zero
locus of £ equals the complement of the zero locus of ¢ (and thus is
open in II(@Q)).

e For ¢ € H*" (G, k), one could define Z(¢) as the zero locus of the
Bockstein of ¢ provided one is in a situation in which the Bockstein is
defined and well behaved. See the discussion of the Bockstein following
Example 5.6.

We recall from [7] that a short exact sequence of kG modules
f : 0> M—-FE—->Q—0

is said to be locally split if o’ (€) splits for every m-point af : K[t]/t? — KG
of G.

PROPOSITION 5.5. Let M be a module of constant rank, and let  be a coho-
mology class in Hl(G7 M). Consider the corresponding extension

(:0=-M—=E;:—k—0.

Then ~
2(¢) = II(G), if ¢ is locally split
B rMGe., if ¢ is not locally split.
In particular, Z(¢) C II(G) is closed.

Proof. Observe that  is split at [a] if and only if a’-(¢) = 0. We first consider
¢ such that E; has constant rank. Then by Proposition 5.2.1, Z(¢) equals II(G)
if ¢ is locally split and Z(¢) = @ by Proposition 5.2.2 if ¢ is not locally split.
Alternatively, if £ does not have constant rank, then Proposition 5.2.3 gives
the asserted description of Z(().

Because I''(G) g, C TI(G) is closed by Proposition 4.5 and of course II(G) is
itself closed in II(G), we conclude that Z(¢) is closed inside II(G). O
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We remark that ¢ € H'(G, M) can be non-zero and yet Z(¢) = 0. To say
Z(¢) = 0 is to say that a3 (¢) = 0 for all m-points ag. Consider, for example,
an even dimensional non-trivial cohomology class ¢ € H*"(G, k) which is a
product of odd dimensional classes. Since the product of any two odd classes
in H*(k[t]/t?, k) is zero, o’ (¢) = 0 for all m-points ax of G. On the other hand,
¢ can be identified with a cohomology class in H' (G, Q'~2"(k)) ~ H**(G, k).
Since Q1727 (k) is a module of constant Jordan type (see [8]), the class ¢ satisfies
the requirements of Proposition 4.5.

A more interesting example is the following.

EXAMPLE 5.6. Let G be a finite group scheme with the property that the
dimension of II(G) is at least 1. Let (' € I?I_Z(G, k), i > 0, be an element in
the negative Tate cohomology of G. As shown in [8, 6.3], a5 (¢') = 0 for any =-
point a. Then ¢’ corresponds to ¢ € HY(G, Q" (k)) under the isomorphism
H (G, k) ~ HY(G, Qi+ (k)); by the naturality of this isomorphism, o (¢) =
0¢ ITIﬂ(K[t]/tp, K) for any m-point ak.

Thus, ¢ # 0, ¢ is locally split, and Z(¢) = @ for this choice of ¢ €
HY(G, Q7 (k).

For any field extension K /k, let Rxg = W (K) denote the Witt vectors of length
2 for K. Assume that G over k embeds into an Rj-group scheme Gp, so that
G = GR,, XspecR;, Speck C Gp,, thereby inducing by base change Gx C G-
Then we may define the Bockstein 8 : H (Gg, K) — H'" (G, K) for i > 0 as
the connecting homomorphism for the short exact sequence of G, -modules

(5.6.1) 0—-K — Rk - K—0.

(The reader is referred to [11, 3.4] for a discussion of this Bockstein.) Since
any m-point ag : K[t]/t? — KG lifts to a map ax : Rg[t]/t? — RxGr, of
R-algebras, o* : H*(G, K) — H*(K[t]/t?, K) commutes with this Bockstein.
Since 3 : H* 1 (K[t]/t?, K) — H**(K[t]/t?, K) is an isomorphism, we conclude
that if 2 € H**Y(G, k), then o’ (z) vanishes if and only if o’ (8(z)) = 0,
where 3(z) € H**(G, k). Thus, for such G lifting to G, and for p > 2, when
considering Z(¢) for homogeneous classes in H*(G, k), it suffices to restrict
attention to the subalgebra H*(G, k) of even dimensional classes.

As we see in the following family of examples, I''(G)ys can be an arbitrary
closed subset even when the support variety of M is all of II(G).

PROPOSITION 5.7. Let G be a finite group scheme over k. Let (; €
H" (G k) ~ HY(G, Q" (k)), n; > 0. Let M = ®_,Q "(k), and set
¢ =& e HY(G, M) = &, H(G, Q" (k)). Let
0—+M—=E—k—=0
be the corresponding extension. Then
(1) If Z(¢) #1UG), then T (G)p, = Z(¢) = Z(
(2) If each n; is even so that each G e HY MG K
(G) e, = 1I(G).

NZ(G).

Gi)N
) has odd degree, then
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Proof. (1). If Z(¢) # II(G), then Proposition 5.5 implies that I''(G)p, =
Z((). Since ¢ = ®¢;, we further conclude that Z(¢) = {[ax] | a({) =0} =
{lok] | @k (¢) = 0 for all i} =) Z(¢;). Hence, r'(@)e, = NZ(G)-

K]
(2). Assume now that each n; is even so that each 27" (k) has constant Jordan
type of the form m;[p]+ [1]. Thus, the generic Jordan type of E; is of the form
m[p] + [2] + (r — 1)[1] at generic points [ak] € TI(G) such that af(¢) # 0 and
of the form m[p] + (r + 1)[1] otherwise. Therefore, II(G)g, = I1(G). O

As we see below, the construction of E¢ in Proposition 5.7 above is in fact a
generalized Carlson module L, (as defined in [8]) “in disguise”. In the Example
5.8 we consider homogeneous classes (; of even degree.

EXAMPLE 5.8. Let ¢ = (C1,...,(), where ¢ € H(Gk) =~
Hom (0?4 (k), k), 1 < i < r with d; > 0. Let L¢ be the kernel of the
map ¢ = > ¢ : @ 0?4 (k) — k, so that we have an exact sequence:

This short exact sequence represents an exact triangle in stmod kG. Shifting
the triangle by Q~! we obtain a triangle

b Q7 (L) — @ Q2 (k) — Q71 (k)
Hence, ¢ corresponds to a short exact sequence

0 k F< ®Q2di—1(k,) — =0

with the middle term stably isomorphic to Q7!(L¢). Taking the dual of this
short exact sequence, we obtain the the short exact sequence which defines E
in Proposition 5.7:

00— P i-2dig E; k 0.
Hence, E¢ is stably isomorphic to Q’l(L?é).

Our final result extends the construction of closed zero loci to extension classes
& € Ext&(N, M) with both M, N of constant Jordan type. In other words,
Proposition 5.9 introduces the (closed) support variety Z(§) of such an exten-
sion class.

PROPOSITION 5.9. Let G be a finite group scheme and N, M finite di-
mensional kG-modules of constant Jordan type. Let & € Exti(N,M) ~
Ext'(Q"~1(N), M) for some n # 0, and consider the corresponding extension

£: 0= M — E — Q" Y(N) 0.
(1) ~If ak, Br are equivalent m-points of G, then a}((g) splits if and only if
Br(€) splits.
(2) If )
Z(&) = {lax] | ax (&) splits} < T(G),
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then

Z(€) = I(G), if € is locally split
B (G, if € is not locally split.

Proof. There is a natural isomorphism
Ext(Q"~ (N), M) ~ H'(G, (@ (N))* @ M)

sending the extension class £ to the cohomology class ¢ € H' (G, (Q" " 1(N))# ®
M) (where (Q"~1(N))# is the linear dual of Q*~'(N)). Hence, o’ (€) splits if
and only o (5 ) splits for any m-point ax of G.
By [9, 5.2], (2" }(N))# has constant Jordan type. Thus, by [9, 4.3],
Q4N ))# ® M also has constant Jordan type. Consequently, the assertion
of the Proposition for £ follows from Proposition 4.5 for (.

O
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ABSTRACT. We study properties of Suslin homology and cohomology
over non-algebraically closed base fields, and their p-part in charac-
teristic p. In the second half we focus on finite fields, and consider
finite generation questions and connections to tamely ramified class
field theory.
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1 INTRODUCTION

Suslin and Voevodsky defined Suslin homology (also called singular homol-
ogy) HP (X, A) of a scheme of finite type over a field k with coefficients in
an abelian group A as Tor;(Corg(A*, X), A). Here Corp(A?, X) is the free
abelian group generated by integral subschemes Z of A? x X which are finite
and surjective over A?, and the differentials are given by alternating sums of
pull-back maps along face maps. Suslin cohomology H (X, A) is defined to
be Ext’yy, (Corg(A*, X), A). Suslin and Voevodsky showed in [22] that over a
separably closed field in which m is invertible, one has

Hy(X,Z/m) 2= H(X,Z/m) (1)

(see [2] for the case of fields of characteristic p).
In the first half of this paper, we study both the situation that m is a power
of the characteristic of k, and that k is not algebraically closed. In the second

1Supported in part by NSF grant No.0901021
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half, we focus on finite base fields and discuss a modified version of Suslin
homology, which is closely related to etale cohomology on the one hand, but is
also expected to be finitely generated. Moreover, its zeroth homology is Z70(X)
and its first homology is expected to be an integral model of the abelianized
tame fundamental group.

We start by discussing the p-part of Suslin homology over an algebraically
closed field of characteristic p. We show that, assuming resolution of singular-
ities, the groups Hf (X,Z/p") are finite abelian groups, and vanish outside the
range 0 < i < dim X. Thus Suslin cohomology with finite coefficients is etale
cohomology away from the characteristic, but better behaved than etale coho-
mology at the characteristic (for example, H, (A, Z/p) is not finite). Moreover,
Suslin homology is a birational invariant in the following strong sense: If X has
a resolution of singularities p : X’ — X which is an isomorphism outside of the
open subset U, then H? (U, Z/p") = H? (X,Z/p"). Tt was pointed out to us by
N.Otsubo that this can be applied to generalize a theorem of Spiess-Szamuely
[20] to include p-torsion:

THEOREM 1.1 Let X be a smooth, connected, quasi-projective variety over an
algebraically closed field and assume resolution of singularities. Then the al-
banese map

albx : Hy (X,7)° — Albx (k)

from the degree-0-part of Suslin homology to the k-valued points of the Albanese
variety induces an isomorphism on torsion groups.

Next we examine the situation over non-algebraically closed fields. We redefine
Suslin homology and cohomology by imposing Galois descent. Concretely, if
G, is the absolute Galois group of k, then we define Galois-Suslin homology to
be

HES(X, A) = H'RT(Gy, Cory(Af, X) x A),

and Galois-Suslin cohomology to be
Hgs(X, A) = Extf, (Corg (A%, X), A).

Ideally one would like to define Galois-Suslin homology via Galois homology,
but we are not aware of such a theory. With rational coefficients, the newly
defined groups agree with the original groups. On the other hand, with finite
coefficients prime to the characteristic, the proof of (1) in [22] carries over
to show that H.g(X,Z/m) = HI(X,Z/m). As a corollary, we obtain an
isomorphism between H{(X,Z/m) and the abelianized fundamental group
79 (X)) /m for any separated X of finite type over a finite field and m invertible.
The second half of the paper focuses on the case of a finite base field. We work
under the assumption of resolution of singularities in order to see the picture of
the properties which can expected. The critical reader can view our statements
as theorems for schemes of dimension at most three, and conjectures in gen-
eral. A theorem of Jannsen-Saito [11] can be generalized to show that Suslin
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homology and cohomology with finite coefficients for any X over a finite field is
finite. Rationally, Hy (X, Q) = H2(X,Q) = Q7(X). Most other properties are
equivalent to the following Conjecture Py considered in [7]: For X smooth and
proper over a finite field, C Hy(X, ) is torsion for 4 # 0. This is a particular
case of Parshin’s conjecture that K;(X) is torsion for ¢ # 0. Conjecture Py
is equivalent to the vanishing of HiS (X,Q) for i # 0 and all smooth X. For
arbitrary X of dimension d, Conjecture Py implies the vanishing of Hf (X,Q)
outside of the range 0 < ¢ < d and its finite dimensionality in this range. Com-
bining the torsion and rational case, we show that H (X, Z) and H(X,Z) are
finitely generated for all X if and only if Conjecture Py holds.

Over a finite field and with integral coefficients, it is more natural to impose
descent by the Weil group G generated by the Frobenius endomorphism ¢
instead of the Galois group [14, 3, 4, 7]. We define arithmetic homology

H (X, A) = Tor{ (Corj, (A%, X), A)
and arithmetic cohomology
H..(X,Z) = Ext{(Corg (A%, X), Z).

We show that H§"(X,Z) = HO.(X,Z) = Z™X) and that arithmetic homology
and cohomology lie in long exact sequences with Galois-Suslin homology and
cohomology, respectively. They are finitely generated abelian groups if and
only if Conjecture Py holds.

The difference between arithmetic and Suslin homology is measured by a
third theory, which we call Kato-Suslin homology, and which is defined as
HES(X, A) = Hi((Cor(Af,X) ® A)g). By definition there is a long exact
sequence

= HY(X,A) — HE (X, A) — HEY (X, A) — HY (X, A) = -

It follows that HI®(X,Z) = Z™(X) for any X. As a generalization of the
integral version [7] of Kato’s conjecture [12], we propose

CONJECTURE 1.2 The groups HS(X,Z) vanish for all smooth X and i > 0.
Equivalently, there are short exact sequences
0— HZ(X,Z)¢ — HY (X,Z) - HY (X,Z)° -0

for all 4 > 0 and all smooth X. We show that this conjecture, too, is equivalent
to Conjecture Py. This leads us to a conjecture on abelian tamely ramified
class field theory:

CONJECTURE 1.3 For every X separated and of finite type over Fy, there is a

canonical injection
Hi"(X,Z) — 71 (X)®

with dense image.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 223—-249



226 THOMAS GEISSER

It might even be true that the relative group H¥(X,Z)° := ker(H™*(X,Z) —
Z’TO(X)) is isomorphic to the geometric part of the abelianized fundamental
group defined in SGA 3X§6. To support our conjecture, we note that the
generalized Kato conjecture above implies Hy (X,Z) = H(X,Z) for smooth
X, so that in this case our conjecture becomes a theorem of Schmidt-Spiess
[19]. In addition, we show (independently of any conjectures)

PROPOSITION 1.4 If1/l € F,, then H{* (X, Z)N = 7t (X)) (1) for arbitrary X.

In particular, the conjectured finite generation of H2'(X,Z) implies the con-
jecture away from the characteristic. We also give a conditional result at the
characteristic.

Notation: In this paper, scheme over a field £ means separated scheme of finite
type over k. The separable algebraic closure of k is denoted by k, and if X is
a scheme over k, we sometimes write X or X3 for X x;, k.

We thank Uwe Jannsen for interesting discussions related to the subject of this
paper, and Shuji Saito and Takeshi Saito for helpful comments during a series
of lectures I gave on the topic of this paper at Tokyo University.

2  MOTIVIC HOMOLOGY

Suslin homology Hf(X ,Z) of a scheme X over a field k is defined as the ho-
mology of the global sections CX (k) of the complex of etale sheaves CX (—) =
Corg(— x A*, X). Here Cory(U, X) is the group of universal relative cycles of
U xY/U [23]. If U is smooth, then Cory (U, X) is the free abelian group gener-
ated by closed irreducible subschemes of U x X which are finite and surjective
over a connected component of U. Note that CX (—) = Cfmd(—), and we will
use that all contructions involving CX agree for X and X"°? without further
notice.

More generally [1], motivic homology of weight n are the extension groups in
Voevodsky’s category of geometrical mixed motives

Hi(X,Z(n)) = Homp,, - (Z(n)[i], M (X)),
and are isomorphic to

H* (A, CX) n >0

Hi(X,Z(n)) =4 _© ; -
X, 2(n) {Hi_%_l(c*(%{gg}”)(m) n <0.

Here cohomology is taken for the Nisnevich topology. There is an obvious ver-
sion with coefficients. Motivic homology is a covariant functor on the category
of schemes of finite type over k, and has the following additional properties,
see [1] (the final three properties require resolution of singularities)

a) It is homotopy invariant.
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b) It satisfies a projective bundle formula

H;(X x P Z(n)) = H{(X,Z(n)) ® Hi—2(X,Z(n — 1)).

¢) There is a Mayer-Vietoris long exact sequence for open covers.
d) Given an abstract blow-up square
Z — X'

Lo

z — X

there is a long exact sequence

s —r HH_l(X,Z(n)) — Hi(Z/, Z(n)) —
H;(X',Z(n)) ® Hi(Z,Z(n)) — Hi(X,Z(n)) = - (2)
e) If X is proper, then motivic homology agrees with higher Chow groups
indexed by dimension of cycles, H;(X,Z(n)) = CH,(X,i— 2n).

f) If X is smooth of pure dimension d, then motivic homology agrees with
motivic cohomology with compact support,

H;(X,Z(n)) = H* (X, Z(d — n)).

In particular, if Z is a closed subscheme of a smooth scheme X of pure
dimension d, then we have a long exact sequence

- — Hz(U,Z(n)) — HZ(X,Z(n)) N HZd—i(Z7Z(d — n)) S, (3)

In order to remove the hypothesis on resolution of singularities, it would be
sufficient to find a proof of Theorem 5.5(2) of Friedlander-Voevodsky [1] that
does not require resolution of singularities. For all arguments in this paper
(except the p-part of the Kato conjecture) the sequences (2) and (3) and the
existence of a smooth and proper model for every function field are sufficient.

2.1 SUSLIN COHOMOLOGY

Suslin cohomology is by definition the dual of Suslin homology, i.e. for an
abelian group A it is defined as

HL(X, A) = Extiy, (CX (), A).

We have Hi(X,Q/Z) = Hom(H?(X,Z),Q/Z), and a short exact sequence of
abelian groups gives a long exact sequence of cohomology groups, in particular
long exact sequences

o= HY(X,Z) —» HY(X,Z) — HS(X,Z/m) — HSW (X, Z) — -+ . (4)
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and

Consequently, H5(X,Z)g = HS(X, Q) if Suslin-homology is finitely generated.
If A is a ring, then Hj(X, A) = Ext’y(CX (k) ® A, A), and we get a spectral
sequence

Ey' = Ext’ (H (X, A), A) = HET (X, A). (5)

In particular, there are perfect pairings
H} (X, Q) x H5(X,Q) = Q
HP(X,Z/m) x Hy(X,Z/m) — Z/m.
LEMMA 2.1 There are natural pairings
HL(X,7Z)/tor x HY (X,Z)/tor — Z

and
Hé’(Xv Z)tor X HzS—I(Xv Z)tor — Q/Z

Proof. The spectral sequence (5) gives a short exact sequence
0 — Ext'(H? |(X,Z2),Z) — Hy(X,Z) — Hom(H? (X, Z),Z) — 0.  (6)

The resulting map Hy(X,Z)/tor - Hom(H?(X,Z),Z) induces the first pair-
ing. Since Hom(H?(X,Z),Z) is torsion free, we obtain the map
HY(X,Z)or — Ext'(H? (X, Z),Z) —
Ext'(HZ (X, Z)tor, Z) < Hom(H; (X, Z)tor, Q/Z)

?

for the second pairing. O

2.2  COMPARISON TO MOTIVIC COHOMOLOGY

Recall that in the category DM, of bounded above complexes of homotopy
invariant Nisnevich sheaves with transfers, the motive M (X) of X is the com-
plex of presheaves with transfers CX. Since a field has no higher Nisnevich
cohomology, taking global sections over k£ induces a canonical map

Hom - (M (X), Ali]) = Hompas- (an) (CF (), Ali]),

hence a natural map
Hy (X, A) = Hs(X, A). (7)
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If X is a schene over L D k, then even though the cohomology groups do not
depend on the base field, the map does. For example, if L/k is an extension of
degree d, then the diagram of groups isomorphic to Z,

HY,(Speck,Z) ——— H(Speck,Z)

H [

HY,(Spec L,Z) —— H2(Spec L,Z)

shows that the lower horizontal map is multiplication by d. We will see below
that conjecturally (7) is a map between finitely generated groups which is
rationally an isomorphism, and one might ask if its Euler characteristic has
any interpretation.

3 THE MOD p SUSLIN HOMOLOGY IN CHARACTERISTIC p

We examine the p-part of Suslin homology in characteristic p. We assume
that k is perfect and resolution of singularities exists over k in order to obtain
stronger results. We first give an auxiliary result on motivic cohomology with
compact support:

PROPOSITION 3.1 Let d =dim X.

a) We have H{(X,Z/p"(n)) = 0 for n > d.

b) If k is algebraically closed, then H(X,Z/p"(d)) is finite, H:(X, Qp/Zy(d))
is of cofinite type, and the groups vanish unless d <1 < 2d.

Proof. By induction on the dimension and the localization sequence, the state-
ment for X and a dense open subset of X are equivalent. Hence replacing X by
a smooth subscheme and then by a smooth and proper model, we can assume
that X is smooth and proper. Then a) follows from [8]. If k is algebraically
closed, then

H'(X,Z/p(d)) = H'™ (X nis,v*) 2 H'™(Xeg, v7),

by [8] and [13]. That the latter group is finite and of cofinite type, respectively,
can be derived from [16, Thm.1.11], and it vanishes outside of the given range
by reasons of cohomological dimension. O

THEOREM 3.2 Let X be separated and of finite type over k.

a) The groups H;(X,Z/p"(n)) vanish for all n < 0.

b) If k is algebraically closed, then the groups HY (X, Z,/p") are finite, the groups
H?(X,Q,/Zy) are of cofinite type, and both vanish unless 0 < i < d.

Proof. If X is smooth, then H;(X,Z/p"(n)) = H*~(X,Z/p"(d — n)) and we
conclude by the Proposition. In general, we can assume by (2) and induction
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on the number of irreducible components that X is integral. Proceeding
by induction on the dimension, we choose a resolution of singularities X’ of
X, let Z be the closed subscheme of X where the map X’ — X is not an
isomorphism, and let Z’ = Z xx X’. Then we conclude by the sequence (2).
O

ExAMPLE. If X’ is the blow up of a smooth scheme X in a smooth sub-
scheme Z, then the strict transform Z/ = X’ x x Z is a projective bundle over
Z, hence by the projective bundle formula H?(Z,Z/p") = H?(Z',Z/p") and
HP (X,Z/p") = HY (X', Z/p"). More generally, we have

PROPOSITION 3.3 Assume X has a desingularization p : X' — X which is
an isomorphism outside of the dense open subset U. Then HP (U,Z/p") =
HP (X,Z/p"). In particular, the p-part of Suslin homology is a birational in-
variant.

The hypothesis is satisfied if X is smooth, or if U contains all singular points
of X and a resolution of singularities exists which is an isomorphism outside of
the singular points.

Proof. Tf X is smooth, then this follows from Proposition 3.1a) and the local-
ization sequence (3). In general, let Z be the set of points where p is not an
isomorphism, and consider the cartesian diagram

A U’ X'
I
Z U X.

Comparing long exact sequence (2) of the left and outer squares,

= H(Z'\Z/p") —— H{(U',Z/p") ® H(Z,Z/p") —— H}(U,Z/p")

| H l

= HY(Z'\Z/p") —— HP(X',Z/p") & H}(Z,Z/p") —— H(X,Z/p") —

we see that HP(U',Z/p") = H(X',Z/p") implies HP (U, Z/p") =
HP (X, Z/p"). o

EXAMPLE. If X is a node, then the blow-up sequence gives HZ(X,Z/p") =
HP (k,Z/p")® H?(k,Z/p"), which is Z/p" for i = 0,1 and vanishes otherwise.
Reid constructed a normal surface with a singular point whose blow-up is a
node, showing that the p-part of Suslin homology is not a birational invariant
for normal schemes.

COROLLARY 3.4 The higher Chow groups CHy(X,i,Z/p") and the logarithmic
de Rham-Witt cohomology groups H'(Xei,ve), for d = dim X, are birational
moariants.
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Proof. Suslin homology agrees with higher Chow groups for proper X, and
with motivic cohomology for smooth and proper X. O

Note that integrally CHy(X) is a birational invariant, but the higher Chow
groups C'Hy(X, 1) are generally not.

Suslin and Voevodsky [22, Thm.3.1] show that for a smooth compactification
X of the smooth curve X, Hg (X, Z) is isomorphic to the relative Picard group
Pic(X,Y) and that all higher Suslin homology groups vanish. Proposition 3.3
implies that the kernel and cokernel of Pic(X,Y) — Pic(X) are uniquely p-
divisible. Given U with compactification j : U — X, the normalization X~ of
X in U is the affine bundle defined by the integral closure of Ox in 7,.Opy. We
call X normal in U if X~ — X is an isomorphism.

PROPOSITION 3.5 If X s normal in the curve U, then HP(U,Z/p) =
HY (X, Z/p).

Proof. This follows by applying the argument of Proposition 3.3 to X’ the
normalization of X, Z the closed subset where X’ — X is not an isomorphism,
7' =X"xx Zand U = X' xx U. Since X is normal in U, we have Z C U
and Z' CU'. O

3.1 THE ALBANESE MAP

The following application was pointed out to us by N.Otsubo. Let X be a
smooth connected quasi-projective variety over an algeraically closed field k of
characteristic p. Then Spiess and Szamuely defined in [20] an albanese map

albx : Hy (X,7)° — Albx (k)

from the degree-0-part of Suslin homology to the k-valued points of the Al-
banese variety in the sense of Serre. They proved that if X is a dense open
subscheme in a smooth projective scheme over k, then albx induces an isomor-
phism of the prime-to-p-torsion subgroups. We can remove the last hypothesis:

THEOREM 3.6 Assuming resolution of singularities, the map albx induces an
isomorphism on torsion groups for any smooth, connected, quasi-projective va-
riety over an algebraically closed field.

Proof. In view of the result of Spiess and Szamuely, it suffices to consider
the p-primary groups. Let T be a smooth and projective model of X. Since
both sides are covariantly functorial and albx is functorial by construction, we
obtain a commutative diagram

HS(X,7)° X Albx (k)

| !

HS(T,7)° —*T5 Alby(k)
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The lower map is an isomorphism on torsion subgroups by Milne [15]. To show
that the left vertical map is an isomorphism, consider the map of coefficient
sequences

H?(X,Z) ® Qp/Z, —— H{Y(X,Q,/Z,) — pHF(X,Z) —— 0

l l l

H?(T,Z) ® Qp/Z, — H{(T,Q,/Z,) —— ,H(T,Z) —— 0

The right vertical map is an isomorphism because the middle map
vertical map is an isomorphism by Proposition 3.3, and because
HY(T,7) ® Q,/Z, = CHy(T,1) ® Q,/Z, vanishes by [6, Thm.6.1]. Fi-
nally, the map Albx(k) — Albr(k) is an isomorphism on p-torsion groups
because by Serre’s description [18], the two Albanese varieties differ by a torus,
which does not have any p-torsion k-rational points in characteristic p, O

4  (GALOIS PROPERTIES

Suslin homology is covariant, i.e. a separated map f : X — Y of finite type
induces a map f, : Corg(T,X) — Cori(T,Y) by sending a closed irreducible
subscheme Z of T' x X, finite over T, to the subscheme [k(Z) : k(f(Z))] - f(2)
(note that f(Z) is closed in T x Y and finite over T'). On the other hand,
Suslin homology is contravariant for finite flat maps f : X — Y, because f
induces a map f* : Corg(T,Y) — Corg(T, X) by composition with the graph
of f in Corg(Y, X) (note that the graph is a universal relative cycle in the
sense of [23]). We examine the properties of Suslin homology under change of
base-fields.

LEMMA 4.1 Let L/k be a finite extension of fields, X a scheme over k and'Y
a scheme over L. Then Corr (Y, Xr) = Corr(Y, X) and if X is smooth, then
Corp(X1,Y) = Corg(X,Y). In particular, Suslin homology does not depend
on the base field.

Proof. The first statement follows because Y xp X;, =Y x; X. The second
statement follows because the map X; — X is finite and separated, hence a
closed subscheme of X X1 Y = X XY is finite and surjective over X, if and
only if it is finite and surjective over X. O

Given a scheme over k, the graph of the projection X; — X in X x X gives
elements 'y € Corg (X, X1) and I'y € Cory(Xp, X).
4.1 COVARIANCE

LEMMA 4.2 a) If X and Y are separated schemes of finite type over k, then
the two maps
COI“L(XL,YL) — COI"k(XV7 Y)
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induced by composition and precomposition, respectively, withT% and T x agree.
Both maps send a generator Z C X X, Y =2 X X YL to its image in X XY
with multiplicity [k(Z) : k(f(2))], a divisor of [L : k].

b) If F/k is an infinite algebraic extension, then limy, ), Corp (Xr,Yr) = 0.

Proof. The first part is easy. If Z is of finite type over k, then k(Z) is a finitely
generated field extension of k. For every component Z; of Zp, we obtain a
map F' — F ®; k(Z) — k(Z;), and since F is not finitely generated over k,
neither is k(Z;). Hence going up the tower of finite extensions L/k in F, the
degree of [k(Wr) : k(Z)], for Wi the component of Zj, corresponding to Z;,
goes to infinity. O

4.2 CONTRAVARIANCE

LEMMA 4.3 a) If X and Y are schemes over k, then the two maps
COI‘k(X, Y) — COI‘L(XL, YL)

induced by composition and precomposition, respectively with T'y and T agree.
Both maps send a generator Z C X x Y to the cycle associated to Zy C
XX, Yy & X%, Y. If L]k is separable, this is a sum of the integral subschemes
lying over Z with multiplicity one. If L/k is Galois with group G, then the maps
induce an isomorphism

COI‘k(X, Y) = COI‘L(XL,YL)G.

b) Varying L, Corr(Xy,Yr) forms an etale sheaf on Speck with stalk M =
colimy, Corr, (X, Yr) = Corg (X, Yy), where L runs through the finite exten-

sions of k in a separable algebraic closure k of k. In particular, Corp (Xr,Yy) &
MGal(l}/L)'

Proof. Again, the first part is easy. If L/k is separable, Zj is finite and
etale over Z, hence Z; = ) . Z;, a finite sum of the integral cycles ly-
ing over Z with multiplicity one each. If L/k is moreover Galois, then
Cory(X,Y) = Corp (X1, Y7)¢ and Corg(Xp,Y;) = colimy, s, Cory, (X, Yz) by
EGA IV Thm. 8.10.5. O

The proposition suggests to work with the complex CX of etale sheaves on
Spec k given by

CX(L) := Corp (A%, X1) = Corg (A%, X).

COROLLARY 4.4 If k is a separable algebraic closure of k, then HP (X, A) =
colimy, /p, HP (Xr,A), and there is a spectral sequence

5" =l (X, 4) = H5™ (X, 4)
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The direct and inverse system run through finite separable extensions L/k, and
the maps in the systems are induced by contravariant functoriality of Suslin
homology for finite flat maps.

Proof. This follows from the quasi-isomorphisms

RHomay, (CX (k), Z) = R Homa, (colim CX(L),Z) = Rlim RHomay,(CX (L), Z).

4.3 COINVARIANTS

If G, is the absolute Galois group of k, then Corg(X,Y)q, can be identified
with Cory(X,Y’) by associating orbits of points of X xj Y with their image in
X X1 Y. However, this identification is neither compatible with covariant nor
with contravariant functoriality, and in particular not with the differentials in
the complex CX (k). But the obstruction is torsion, and we can remedy this

problem by tensoring with Q: Define an isomorphism
T (COI‘,}(X, Y)Q)Gk — Cork(X, Y)Q.

as follows. A generator 1; corresponding to the closed irreducible subscheme
Z C X xY is sent to gizlz, where Z is the image of Z in X x Y and g the

number of irreducible components of Z x, k, i.e. gz is the size of the Galois
orbit of Z.

LEMMA 4.5 The isomorphism 7 is functorial in both variables, hence it induces
an isomorphism of complezes

(CX (ko) = Cf (K)o

Proof. This can be proved by explicit calculation. We give an alternate proof.
Consider the composition

Cori(X,Y) — COI“,;(X, Y)Gk — COI",;(X, Y)Gk 5 Cork(X,Y)q.
The middle map is induced by the identity, and is multiplication by gz on the
component corresponding to Z. All maps are isomorphisms upon tensoring

with Q. The first map, the second map, and the composition are functorial,
hence so is 7. O

5 (GALOIS DESCENT

Let k be the algebraic closure of k with Galois group G, and let A be a con-
tinuous Gg-module. Then CX (k) ® A is a complex of continuous G-modules,
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and if k£ has finite cohomological dimension we define Galois-Suslin homology
to be
HE9(X,A) = H'RT(Gy, CX (k) ® A).

By construction, there is a spectral sequence
EZ, = H*(Gy, HY (X, A)) = HE5(X, A).

The case X = Spec k shows that Suslin homology does not agree with Galois-
Suslin homology, i.e. Suslin homology does not have Galois descent. We define
Galois-Suslin cohomology to be

HgS (X, A) = EXtin (C:( (E)a A). (8)

This agrees with the old definition if k is algebraically closed. Let 7. be
the functor from Gji-modules to continuous Gi-modules which sends M to
colimy, MY~ where L runs through the finite extensions of k. It is easy to see
that R'7, M = colimy H*(H, M), with H running through the finite quotients
of Gk

LEMMA 5.1 We have Hig(X,A) = H'RUGyR7. Homay(CX (k), A). In par-
ticular, there is a spectral sequence

E3' = H*(Gy, R'1. Homay, (CX (k), A)) = HEH(X, A). (9)

Proof. This is [17, Ex. 0.8]. Since CX (k) is a complex of free Z-modules,
Homap(C (k), —) is exact and preserves injectives. Hence the derived functor
of 7. Homay,(CX (k), —) is R, applied to Homay,(CX (k), —). O

LEMMA 5.2 For any abelian group A, the natural inclusion CX(k)®@ A —
(CX(k) ® A)%* is an isomorphism.

Proof. Let Z be a cycle corresponding to a generator of C, (k). If Z ®y k is
the union of g irreducible components, then the corresponding summand of
C.(k) is a free abelian group of rank g on which the Galois group permutes
the summands transitively. The claim is now easy to verify. O

ProrosiTiON 5.3 We have
HES(X,Q) = HY (X, Q)
Hgg(X,Q) = Hy(X, Q).
Proof. By the Lemma, HY(X,Q) = H;(CX (k) ® Q) = H;((CX (k) ® Q)C*).

But the latter agrees with HiGS (X,Q) because higher Galois cohomology
is torsion. Similarly, we have R‘r, Hom(C{X(k),Q) = 0 for ¢ > 0, and
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H*(Gg, 7« Hom(CX (k),Q)) = 0 for s > 0. Hence H.4(X,Q) is isomorphic
to the ¢th cohomology of

Homg, (C{X (k), Q) = Homap, (CX (k)g,, Q) = Homap, (CX (k), Q).

The latter equality follows with Lemma 4.5. a

THEOREM 5.4 If m is invertible in k and A is a finitely generated m-torsion
Gr-module, then

HéS(Xa A) = Hét(Xa A)

Proof. This follows with the argument of Suslin-Voevodsky [22]. Indeed, let
f : (Sch/k), — Eti be the canonical map from the large site with the h-
topology of k£ to the small etale site of k. Clearly f.f*F = F, and the proof
of Thm.4.5 in loc.cit. shows that the cokernel of the injection f*f,F — F is
uniquely m-divisible, for any homotopy invariant presheaf with transfers (like,
for example, CX : U ~ Corg (U x A, X)). Hence

Excty, (Fy, f*A) 2 Exti, (f* f.Fy . f*A) = Bxty,, (fuFy, A) = Extg, (F(k), A).

Then the argument of section 7 in loc.cit. together with Theorem 6.7 can be
descended from the algebraic closure of k£ to k. O

Duality results for the Galois cohomology of a field k lead via theorem 5.4 to
duality results between Galois-Suslin homology and cohomology over k.

THEOREM 5.5 Let k be a finite field, A a finite Gi-module, and A* =
Hom(A,Q/Z). Then there is a perfect pairing of finite groups

HE5(X, A) x Hgg(X, AY) = Q/Z.
Proof. According to [17, Example 1.10] we have
Extgy, (M,Q/Z) = Extg (M, Z) = H"(Gy, M)*

for every finite Gg-module M, and the same holds for any torsion module by
writing it as a colimit of finite modules. Hence

Extg, (C (k), Hom(A,Q/Z)) = Extg, (CX (k) ® A,Q/Z) =
H'™"(Gy, CX (k) ® A)* = H5 (X, A)".

The case of non-torsion sheaves is discussed below.
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THEOREM 5.6 Let k be a local field with finite residue field and separable clo-
sure k*. For a finite Gx-module A let AP = Hom(A, (k%)*). Then we have

isomorphisms

Proof. According to [17, Thm.2.1] we have
Extg, (M, (k*)) = H* (G, M)*

for every finite Gg-module M. This implies the same statement for torsion
modules, and the rest of the proof is the same as above. a

6 FINITE BASE FIELDS

From now on we fix a finite field IF, with algebraic closure Fq. To obtain the
following results, we assume resolution of singularities. This is needed to use
the sequences (2) and (3) to reduce to the smooth and projective case on the
one hand, and the proof of Jannsen-Saito [11] of the Kato conjecture on the
other hand (however, Kerz and Saito announced a proof of the prime to p-part
of the Kato conjecture which does not require resolution of singularities). The
critical reader is invited to view the following results as conjectures which are
theorems in dimension at most 3.

We first present results on finite generation in the spirit of [11] and [7].

THEOREM 6.1 For any X/F, and any integer m, the groups HY (X,Z/m) and
HL(X,Z/m) are finitely generated.

Proof. Tt suffices to consider the case of homology. If X is smooth and proper
of dimension d, then HF(X,Z/m) = CHy(X,i,Z/m) = H2¥1(X,Z/m(d)),
and the result follows from work of Jannsen-Saito [11]. The usual devisage
then shows that HJ(X,Z/m(d)) is finite for all X and d > dim X, hence
H?(X,Z/m) is finite for smooth X. Finally, one proceeds by induction on the
dimension of X with the blow-up long-exact sequence to reduce to the case X
smooth. O

6.1 RATIONAL SUSLIN-HOMOLOGY
We have the following unconditional result:

THEOREM 6.2 For every connected X, the map H5 (X,Q) — Hy (F,, Q) = Q
18 an isomorphism.

Proof. By induction on the number of irreducible components and (2) we can
first assume that X is irreducible and then reduce to the situation where X
is smooth. In this case, we use (3) and the following Proposition to reduce to
the smooth and proper case, where H§ (X,Q) = CHo(X)g =2 CHy(F,)g. O
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PROPOSITION 6.3 Ifn > dim X, then H:(X,Q(n)) =0 for i > n+ dim X.

Proof. By induction on the dimension and the localization sequence for motivic
cohomology with compact support one sees that the statement for X and a
dense open subscheme of X are equivalent. Hence we can assume that X is
smooth and proper of dimension d. Comparing to higher Chow groups, one
sees that this vanishes for ¢ > d + n for dimension (of cycles) reasons. For
1 = d + n, we obtain from the niveau spectral sequence a surjection

P Hy k(@) Qn — d)) —» Hy"(X,Q(n)).

X(0)

But the summands vanish for n > d because higher Milnor K-theory of finite
fields is torsion. O

By definition, the groups H;(X,Q(n)) vanish for i < n. We will consider the
following conjecture P, of [5]:

CONJECTURE P,,: For all smooth and projective schemes X owver the finite field
F,, the groups H;(X,Q(n)) vanish for i # 2n.

This is a special case of Parshin’s conjecture: If X is smooth and projective of
dimension d, then

Hi(X,Q(n)) = H2 (X, Q(d — n)) = K;_g, (X))

and, according to Parshin’s conjecture, the latter group vanishes for i # 2n.
By the projective bundle formula, P, implies P, _.

PROPOSITION 6.4 a) Let U be a curve. Then HY(U,Q) = HY (X, Q) for any
X normal in U.

b) Assume conjecture P_y. Then H;(X,Q(n)) =0 for all X and n < 0, and
if X has a desingularization p : X' — X which is an isomorphism outside of
the dense open subset U, then HY(U,Q) = HP(X,Q). In particular, Suslin
homology and higher Chow groups of weight 0 are birational invariant.

¢) Under congecture Py, the groups HiS(X, Q) are finite dimensional and vanish
unless 0 <4 < d.

d) Congjecture Py is equivalent to the vanishing of H? (X, Q) for all i # 0 and
all smooth X .

Proof. The argument is the same as in Theorem 3.2. To prove b), we have to
show that H:(X,Q(n)) =0 for n > d = dim X under P_1, and for c¢) we have
to show that H!(X,Q(d)) is finite dimensional and vanishes unless d < i < 2d
under FPy. By induction on the dimension and the localization sequence we
can assume that X is smooth and projective. In this case, the statement is
Conjecture P_; and Py, respectively, plus the fact that Hg (X, Q) = CHy(X)o
is a finite dimensional vector space. The final statement follows from the exact
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sequence (3) and the vanishing of H:(X,Q(n)) = 0 for n > d = dim X under
P_. O

PROPOSITION 6.5 Conjecture Py holds if and only if the map Hi;(X,Q) —
HL(X,Q) of (7) is an isomorphism for all X/F, and i.

Proof. The second statement implies the first, because if the map is an iso-
morphism, then H5(X,Q) = 0 for i # 0 and X smooth and proper, and hence
so is the dual Hls (X,Q). To show that Py implies the second statement, first
note that because the map is compatible with long exact blow-up sequences,
we can by induction on the dimension assume that X is smooth of dimension
d. In this case, motivic cohomology vanishes above degree 0, and the same
is true for Suslin cohomology in view of Proposition 6.4d). To show that for
connected X the map (7) is an isomorphism of Q in degree zero, we consider
the commutative diagram induced by the structure map

Hy (Fy, Q) —— H5(Fq, Q)

! l

Hp (X, Q) —— H(X,Q)

This reduces the problem to the case X = SpecF,, where it can be directly
verified. O

6.2 INTEGRAL COEFFICIENTS

Combining the torsion results [11] with the rational results, we obtain the
following

PROPOSITION 6.6 Conjecture Py is equivalent to the finite generation of
HP (X,Z) for all X/F,.

Proof. If X is smooth and proper, then according to the main theorem of
Jannsen-Saito [11], the groups H? (X,Q/Z) = CHy(X,i,Q/Z) are isomorphic
to etale homology, and hence finite for ¢ > 0 by the Weil-conjectures. Hence
finite generation of H(X,Z) implies that H (X, Q) = 0 for i > 0.
Conversely, we can by induction on the dimension assume that X is smooth
and has a smooth and proper model. Expressing Suslin homology of smooth
schemes in terms of motivic cohomology with compact support and again
using induction, it suffices to show that Hi,(X,Z(n)) is finitely generated for
smooth and proper X and n > dim X. Using the projective bundle formula
we can assume that n = dim X, and then the statement follows because
Hi;(X,Z(n)) = CHy(X,2n—1) is finitely generated according to [7, Thm 1.1].
O
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Recall the pairings of Lemma 2.1. We call them perfect if they identify one
group with the dual of the other group. In the torsion case, this implies that
the groups are finite, but in the free case this is not true: For example, &;Z
and [[; Z are in perfect duality.

PROPOSITION 6.7 Let X be a separated scheme of finite type over a finite field.
Then the following statements are equivalent:

a) The groups HY (X,7) are finitely generated for all i.
b) The groups H5(X,Z) are finitely generated for all i.
¢) The groups H5(X,Z) are countable for all i.

d) The pairings of Lemma 2.1 are perfect for all i.

Proof. a) = b) = ¢) are clear, and c¢) = a) follows from [9, Prop.3F.12], which
states that if A is not finitely generated, then either Hom(A, Z) or Ext(A,Z)
is uncountable.

Going through the proof of Lemma 2.1 it is easy to see that a) im-
plies d). Conversely, if the pairing is perfect, then o, H; (X,Z) is finite.
Let A = H{(X,Z)/tor and fix a prime [. Then A/l is a quotient of
Hi(X,Z)/l € HL(X,Z/1), and which is finite by Theorem 6.1. Choose lifts
b; € A of a basis of A/l and let B be the finitely generated free abelian
subgroup of A generated by the b;. By construction, A/B is I-divisible, hence
H?(X,Z)/tor = Hom(A,Z) C Hom(B,Z) is finitely generated. O

6.3 THE ALGEBRAICALLY CLOSURE OF A FINITE FIELD

Suslin homology has properties similar to a Weil-cohomology theory. Let X3
be separated and of finite type over Fy, X;, = X Xp, Fgn and X = Xy xp, F,.
From Corollary 4.4, we obtain a short exact sequence

0 — lim' H5MY (X, Z) — HY(X,Z) — lim HS(X,,, Z) — 0.

The outer terms can be calculated with the 6-term lim-lim*-sequence associated
to (6). The theorem of Suslin and Voevodsky implies that

lim H(X,Z/1") = H. (X, 7))
for I # p = charF,. For X is proper and [ = p, we get the same result from [6]
HY(X, 2/p") = Hom(CHo(X, 1, Z/p"), B/p") = Hi (X, 2/p").
We show that this is true integrally:
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PROPOSITION 6.8 Let X be a smooth and proper curve over the algebraic clo-
sure of a finite field k of characteristic p. Then the non-vanishing cohomology
groups are

Z i=0
Hy(X,Z) = { lim, Homgs (ppr, Pic X) x [], i Pic X (=1) i=1
[Tz Zi(—1) i=2.

Here Homgg denotes homomorphisms of group schemes.

Proof. By properness and smoothness we have

PicX ¢=0;
HY(X,Z) = H2 Y(X,Z(1)) = { kX i=1;
0 i#0,1

Now
Ext!(k*,Z) = Hom(colim fi,,, Q/7Z) = I IZ -1
( ) ( 7S pm, Q/Z) 1(=1)

and since Pic X is finitely generated by torsion,
Ext'(Pic X, Z) = Hom(colim ,, Pic X, Q/Z) =
m
lim Homeg s (m Pic X, Z/m) = lim Homg s (ftm, m Pic X)

by the Weil-pairing. O

PROPOSITION 6.9 Let X be smooth, projective and connected over the algebraic
closure of a finite field. Assuming conjecture Py, we have
Z i=0

HL(X,7) = _
5(%.2) {Hlﬂzxx,zz) i>1

In particular, the l-adic completion of HY(X,Z) is l-adic cohomology
H (X, Zy) for all .
Proof. Let d = dim X. By properness and smoothness we have

HP(X,Z) = Hyf (X, Z(d)).

Under hypothesis Py, the groups Hf (X,Z) are torsion for i > 0, and
Hy (X,7) = CHy(X) is the product of a finitely generated group and a torsion
group. Hence for ¢ > 1 we get by (6) that
Hi(X,Z) = Ext' (H;1(X, 2), ) & Hom(H1 (X, Z)ior, Q/Z)
=~ Hom(Ha " (X, Z(d))sor, Q/Z) = Hom(HZ (X, Q/Z(d)), Q/Z)
=~ Hom(colim HZ™"(X,Z/m(d)), Q/Z) = lim Hom(H2*"* (X, Z/m(d)), Z/m).
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By Poincare-duality, the latter agrees with lim HY (X, Z/m) =[], H: (X, Zy).
O

7 ARITHMETIC HOMOLOGY AND COHOMOLOGY

We recall some definitions and results from [3]. Let X be separated and of
finite type over a finite field I, X=X XF, IF‘q and G be the Weil-group
of Fg. Let v : T¢ — T4 be the functor from the category of G-modules to
the category of continuous G = Gal(FF,)-modules which associated to M the
module v, = colim,, M™C, where the index set is ordered by divisibility. It
is easy to see that the forgetful functor is a left adjoint of ~., hence ~, is
left exact and preserves limits. The derived functors 4% vanish for i > 1,
and v'M = R'y.M = colim M,,q, where the transition maps are given by
Mo — Mpng,r — ZSEmG/mnG sx. Consequently, a complex M of G-

modules gives rise to an exact triangle of continuous G-modules
VM — Ry M — I M [-1]. (10)

If M = ~+*N is the restriction of a continuous G-module, then v«M = N and
viM = N ® Q. In particular, Weil-etale cohomology and etale cohomology
of torsion sheaves agree. Note that the derived functors -, restricted to the
category of G-modules does not agree with the derived functors of 7, considered
in Lemma 5.1. Indeed, Ri7,M = colim; H (G, M) is the colimit of Galois
cohomology groups, whereas Ry, M = colim,, H(mG, M) is the colimit of
cohomology groups of the discrete group Z.

7.1 HomoLoGY

We define arithmetic homology with coefficients in the G-module A to be
H (X, A) := Tor? (CX (k), A).
A concrete representative is the double complex
CX(k) @ A% 0¥ (k) ® A,
with the left and right term in homological degrees one and zero, respectively,

and with the Frobenius endomorphism ¢ acting diagonally. We obtain short
exact sequences

0— HY(X,A)g — H*(X,A) — HY (X, A)Y = 0. (11)

LEMMA 7.1 The groups H¥(X,Z/m) are finite. In particular, H¥(X,Z)/m
and , H?(X,Z) are finite.
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Proof. The first statement follows from the short exact sequence (11). In-
deed, if m is prime to the characteristic, then we apply (1) together with finite
generation of etale cohomology, and if m is a power of the characteristic, we
apply Theorem 3.2 to obtain finiteness of the outer terms of (11). The final
statements follows from the long exact sequence

= HY(X,Z) X8 H™(X,Z) — H(X,Z/m) — -- -
O

If A is the restriction of aL_CAv'—rnodule7 then (10), applied to the complex of
continuous G-modules CX (k) ® A, gives upon taking Galois cohomology a long
exact sequence

S Hz’GS(Xa A) - H?Jrrl(Xa A) - ngq(X, A@) - Hzcisi(Xv A) —
With rational coefficients this sequence breaks up into isomorphisms
H(X,Q) = H(X,Q) ® HY (X, Q). (12)

7.2 COHOMOLOGY

In analogy to (8), we define arithmetic cohomology with coefficients in the
G-module A to be

H, (X, A) = Ext (CF (), A). (13)
Note the difference to the definition in [14], which does not give well-behaved

(i.e. finitely generated) groups for schemes which are not smooth and proper.
A concrete representative is the double complex

Hom(CX (k), A) =5 Hom(CX (k), A),

where the left and right hand term are in cohomological degrees zero and one,
respectively. There are short exact sequences

0— HE N X, A)g — HL(X,A) » HL(X, A)F = 0. (14)
The proof of Lemma 7.1 also shows

LEMMA 7.2 The groups H: (X,Z/m) are finite. In particular, ,,H: (X,Z)
and HE (X,Z)/m are finite.

LEMMA 7.3 For every G-module A, we have an isomorphism

H;r(Xa A) = H&S(Xv R’Y*’y*A)'
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Proof. Since M© = (v,M)%, arithmetic cohomology is the Galois cohomology
of the derived functor of v, Homay(CX (k), —) on the category of G-modules.
By Lemma 5.1, it suffices to show that this derived functor agrees with the
derived functor of 7. Homay,(CX(k),v.—) on the category of G-modules. But
given a continuous G-modules M and a G-module N, the inclusion

T« Homap (M, 7. N) C v, Homay (7" M, N)

induced by the inclusion v.N C N is an isomorphism. Indeed, if f : M — N
is H-invariant and m € M is fixed by H’, then f(m) is fixed by H N H', hence
f factors through ~,.N. O

COROLLARY 7.4 If A is a continuous G-module, then there is a long ezact
sequence

co= Hog(X,A) —» HL(X,A) — H54 (X, Ag) — HES (X, A) — -+

Proof. This follows from the Lemma by applying the long exact
Ext?, (CX (k), —)-sequence to (10). !

7.3 FINITE GENERATION AND DUALITY
LEMMA 7.5 There are natural pairings
H!.(X,Z)/tor x H*(X,Z)/tor — Z

and _
H;r(Xa Z)tor X Hfil(X, Z)tor — Q/Z

Proof. From the adjunction Homeg (M, Z) = Homay, (Mg, Z) and the fact that
L(—)g = R(—)%[~1], we obtain by deriving a quasi-isomorphism

RHomg (CX (k),Z) = RHomay (CX (k) ®L Z, 7).
Now we obtain the pairing as in Lemma 2.1 using the resulting spectral sequence

Exty, (H;" (X, Z),Z) = Hy™(X, Z).

PROPOSITION 7.6 For a given separated scheme X of finite type over F,, the
following statements are equivalent:

a) The groups HX(X,Z) are finitely generated.
b) The groups H:.(X,Z) are finitely generated.
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¢) The groups H..(X,Z) are countable.
d) The pairings of Lemma 7.5 are perfect.

Proof. This is proved exactly as Proposition 6.7, with Theorem 6.1 replaced
by Lemma 7.1. a

We need a Weil-version of motivic cohomology with compact support. We de-
fine H:(Xw,Z(n)) to be the ith cohomology of RT(G, RT.(X,Z(n))), where
the inner term is a complex defining motivic cohomology with compact sup-
port of X. We use this notation to distinguish it from arithmetic homol-
ogy with compact support considered in [4], which is the cohomology of
RT(G, RT.(Xet,Z(n))). However, if n > dim X, which is the case of most
importance for us, both theories agree.

Similar to (3) we obtain for a closed subscheme Z of a smooth scheme X of
pure dimension d with open complement U a long exact sequence

o= H(U,Z) — H*(X,Z) — HX ' Zyw  Z(d) — - . (15)

The shift by 1 in degrees occurs because arithmetic homology is defined using
homology of G, whereas cohomology with compact support is defined using
cohomology of G.

ProprOSITION 7.7 The following statements are equivalent:
a) Congecture Py.
b) The groups H¥ (X, Z) are finitely generated for all X.

Proof. a) = b): By induction on the dimension of X and the blow-up square,
we can assume that X is smooth of dimension d, where

H(X,Z) = HX 7 (Xw, Z(d)).

By localization for H}(Xw,Z(d)) and induction on the dimension we can re-
duce the question to X smooth and projective. In this case Z(d) has etale
hypercohomological descent over an algebraically closed field by [6], hence
HJ(Xw,Z(d)) agrees with the Weil-etale cohomology H3, (X, Z(d)) considered
in [3]. These groups are finitely generated for ¢ > 2d by [3, Thm.7.3,7.5].
By conjecture Py, and the isomorphism H¥, (X, Z(d))g = CHo(X,2d — i)g @
CHy(X,2d—i+1)g of Thm.7.1c) loc.cit., these groups are torsion for i < 2d, so
that the finite group H'™!(Xet, Q/Z(d)) surjects onto Hi, (X, Z(d)). Finally,
H2(X,7Z(d)) is an extension of the finitely generated group CHy(X)€ by the
finite group H201(Xer, Z(d))c = H*2(Xer, Q/Z(d))c:

b) = a) Consider the special case that X is smooth and projec-
tive.  Then as above, H(X,Z) = Hat™'"Y(X,Z(d)). If this group
is finitely generated, then we obtain from the coefficient sequence that
HXUX, Z(d)) ® Zy = lim H?*311( X, Z/17(d)), and the latter group is
torsion for 4 > 1 by the Weil-conjectures. Now use (12). O

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 223—-249



246 THOMAS GEISSER

THEOREM 7.8 For connected X, the map H3"(X,Z) — H§ (Fq,Z) = Z is an
isomorphism. In particular, we have HZ* (X, Z) = Z70(X),

Proof. The proof is similar to the proof of Theorem 6.2. Again we use induc-
tion on the dimension and the blow-up sequence to reduce to the situation
where X is irreducible and smooth. In this case, we can use (15) and the
following Proposition to reduce to the smooth and proper case, where we have
H¥(X,Z) = CHy(X)g = Z. O

PROPOSITION 7.9 Ifn > dim X, then H.(Xw,Z(n)) =0 fori > n+dim X.

Proof. By induction on the dimension and the localization sequence for motivic
cohomology with compact support one sees that the statement for X and a
dense open subscheme of X are equivalent. Hence we can assume that X is
smooth and proper of dimension d. In this case, H:(Xw,Z(n)) is an extension
of Hi,(X,Z(n))¢ by Hi;*(X,Z(n))g. These groups vanish for i — 1 > d +
n for dimension (of cycles) reasons. For i = d + n + 1, we have to show
that H{™(X,Z(n))q vanishes. From the niveau spectral sequence for motivic
cohomology we obtain a surjection

D Hir k(). Z(n — d) - Hy " (X, Z(n)).

The summands are isomorphic to KM ,(F,). If n > d + 1, then they vanish
because higher Milnor K-theory of the algebraical closure of a finite field

vanishes. If n = d + 1, then the summands are isomorphic to (F,)*, whose
coinvariants vanish. O

8 A KATO TYPE HOMOLOGY

We construct a homology theory measuring the difference between Suslin
homology and arithmetic homology. The cohomological theory can be de-
fined analogously. Kato-Suslin-homology HX %(X, A) with coefficients in the
G-module A is defined as the ith homology of the complex of coinvariants
(CX(k)® A)g. If A is trivial as a G-module, then Lemma 5.2 gives a short
exact sequence of double complexes

0 —— CX(k)®A —— CXB)® A —— 0
|
0 — s X))@ A —— (CXk)®A)g —— 0

and hence a long exact sequence

o HY(X,A) — HE (X, A) — HEY (X, A) — HY (X, A) = -
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By Theorem 7.8 we have HI¥(X,Z) = H3*(X,Z) = Z™(X). The following is
a generalization of the integral version [7] of Kato’s conjecture [12].

CONJECTURE 8.1 (Generalized integral Kato-conjecture) If X is smooth, then
HES(X,Z) =0 fori>0.

Equivalently, the canonical map H? (X, 7Z) = H. M1(X,Z) is an isomorphism for
all smooth X and all ¢ > 0, i.e. there are short exact sequences

0— HZ (X,Z)¢ — HY (X,Z) — H (X,Z)¢ — 0.
THEOREM 8.2 Conjecture 8.1 is equivalent to conjecture Fy.
Proof. If Conjecture 8.1 holds, then

HY(X,Q) = HY,(X,Q) = HY,(X,Q) & H(X,Q)

implies the vanishing of H(X,Q) for i > 0.

Conversely, we first claim that for smooth and proper Z, the canonical map
HY{Z,Z(n)) — H(Zw,Z(n)) is an isomorphism for all i if n > dim Z, and
for i < 2n if n = dim Z. Indeed, if n > dim Z then the cohomology of Z(n)
agrees with the etale hypercohomology of Z(n), see [6], hence satisfies Galois
descent. But according to (the proof of) Proposition 6.4b), these groups are
torsion groups, so that the derived funtors RI'Gy and RI'G agree.

Using localization for cohomology with compact support and induction on the
dimension, we get next that H'(Z,Z(n)) = Hi(Zw,Z(n)) for all i and all Z
with n > dim Z. Now choose a smooth and proper compactification C' of X.
Comparing the exact sequences (3) and (15), we see with the 5-Lemma that the
isomorphism HP(C,Z) = H27(C,Z(d)) — H,(C,Z) = H2"(Cw,Z(d))
for C implies the same isomorphism for X and i > 0. O

9 TAMELY RAMIFIED CLASS FIELD THEORY

We propose the following conjecture relating Weil-Suslin homology to class field
theory:

CONJECTURE 9.1 (Tame reciprocity) For any X separated and of finite type
over a finite field, there is a canonical injection to the tame abelianized funda-
mental group with dense image

H™(X,Z) — 7t (X)®.

Note that the group H?'(X,Z) is conjecturally finitely generated. At this
point, we do not have an explicit construction (associating elements in the
Galois groups to algebraic cycles) of the map. One might even hope that
H¥(X,7)° := ker(H (X, Z) — Z™X) is finitely generated and isomorphic to
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the abelianized geometric part of the tame fundamental group defined in SGA
3X86.

Under Conjecture 8.1, Hy (X,Z) = H(X,Z) for smooth X, and Conjecture
9.1 is a theorem of Schmidt-Spiess [19].

PROPOSITION 9.2 a) We have H¥ (X, Z)" = 7t (X)%(1). In particular, the
prime to p-part of Conjecture 9.1 holds if H" (X, 7Z) is finitely generated.

b) The analog statement holds for the p-part if X has a compactification T
which has a desingularization which is an isomorphism outside of X.

Proof. a) By Theorem 7.8, H3"(X,Z) contains no divisible subgroup. Hence if
[ # p, we have by Theorems 5.4 and 5.5

H¥ (X, Z)N = lim H¥ (X, Z/1") = lim HSS (X, Z/1")
= lim HY, (X, Z/I")* 2 74 (X)"™(0).
b) Under the above hypothesis, we can use the duality result of [6] for the
proper scheme 7" to get with Proposition 3.3
H¥(X,7) ® Z, = lim HS"® (X, Z,/p") = lim H§' (T, Z/p")
= lim Hyy (T, Z/p")* = m (7)™ (p) = 71 (X)™ (p).
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ABSTRACT. The u-invariant and the Hasse number u of a field F' of
characteristic not 2 are classical and important field invariants per-
taining to quadratic forms. They measure the suprema of dimensions
of anisotropic forms over F' that satisfy certain additional properties.
We prove new relations between these invariants and a new charac-
terization of fields with finite Hasse number (resp. finite u-invariant
for nonreal fields), the first one of its kind that uses intrinsic proper-
ties of quadratic forms and which, conjecturally, allows an ‘algebro-
geometric’ characterization of fields with finite Hasse number.
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1. INTRODUCTION

Throughout this paper, fields are assumed to be of characteristic different from
2 and quadratic forms over a field are always assumed to be finite-dimensional
and nondegenerate. The u-invariant of a field F' is one of the most important
field invariants pertaining to quadratic forms. The definition as introduced by
Elman and Lam [EL1] is as follows:

u(F) := sup{dim¢| ¢ is an anisotropic torsion form over F'} |

where ‘torsion’ means torsion when considered as an element in the Witt ring
W F. Note that over a formally real field (or real field for short) torsion forms
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are exactly the forms of total signature zero, whereas over a nonreal field, all
forms are torsion.

If F is a real field, for a form ¢ over F to be isotropic, it is clearly necessary for
© to be indefinite at each ordering of F, i.e., for ¢ to be totally indefinite or t.i.
for short. This leads to another field invariant, the Hasse number u defined as

u(F) := sup{dim ¢ | ¢ is an anisotropic t.i. form} .

One puts @(F) = 0 if there are no anisotropic t.i. forms over F. Clearly,
u(F) < u(F), with equality in the case of nonreal fields since being totally
indefinite is then an empty condition.

In the present paper, we focus on finiteness criteria for u and @ and on upper
bounds on u in terms of u for fields with finite w. To formulate these results,
we need to introduce further properties. We refer to [L3] for all undefined
terminology and basic facts about quadratic forms.

Recall that a quadratic form of type (1, —a1)®...® (1, —ay) (a; € F*) is called
an n-fold Pfister form, and we write (a1, ..., ay)) for short. P, F (resp. GP,F)
denotes the set of all isometry classes of n-fold Pfister forms (resp. of forms
similar to n-fold Pfister forms). A form ¢ is a Pfister neighbor if there exists
a Pfister form 7 and a € F* such that ¢ C am and dim¢ > %dim m. Pfister
forms are either hyperbolic or anisotropic, and if ¢ is a Pfister neighbor of a
Pfister form 7 then ¢ is anisotropic iff 7 is anisotropic. Recall that the n-fold
Pfister forms generate additively 1™ F', the n-th power of the fundamental ideal
IF of classes of even-dimensional forms in the Witt ring WF. The Arason-
Pfister Hauptsatz [AP], APH for short, states that if ¢ € I"F, then dim ¢ < 2"
implies that ¢ is hyperbolic, and dim ¢ = 2™ implies ¢ € GP, F.

Let F be a real field and let X denote its space of orderings. X is a compact
totally disconnected Hausdorff space with a subbasis of the topology given by
the clopen sets H(a) = {P € Xp|a >p 0}, a € F*. ¢ is called positive (resp.
negative) definite at P € Xp if sgnp(p) = dimp (resp. sgnp(p) = —dim ),
and indefinite at P if it is not definite at P. A totally positive definite (t.p.d.)
form is a form that is positive definite at each P € Xp.

If ¢ is a form over F, we denote by Dp(y) those elements in F™* represented by
¢, by Dp(n) (n € N) those elements in F* that can be written as a sum of n
squares, and we write Dr(00) = (J, ey Dr(n) for the nonzero sums of squares
in F. If F is nonreal then F* = Dp(00), and if F is real then Dp(c0) is the
set of all totally positive elements in F'.

The Pythagoras number p(F) of a field F' is the smallest n such that Dp(n) =
Dp(o00) if such an n exists, otherwise p(F) = oc.

If F' is real, then x € Dp(y) clearly implies that © >p 0 (resp. = <p 0) if ¢ is
positive (resp. negative) definite at P. If the converse also holds, i.e. if

Dr(p) = {ze€F*| x>p0(resp. x <p0)if pis
positive (resp. negative) definite at P}

then ¢ is called signature-universal (sgn-universal for short). Over a real field,
a form is universal (in the usual sense) if and only if it is t.i. and sgn-universal.
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One readily sees that if w(F) < oo then any form ¢ with dimy > u(F) is
sgn-universal.
The following properties of fields will be used repeatedly.

DEFINITION 1.1. (i) F is said to satisfy the strong approzimation property
SAP if given any disjoint closed subsets U,V of X there exists a € F*
such that U C H(a) and V C H(—a).

(ii) A form ¢ over a real field F' is said to have effective diagonalization
ED if it has a diagonalization (ai,...,a,) such that H(a;) C H(a;+1)
for 1 <i<n-—1. F is said to be ED if each form over F' has ED.

(iii) F is said to have property S if for every binary torsion form /3 over F'
one has Dp(8) N Dp(o0) # 0.

(iv) F is said to have property PN (n) for some n € N if each form of
dimension 2™ + 1 over F' is a Pfister neighbor.

Note that if F' is a nonreal field, i.e., F' has no orderings, then F* = Dp(c0)
and all forms over F' are torsion, so F' is SAP, ED and S;.

The paper is structured as follows. In §2 we give a new proof of the fact that
ED is equivalent to SAP plus S1, a result originally due to Prestel-Ware [PW].
In §3 we prove that for a field, having finite Hasse number is equivalent to
having finite u-invariant plus having property ED. This result is originally due
to Elman-Prestel [EP], but we give a proof that also allows us to derive various
estimates for @ in terms of u that are better than any previously known such
estimates. In §4, we prove that having finite Hasse number is equivalent to
having property PN (n) for some n > 2, in which case we give estimates on
@ in terms of n. Since property PN(2) is equivalent to F' being linked (see
Lemma 4.3), we will thus also recover as corollary a famous result on the u-
invariant and the Hasse number of linked fields due to Elman-Lam [EL2], [E]
(Corollary 4.12). We also explain how our results, conjecturally, provide an
‘algebro-geometric’ criterion for the finiteness of @ (resp. w in case of nonreal
fields).

ACKNOWLEDGMENT. I am grateful to the referee for various suggestions that
helped to streamline the paper considerably. The revised version of this paper
has been completed during a stay at Emory University. I thank Skip Garibaldi
and Emory University for their hospitality during that stay.

2. ED EQuUALS SAP pPLUS S5

The following theorem is due to Prestel-Ware [PW]. We give a new proof based
mainly on the study of binary forms.

THEOREM 2.1. F has ED if and only if F' has SAP and S;.
To prove this, we use alternative descriptions of the properties involved.

LEMMA 2.2. Let F be a real field.
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(i) F is SAP if and only if for all a,b € F* there exists c € F* such that
H(c) = H(a) N H(b) (or, equivalently, there exists d € F* such that
H(d)=H(a)UH(b)).

(ii) F is ED if and only if for all a,b € F*, there exist ¢,d € F* such
that {a,b) = (c,d) and H(c) = H(a) N H(b) (or, equivalently, H(d) =
H(a)UH()).

(iii) F has property S1 if and only if, for all a € F*, s € Dp(0), and
x € Dp((1,as)), there exists t € Dp(o0) such that tx € Dp((1,a)).

Proof. (i) This is well known, see, e.g., [L1, Prop.17.2].

(ii) The ‘only if’ is nothing else but ED for binary forms. As for the converse,
we use induction on the dimension n of forms. Forms of dimension < 2 have
ED by assumption. So let ¢ be a form of dimension n > 3. Then we can write
v ={a,...,a,) and we may assume that (as,...,a,) is already an ED. Write
(a1, a2) = (b1, be) with H(by) = H(a1)NH/(az) (so (b1,bs) is an ED of (a1, asz)).
Then ¢ 22 (by, by, as,...,a,). Now let {ca,...,c,) be an ED of (by,as,...,an).
Then one readily checks that (by,ca,...,c,) is an ED of ¢.

(iii) ‘if”: Let (u,v) = u(l, uv) be torsion. Then uv = —s with s € Dp(c0). Put
a = —s. Then (1,—1) = (1,as) which is hyperbolic and hence represents w.
But then, by assumption, there exists t € Dp(c0) such that tu is represented
by (1,a) = (1, —s) and hence t is represented by u(l, —s) = (u, v).

‘only if”: x € Dp((1,sa)) implies that there exists y € F* such that (1, sa) =
(z,y). Now the torsion form za(s, —1) represents some u € Dg(c0) by Sj.
Hence (sa, —a) = (zxu, —zus) and hence

<17 sa, 7a> = <1a Tu, *LL‘US> = <*a,l‘,y>

Thus, (1,a) = (x, zus, —zu,y) in WF, so z(1,us, —u, xy) is isotropic and there
exists v € Dp({1,us)) N Dp((u, —zy)). Note that us € Dp(o0), so v € Dp(0).

Hence, (1,us) = (v,vus) and (—u,zy) = (—v,vuzxy), and we get (1,a) =
x(vus, vuzry) = (zvus, vuy), thus 2t € Dp((1,a)) with ¢ := vus € Dp(c0). O

Proof of Theorem 2.1. ‘only if’: Clearly, ED implies SAP. Now let (a,b) be
any binary torsion form. Then sgnp({a,b)) = 0, so H(a) N H(b) = @, and by
ED, there exists ¢ € —Dp(c0) and d € Dp(o0) such that (a,b) = (c,d), in
particular, d is a totally positive element represented by (a,b) and we have
established S;.

‘if’: Let F' be SAP and S;. We will verify the alternative description of ED
from Lemma 2.2(ii). Let (a,b) be any binary form. By SAP, there exists
d' € F* such that H(a) U H(b) = H(d'). Then (a,b,—d'} is t.i., thus the form
© = {a,b,—d', —d'ab) = —d'({ad’,bd’)) has total signature zero and is therefore
torsion. Hence, there exists some n € F such that for o,, = (—1)®" 22 (1,1)®",
we have that o, ® (a,b,—d',—d'ab) € GP,42F is hyperbolic. But then
its Pfister neighbor o, ® {(a,b) L (—d') is isotropic. It follows that there
exist u,v € Dp(o,) C Dp(cx) such that d € Dp({ua,vd)), and hence
ad'v € Dp({1,abuv)). Now wv € Dp(c0), and by Lemma 2.2(iii), there ex-
ists w € Dp(00) such that ad'vw € Dp((1,ab)), i.e. d = duw € Dp({a,b)).
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In particular, there exists ¢ € F* such that (a,b) = (¢, d). Since uw € Dp(0),
we have H(d) = H(d') = H(a) U H(b) as required. O

3. RELATIONS BETWEEN THE HASSE NUMBER AND THE u-INVARIANT

In this section, we will only consider real fields since for nonreal fields v = w,
and most of the statements below are trivially true. It is quite possible for a
real field F' that w(F) is finite but w(F') is infinite. Elman-Prestel [EP, Th. 2.5]
gave the following necessary and sufficient criterion for the finiteness of u(F):

THEOREM 3.1. %(F) < oo if and only if u(F) < 0o and F has ED.

The main purpose of this section is to give a new and elementary proof of this
statement that in the case of ED-fields will allow us at the same time to derive
upper bounds for u in terms of u that considerably improve previous upper
bounds obtained by Elman-Prestel [EP, Prop. 2.7] and Hornix [Horl, Th. 3.9].
The following remark is well known and will be useful.

Remark 3.2. For any field F, if p(F) > 2" then u(F) > w(F) > 2"l In
particular, p(F) < u(F) < u(F).

ProrosiTiON 3.3. Suppose that F has ED and that there exists an n-
dimensional t.p.d. sgn-universal form p. Then

u(F) < g(u(F) +2) .

Proof. We may clearly assume that «(F') (and hence p(F)) is finite. The form
p(F) x (1) is t.p.d. and sgn-universal, so we may assume that n < p(F). If
n = 1 then F' is obviously pythagorean and u(F) = 0. Since F' has ED, any
t.i. form ¢ over F' contains a binary torsion form [ as a subform. But then
is isotropic as u(F') = 0, hence ¢ is isotropic. It follows that w(F) = 0 and the
above inequality is clearly satisfied. So we may assume that 2 <n < p(F) =p
and we have @(F) > u(F) > p > n by Remark 3.2.

It suffices to consider the case u(F) > w(F). Let ¢ be any anisotropic t.i.
form with dim ¢g > u(F'), and write dimpg =m =rn+k+ 1 with » > 1 and
0 <k <n-—1. Since F is ED and thus SAP, we may assume after scaling that
0 <sgnpyo <dimpg—2=rn+k—1 for all orderings P on F.

Let ¢1 = ao(wo L —p)an, where ag is chosen such that 0 < sgnp ¢ for all
orderings P.

If iy denotes the Witt index, we have iy (9o L —p) < n — 1, for otherwise
one could write @9 = p L 7 for some form 7. Since g is t.i. and since F' has
ED, this implies that there exists € Dp(0c0) such that —x is represented by
7. But then the form ¢q contains the subform p L (—z) which is isotropic as
p is t.p.d. and sgn-universal, clearly a contradiction. This implies that

dimgr > dimgg+n—2(n—1)=(r—-1)n+(k+1)+2.

Note also that sgnp (o L —p) = sgnp o — n for each ordering P. Hence, one
obtains
sgnp 1 <max{(r—1)n+k—1,n}
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for each ordering P. Note that if » > 2, then ¢ is again t.i. as 0 < sgnp 1 <
dim ¢ for all orderings P. Applying this procedure altogether r — 1 times, we
get a form ¢,_; which is anisotropic, t.i., and such that

dime,—1 >n+(k+1)+2(r—1),
0 <sgnpp,—1 <max{n+k — 1,n} for all orderings P.
We therefore have
dim ¢,_1 —sgnp @1 > min{2r, k + 2r — 1} .

Since dim ¢,_1 —sgnp @,_1 is even, this yields dim ¢, _1 —sgnp ¢,_1 > 27 for all
orderings P. By ED, the anisotropic form ¢,_; contains a torsion subform
of dimension > 2r. Hence u(F') > 2r and thus u(F)+2 > 2(r+1). On the other
hand, by assumption m = rn+k+1 < n(r+1). These two inequalities together

imply m < & (u(F) + 2). It follows readily that w(F) < & (u(F) + 2). O

Proof of Theorem 3.1. The ‘only if’ part is easy and left to the reader. As
for the ‘if” part, we have co > w(F) > p(F) by Lemma 3.2, and if we put
p = p(F) x (1), then Proposition 3.3 immediately yields u(F) < @(u(F) +
2) < 0. O

For a real field F, let m(F) be the smallest integer n > 1 such that there
exists an n-dimensional t.p.d. sgn-universal form, and m(F') = oo if there are
no t.p.d. sgn-universal forms (cf. [GV] where an analogous invariant m(F)
for anisotropic universal forms was introduced). If p(F) < oo, we have that
p(F) x (1) is sgn-universal. Hence m(F) < p(F). With this new invariant,
Proposition 3.3 immediately implies

COROLLARY 3.4. Suppose that u(F) < co. Then
m(F)

U(F) < (u(F) +2) .

Next, we give another bound which will lead to further improvements.

PROPOSITION 3.5. Suppose that u(F) < oo and that F has ED (or, equivalently,
that w(F) < o0). Let p= (1) L p' be a t.p.d. m-fold Pfister form, m > 1, such
that its pure part p’ is sgn-universal. Then

u(F) < 2™ 2(u(F) +6) .
If m =2 then w(F) < u(F) +4.

Proof. If m = 1, then dimp’ = 1 and the assumptions imply that F is
pythagorean, hence © = u = 0 and there is nothing to show. So we may assume
m > 2. Furthermore, if d is an integer such that 2¢ < p(F) = p < 291 —1, then
we may assume that m < d+1. For we have that (2941 —1) x (1) is the pure part
of (=1,...,—1) € Pyy1F and it is totally positive definite and sgn-universal.
We proceed similarly as before, but this time we put @ = u(F) = r2™ + k + 1
withr >0and 0 < kK <2™ — 1.

If 7 = 0 then we have & < 2. If 24 41 < p < 29*! — 1 then u > 2¢+1 > 2™
by Remark 3.2, and thus necessarily v = @ and there is nothing to show.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 251-265



ANISOTROPIC INDEFINITE QUADRATIC FORMS 257

Suppose that p = 2% so that in particular v > 2¢. Our previous bound yields
<29 u+2). fm=d+1, then 2¢71(u +2) < 2™ 2(u + 6) and there is
nothing to show. If m < d, then we have u = k +1 < 2™ < 24 < 4 and thus
u = u, again there is nothing to show. So we may assume that r > 1.
Let g be an anisotropic t.i. form of dimension u. As before, we may this time
assume that dimpg —2 =r2" 4+ k — 1 > sgnp o > 0 for all orderings P.
We claim that iw (w9 L —p) < 2™ — 2. Indeed, otherwise ¢y would contain
a subform p of dimension 2™ — 1 with p C p. Now it is well known that all
codimension 1 subforms of a Pfister form are similar to its pure part. Hence, ¢q
would contain a subform similar to p’, and since g is t.i. and by ED, ¢p would
contain a subform similar to p’ L (—z) for some z € Dp(c0). By assumption,
P L (—z) is isotropic, a contradiction.
Thus, we obtain as in the proof of the previous lemma an anisotropic t.i. form
(1 such that
dimepr, > (r—1)2"+k+14+4,
0 <sgnp ey <max{(r—1)2"+k—1,2"},
and reiterating this construction r — 1 times, we get an anisotropic t.i. form
@r—1 such that
dime,_ 1 >2"+k+14+4(r—-1),
0 <sgnpy,—1 <max{2™ + k —1,2"} for all orderings P.
This yields dim ¢, _1 —sgnp @1 > 4r—2 for all orderings P, and thus, by ED,
the existence of an anisotropic torsion subform ¢; of .1 with dim ¢; > 4r—2.
In particular, u + 6 > 4(r + 1). On the other hand, w < 2™(r + 1) and thus
u < 2™ 2 (u+6).
Now if m = 2, we have dimy,_1 > 4r+k+ 1 =dimpy and 0 < sgnp 1 <
max{4 + k — 1,4}. In particular, since all the forms ; are anisotropic and
t.i., it follows readily from the construction and the fact that w = 4r + k + 1
that dim pg = dimy; = ... = ¢,—1 = u. Note also that 0 < k < 3, so that by
repeating our construction one more time, we obtain an anisotropic t.i. form ¢,
such that dim ¢, = u and sgnp ¢, < 4 for all orderings P. Thus, ¢, contains
a torsion subform of dimension > @ — 4 and therefore u© < u + 4. O

PROPOSITION 3.6. Suppose that I}F =0, and that u(F) < oo and F has ED
(or, equivalently, that u(F) < oc). If there exists a t.p.d. sgn-universal binary
form p over F, then u(F) = u(F).

Proof. By [ELP, Th. H|, I} F = 0 implies that u = u(F) is even. By Propo-
sition 3.3, v < u + 2. So let us assume that v # u, i.e. uw = u + 2.
The proof of Proposition 3.3 then shows that there exists an anisotropic t.i.
form ¢ (which is nothing but the form ¢,_; in the proof) with dimy = @
and which contains a torsion subform ¢;, dimy; = dimp — 2 = u. Af-
ter scaling, we may assume that ¢; L (1) C ¢. Let d = diy¢;. Then
¢t L (1,—d) € I’F, and since sgnp¢; = 0 and sgnp¢; L (1,—d) € 4Z, it
follows that ¢, L (1,—d) € I?F. As dimp; L (1,—d) = u + 2, this form
must be isotropic. Thus, ¢ L (1) 2 ¢ L (d). Comparing discriminants and
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signatures, it follows that ¢ € IZF. So (1,—z) ® ¢ € I}F = 0 for all z € F*,
thus ¥ 2 2z which implies that ¢ is universal, hence the subform ¢ L (d) of
@ is isotropic, a contradiction. O

The following is an immediate consequence.

COROLLARY 3.7. Suppose that p(F) = 2 and u(F) < oo. If }F = 0 then
u(F) =u(F). In particular, if u(F) <6 or u(F) <8, then w(F) = u(F).

Remark 3.8. Let F be a real field with u(F') < co. Suppose that d is an integer
with 2¢ +1 < p < 2¢9+1 — 1. The Pfister form {—1,...,—1) € P; 1 F is t.p.d.
and its pure part is sgn-universal, so we can use Proposition 3.5 for m = d + 1.
For p=29+1,d>1, we get 2471 (u+6) — L(u+2) =29+ — Ly — 1. In this
case, Proposition 3.3 gives a better bound when v < 29+2 —4 (note that we will
have u > 29+1), the bounds are the same for u = 29+2 — 2. and for u > 29+2
Proposition 3.5 gives a sharper bound.
Summarizing our best bounds in the various cases, we obtain
(i) p(F) =1 if and only if u(F) = u(F) = 0.
(i) If p(F) = 2 then u(F) < w(F) + 2. If in addition I}F = 0 then
u(F) = u(F) = 2n for some integer n > 1.
(iii) If p(F) = 3 then u(F) < u(F) + 4.
(iv) If p(F) = 2™ then u(F) < 2™ Y (u(F) + 2).
(v) If p(F) = 2™+1 then u(F) < (2™ '+ 1) (u(F)+2) if u(F) < 2m+2 -2,
and u(F) < 2™ Y(u(F) +6) if u(F) > 2m+2 — 2.
(vi) If 2™ +2 < p(F) < 2mF! — 1, then u(F) < 2™ 1 (u(F) + 6).

Remark 3.9. It is difficult to say at this point how good our bounds really
are. In fact, we know extremely little about fields with w(F) < u(F) < oo.
The only values which could be realized so far are fields where u(F) = 2n and
u(F) = 2n+ 2 for any n > 2 (see [L2], [Hor2], [H3]), and fields with u(F) = 8
and u(F') = 12, see [H2, Cor. 6.4].

For the balance of this section, we finish with stating results about all possible
pairs of values for (p(F'),u(F)) for real fields, in particular real fields satisfying
SAP but not Sy or vice versa (such fields will always have & = c0). The con-
struction of such fields with prescribed values (p,u) uses Merkurjev’s method
of iterated function fields and is rather technical. We omit the proof and refer
the interested reader to [H4].

THEOREM 3.10. Let N be the set of pairs of integers (p,u) such that either
p=1landu =0 oru=2n>2" > p > 2 for some integers m and n. Let
N =N"U{(p,0); p=2 orp=oc}.

(i) If F is a real field, then (p(F),u(F)) € N.

(i) Let E be a real field and let (p,u) € N. Then there exists a real
field extension F/E such that F is non-SAP, F has property S1 and
(p(F),u(F)) = (p,u). In particular, u(F) = co.

(iii) If F is a real SAP field with u(F) = oo, then u(F) > 4 and
(p(F), u(F)) € N.
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(iv) Let E be a real field and let (p,u) € N with u > 4. Then there exists a
real field extension F/E such that F is SAP, F' does not have property
Sy and (p(F),u(F)) = (p,u). In particular, u(F) = co.

4. LINKAGE OF FIELDS AND THE PFISTER NEIGHBOR PROPERTY

The purpose of this section is to derive a criterion for the finiteness of the
Hasse number. Real fields with finite Hasse number are relatively scarce but
interesting nonetheless. But our results are just as valid for nonreal fields, we
thus get also a criterion for the finiteness of u for nonreal fields.

Recall that the field F' is said to have the Pfister neighbor propery PN (n), n >
0, if every form of dimension 2™ + 1 over F' is a Pfister neighbor. This property
is a somewhat stronger version of the notion of n-linkage whose definition we
now recall:

DEFINITION 4.1. Let n > 1 be an integer. A field F' is called n-linked if to any
n-fold Pfister forms m; and my over F there exist aj,a2 € F* and an (n — 1)-
fold Pfister form o such that m; & (a;) ® o, i = 1,2. F is called linked if F is
2-linked.

Remark 4.2. (i) Trivially, every field is 1-linked and satisfies PN (0) and PN (1).
(ii) Let n > 2. Every isotropic form of dimension 2™ +1 is a Pfister neighbor. In
fact, if dim ¢ = 2™ +1 and ¢ is isotropic, then ¢ = H 1 ¢ with dimy = 2™ —1.
Then ¢ L —¢ 27 € P41 F, where w denotes the hyperbolic (n+1)-fold Pfister
form. So in particular, if F' is nonreal and u(F) < 2", then F has property
PN(n)

LEMMA 4.3. Let n > 2.

(i) If F is n-linked then F is m-linked for all m > n and I}""2F = 0.

(ii) F is n-linked iff to each form ¢ € I™F there exists a form m € P, F
such that ¢ = m mod It F iff to each anisotropic ¢ € I"F there exist
T € Py_1F and an even-dimensional form o such that p £ 7 ® 0.

(iii) F has property PN (n) if and only if there exists to every form ¢ over
F a form v such that dimt < 2" if dim @ even (resp. dimyp < 2" —1
if dim ¢ odd) such that ¢ =1 mod I"T1F.

(iv) If F has property PN (n) then F is n-linked. In particular, I'™*F = 0.
Furthermore, F' is ED.

(v) F has property PN (2) iff F is linked.

Proof. (i) and (ii) are well known, see [EL2, § 2], [H1].
(iii) ‘only if’: If dimp < 2", then put ¢ = ¢. So suppose dime > 2™ + 1.
Write ¢ 29 L 7 with dim« = 2™ + 1. By PN(n), v is a Pfister neighbor and
there exists ¥’, dimy’ = 2™ — 1 such that ¢ L —¢' 27 € GP,+1F. Then, in
WF, we have

p=¢p—7n=1¢ Lrmod I"MF .
Now dim 4’ L 7 = dim ¢ — 2 and the result follows by an easy induction on the
dimension.
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‘if’: Let dim ¢ = 2" + 1. By assumption, there exists a form 1, dimy = 2" —1
(possibly after adding hyperbolic planes) such that ¢ L —1 € I"™1F. Then
dim(p L —¢) = 2! and thus ¢ L —¢ € GP,41F by APH, which implies
that ¢ is a Pfister neighbor.
(iv) To show that F is n-linked, let ¢ € I"F. By (iii), there exists ) such that
dim1) = 2" (possibly after adding hyperbolic planes) and ¢ = ¢ mod I"*1F.
But clearly ¢ € I™F, and thus ¢ € GP,F by APH. Let z € F* be such that
) € P,F. We then have ¢ = x1) mod I""'F, and n-linkage together with
I'2F = 0 follows from (i) and (ii).
Now n-linked fields, n > 2, are easily seen to be SAP. So to establish ED,
it suffices to establish property S; by Theorem 2.1. Let {a,b) be any torsion
form. Let v 2 (1,...,1). Then by PN(n), the form v L (—a, —b) is a t.i. Pfister
ey
neighbor of a Pfister form m € P, F. Since 7w contains v which is a Pfister
neighbor (and in fact subform) of o, = (1,1)®", one necessarily has that o,
divides 7, so there exists ¢ € F* such that 7 & 0, ® (1,¢). Now 7 contains
a t.i. Pfister neighbor and is therefore also t.i. and hence torsion. But then
p2{(1,1)®0, ®(1,¢) € P,y2F is torsion as well and therefore hyperbolic by
(i). Now o,, L v L (—a,—b) is a Pfister neighbor of p. Since p is hyperbolic, its
neighbor o, L v L (—a,—b) is isotropic. Hence there exists x € Dgp({(a,b)) N
Dp(oy, L 7). But clearly, Dp(o, L ) C Dp(c0) which shows that the binary
torsion form ({a, b) represents the totally positive element x.
(v) This follows immediately from the fact that a field is linked iff the classes
of quaternion algebras form a subgroup in Br(F') together with the character-
ization of 5-dimensional Pfister neighbors by their Clifford invariant (see [Kn,
p. 10]). O

The following observation is essentially due to Fitzgerald [F, Lemma 4.5(ii)].

LEMMA 4.4. Suppose that uw(F) < 2. Let ¢ be a form over F of dimension
2" 4+ 1. Then ¢ is a Pfister neighbor. In particular, F has PN (n).

Proof. By Remark 4.2(ii) the result is clear if ¢ is isotropic. Thus, we may

assume ¢ anisotropic, so necessarily F' must be real. Since u(F') < oo implies

that F' is SAP, we may assume that after scaling, sgnp(p) > 0 for all P € Xp,

and that there exists ¢ € F™* such that H(c) = {P € Xr| sgnp(¢) = dim¢}.

In particular, the Pfister form (—1,...,—1,—c¢)) € P11 F is positive definite
———

n
at all those P € Xy at which ¢ is positive definite, and it has signature zero
at all those P € X at which ¢ is indefinite. Let ¢ & (7 L —¢)an. It follows
that |sgnp(y)] < 2™ —1 for all P € Xp. But since u(F') < 2™, the anisotropic
form % must therefore have dim < 27, so in particular,
iw(m L —p) = 1(dim(r L —p) — dime) > £(2"F1 4+ 1),

and therefore iy (m L —p) > 2™ + 1 = dim ¢, which implies that ¢ C 7. In
particular, ¢ is a Pfister neighbor of . O
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THEOREM 4.5. If a field F' has property PN(n), n > 2, then either u(F) <
UF) <27, or 27+ < u(F) < W(F) < 27+ 427 — 2,

Proof. Let F be a field with property PN (n) for some n > 2. Suppose that
u(F) > 2", i.e. there exists an anisotropic t.i. ¢ with dimy = m > 2™. By
Lemma 4.3(iv), F has ED and so ¢ can be diagonalized as ¢ = {(a1,...,am)
with —ai, a,, € Dp(c0). By removing some of the a;, 2 < ¢ < m—1 if necessary,
we will retain a t.i. form, so we may assume that ¢ is t.i. and dim¢ = 2" + 1.
But then, by PN(n), ¢ is a Pfister neighbor of some 7 € P, ;1 F which in turn
is torsion and anisotropic as its Pfister neighbor ¢ is t.i. and anisotropic. This
shows that 27! < u(F) < a(F).

Now suppose that u(F) > 2"+ + 27 — 2. By a similar argument as above, we
conclude that there exists an anisotropic t.i. form ¢ with dim ¢ = 2"+ 427 1.
By Lemma 4.3(iii), there exists an anisotropic form v of dimension < 2™ — 1
such that ¢ = Y mod I""'F. Let 7 = (¢ L —t)an € I"'F. Then by
dimension count and since ¢ is anisotropic, we have 2"t < dim 7 < 272 — 2.
Since F is (n + 1)-linked, Lemma 4.3(ii) implies dim7 = 2"*!1 and thus, by
APH, 7 € GP, 1 F. Also, by dimension count, we have ¢ = 7 L ).

After scaling, we may assume that 7 € P,,1F, so that sgnp(w) € {0,271},
Now ¢ is t.i., and since F has ED by Lemma 4.3(iv), we can write ¢ = {(a, . ..)
with @ <p 0 whenever sgnp(r) = 2"*L. But then 7 L (a) is a t.i. subform
of ¢. On the other hand, m L (a) is also a Pfister neighbor of 7 ® (1,a) €
P, F. Since m L (a) is t.i., this implies that 7 ® (1, a) is torsion and therefore
hyperbolic since I7'"?F = 0 by Lemma 4.3(ii). But then the Pfister neighbor
7 L (a) is isotropic and therefore also ¢, a contradiction. O

Remark 4.6. (i) The above proof also shows that if F' has PN(n), n > 2, then
the case u(F') < 2" occurs iff there are no anisotropic torsion (n+1)-fold Pfister
forms iff I’ F = 0.

(i) If we were only considering nonreal fields then the proofs could be shortened
by essentially deleting arguments referring to or making use of ED, signatures,
etc..

COROLLARY 4.7. u(F) < oo if and only if F' has PN (n) for some n > 2. In
particular, if F is nonreal then u(F) < oo if and only if F has PN (n) for some
n>2

Proof. The ‘if’-part in the first statement follows from Theorem 4.5, the con-
verse from Lemma 4.4. The statement for nonreal fields is then clear because
in that case u = . O

Remark 4.8. If F is real, then we still get a sufficient criterion for the finiteness
of u(F) even if 4(F) = oco. Indeed, for real F, one has that if u(F(v/—1))
is finite then u(F) is finite, more precisely, one has u(F) < 4u(F(v/—1)) (see
[EKM, Th. 37.4]). Thus, we get the following: If F(v/—1) has property PN (n)
for some n > 2, then u(F) < 273 42742 _ g,
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Congecture 4.9. If a field F' has property PN (n), n > 2, then u(F) < u(F) <
2" or u(F) = u(F) = 2"+

COROLLARY 4.10. For n > 2, PN(n) implies PN(m) for all m > n + 2.
Furthermore, the following are equivalent:

(i) Congecture 4.9 holds.
(ii) For n > 2, PN(n) implies PN(n+1).

Proof. If n > 2, then PN (n) implies that u(F) < 2"*2 and PN(m) for m >
n + 2 follows from Lemma 4.4.

Now suppose that F' has PN (n) and that Conjecture 4.9 holds. Then PN (n+1)
follows from Lemma 4.4. Conversely, suppose that n > 2 and that PN(n)
implies PN (n + 1). Then we have u(F) < u(F) < 2" or 2"t < (F) <
u(F) < 27t 4+ 27 — 2 because of PN(n), and also u(F) < u(F) < 2"*! or
272 < yu(F) < a(F) < 2m+2 4 271 — 2 because of PN (n + 1). Putting the
two together, we obtain u(F) < u(F) < 2" or u(F) = u(F) = 2"*% O

The only evidence we have as to the veracity of Conjecture 4.9 is the following.

LEMMA 4.11. PN(2) implies PN(3). In particular, if F has PN(2), then
u(F) <u(F) <4 oru(F)=u(F)=8.

Proof. Suppose F' has PN(2) and let ¢ be any 9-dimensional form over F.
Write ¢ =2 o L g with dima = 5. Since « is a Pfister neighbor, there exists
m € GPoF such that @ C a C ¢ (see, e.g., [L3, Ch.X, Prop.4.19]). Write
o =2 m L . Then dimy = 5 and ~ is also a Pfister neighbor, so there exists
p € GPF such that p C 7. Hence, there exist a,b,c,d, e, f,g € F* such that
@ =al(b,c) L dfle. f) L (g).

Since PN(2) implies that F' is linked by Lemma 4.3(v), we may assume that
b = e, and after scaling (which doesn’t change the property of being a Pfister
neighbor), we may also assume a = 1, so

p = (b,c) L b, ) L (g) < (b)) @ ((e) L d(f) L {g) -

Now 6 = ((¢)) L d{(f) L (g) has dimension 5 and is therefore again a Pfister
neighbor, so as above there exist h, k,l,m € F* such that § = h{(k,1)) L (m).
We thus get that

0 C(bY) ® 82 h{(b, k1) Lm(b) C hilb,k,l,—hm) € GPLF

which shows that ¢ is a Pfister neighbor.
The remaining statement now follows from Corollary 4.10. g

Since linked fields are exactly the fields that have PN (2), one readily recovers
the following result due to Elman and Lam [EL2] and Elman [E, Th. 4.7]. We
leave it as an exercise to the reader to fill in the details.

COROLLARY 4.12. Let F be a linked field. Then u(F) = u(F) € {0,1,2,4,8}.
In particular, I}F = 0. Furthermore, let n € {0,1,2}. Then u(F) < 2" iff
I'F=0.
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Note that w(F) = u(F) = 0 can only occur when F' is real, whereas u(F') =
u(F) =1 implies that F' is nonreal.

Remark 4.13. Tt is not difficult to see that the iterated power series field F' =
C(X1)(X2))...(Xn) is a (nonreal) field with property PN(n) and u(F) =
2n+L,

Using Merkurjev’s method of iterated function fields, it is also possible to con-
struct to any n > 2 a real field F' with property PN(n) and @(F) = 2"!. For
details, see [H4].

Remark 4.14. Merkurjev [M] constructed to each positive integer n a field F
with I3F = 0 and u(F) = 2n (resp. a field F with I°F = 0 and u(F) = 00).
Trivially, such a (nounreal) field is 3-linked. So the n-linkage property, n > 3,
does not give any indication on how large u might be, whereas the stronger
property PN(n) does.

We finish this paper with some remarks on a possible geometric interpretation of
the property PN (n) which can be formulated in the language of Chow groups.
We refer to [Kar], [EKM, §80].

Let ¢ be a (nondegenerate) quadratic form of dimension n + 2 > 3, and let
X = X, be the smooth projective n-dimensional quadric {¢ = 0} over F'. We
call X (an)isotropic if ¢ is (an)isotropic. Let F denote the algebraic closure of
F and let X = X. Let Iy be the class of a rational point in CH"(X), the Chow
group of 0-dimensional cycles, and let 1 € CH"(X) be the class of X. A Rost
correspondence on X is an element p € CH"(X x X) which, over F, is equal
tolgx1+1x1ly€ CH"(X x X). A Rost projector is a Rost correspondence
that is also an idempotent in the ring of correspondences on X. It is known
that if a quadric has a Rost correspondence, then it has in fact also a Rost
projector (see [Kar, Rem. 1.4]). The study of Rost correspondences/projectors
has proven to be crucial in the motivic theory of quadrics.

It is known that if X is isotropic, then lg x 1 + 1 X [y is actually the unique
Rost projector on X (see [Kar, Lem. 5.1]). For anisotropic forms, the situation
is much more complicated.

The following is known:

THEOREM 4.15. Let ¢ be an anisotropic form over F' of dimension > 3.
(i) If X, possesses a Rost projector, then dimy = 2" +1 for some n > 1
(see Karpenko [Kar, Prop. 6.2, 6.4] ).
(ii) If ¢ is a Pfister neighbor of dimension 2" + 1 then X, has a unique
Rost projector (considered as element in CH"™ (X, x X,), r=2"—1)
(see Izhboldin-Vishik [IV, Th.1.12] for char(F) = 0, Elman-Karpenko-
Merkurjev [EKM, Cor.80.11] in the general case).

In view of part (i), it is natural to ask whether or not the converse of part (ii)
also holds. This is still an open problem (see also [Kar, Conj. 1.6]):

Conjecture 4.16. If an anisotropic quadric X, possesses a Rost correspondence,
then ¢ is a Pfister neighbor of dimension 2" + 1 for some n > 1.
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Of course, by Theorem 4.15(ii), to prove the conjecture, one may assume that
dim¢ = 2" 4+ 1 for some n > 1. Since 3-dimensional forms are always Pfister
neighbors, trivially the conjecture holds in that case. The conjecture is also
true in the cases n = 2, 3 as shown by Karpenko (see [Kar, Prop. 10.8, Th. 1.7]):

THEOREM 4.17. Let ¢ be an anisotropic form over F of dimension 2™ + 1,
n =2,3. If X, possesses a Rost correspondence, then ¢ is a Pfister neighbor.

It is now natural to introduce the property RP(n) for n > 1:

RP(n): F has the property RP(n) for n > 1 if every form ¢ over F of dimen-
ston 2™ + 1 has a Rost projector.

In view of the above, we immediately get

PROPOSITION 4.18. Letn > 1.
(i) PN(n) implies RP(n).
(ii) If n < 3, then RP(n) implies PN(n).
(iii) If Conjecture 4.16 holds, then RP(n) implies PN (n) for all n € N.

Conjecturally and in view of Theorem 4.5, we therefore get an ‘algebro-
geometric’ criterion for the finiteness of the Hasse number:

COROLLARY 4.19. If Congecture 4.16 holds, then u(F) < oo (resp. u(F) < oo
for nonreal F') if and only if F has property RP(n) for some n > 2.
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ABSTRACT. Let F be a field of characteristic zero and let f;, be
the stabilization homomorphism from the nth integral homology of
SL:(F) to the nth integral homology of SL:i1(F). We prove the
following results: For all n, f:, is an isomorphism if ¢ > n + 1 and is
surjective for ¢ = n, confirming a conjecture of C-H. Sah. f, , is an
isomorphism when n is odd and when n is even the kernel is isomorphic
to the (n + 1)st power of the fundamental ideal of the Witt Ring of
F. When n is even the cokernel of f,,_1, is isomorphic to the nth
Milnor-Witt K-theory group of F. When n is odd, the cokernel of
frn—1,n is isomorphic to the square of the nth Milnor K-group of F.

2010 Mathematics Subject Classification: 19G99, 20G10
Keywords and Phrases: K-theory, special linear group, group homol-
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1. INTRODUCTION

Given a family of groups {G:}+en with canonical homomorphisms Gy — Gy1,
we say that the family has homology stability if there exist constants K (n)
such that the natural maps H,(G¢,Z) — H,,(Gi11,Z) are isomorphisms for
t > K(n). The question of homology stability for families of linear groups over
a ring R - general linear groups, special linear groups, symplectic, orthogo-
nal and unitary groups - has been studied since the 1970s in connection with
applications to algebraic K-theory, algebraic topology, the scissors congruence
problem, and the homology of Lie groups. These families of linear groups are
known to have homology stability at least when the rings satisfy some appro-
priate finiteness condition, and in particular in the case of fields and local rings
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([4],126],[271,[25], [5],[2], [21],[15],[14]). It seems to be a delicate - but inter-
esting and apparently important - question, however, to decide the minimal
possible value of K (n) for a particular class of linear groups (with coefficients
in a given class of rings) and the nature of the obstruction to extending the
stability range further.

The best illustration of this last remark are the results of Suslin on the integral
homology of the general linear group of a field in the paper [23]. He proved
that, for an infinite field F', the maps H,,(GL(F),Z) — H,,(GLy41(F),Z) are
isomorphisms for ¢ > n (so that K(n) = n in this case), while the cokernel of
the map H, (GL,_1(F),Z) — H,,(GL,(F'),Z) is naturally isomorphic to the
nth Milnor K-group, KM(F). In fact, if we let

H,(F) := Coker(Hy,(GLy_1(F), Z) — H,(GLn(F), Z)),

his arguments show that there is an isomorphism of graded rings He(F') 2
KM(F) (where the multiplication on the first term comes from direct sum of
matrices and cross product on homology). In particular, the non-negatively
graded ring H,(F') is generated in dimension 1.

Recent work of Barge and Morel ([1]) suggested that Milnor-Witt K-theory may
play a somewhat analogous role for the homology of the special linear group.
The Milnor-Witt K-theory of F is a Z-graded ring KMW (F) surjecting natu-
rally onto Milnor K-theory. It arises as a ring of operations in stable motivic
homotopy theory. (For a definition see section 2 below, and for more details see
[17, 18, 19].) Let SH,(F) := Coker(H,,(SL,_1(F),Z) — H,(SL,(F),Z)) for
n > 1, and let SHo(F) = Z [F*] for convenience. Barge and Morel construct
a map of graded algebras SH,(F) — KMW(F) for which the square

SHe(F) — KMW(F)

L

Ho(F) —= KJ(F)

commutes.

A result of Suslin ([24]) implies that the map Ho(SL2(F'),Z) = SHa(F) —
KMW(F) is an isomorphism. Since positive-dimensional Milnor-Witt K-theory
is generated by elements of degree 1, it follows that the map of Barge and
Morel is surjective in even dimensions greater than or equal to 2. They ask the
question whether it is in fact an isomorphism in even dimensions.

As to the question of the range of homology stability for the special linear
groups of an infinite field, as far as the authors are aware the most general re-
sult to date is still that of van der Kallen [25], whose results apply to much more
general classes of rings. In the case of a field, he proves homology stability for
H, (SLi(F'),Z) in the range t > 2n+1. On the other hand, known results when
n is small suggest a much larger range. For example, the theorems of Mat-
sumoto and Moore imply that the maps Ha(SL:(F'),Z) — Ha(SLit1(F), Z)
are isomorphisms for ¢ > 3 and are surjective for ¢ = 2. In the paper
[22] (Conjecture 2.6), C-H. Sah conjectured that for an infinite field F' (and
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more generally for a division algebra with infinite centre), the homomorphism
H, (SLi(F'),Z) — Hy, (SLyy1(F'), ) is an isomorphism if ¢ > n + 1 and is surjec-
tive for ¢t = n.

The present paper addresses the above questions of Barge/Morel and Sah in
the case of a field of characteristic zero. We prove the following results about
the homology stability for special linear groups:

THEOREM 1.1. Let F' be a field of characteristic 0. For n,t > 1, let f;, be the
stabilization homomorphism H,,(SL(F),Z) — H,,(SL41(F), Z)

(1) fim is an isomorphism for t > n+1 and is surjective for t = n.
2) Ifn is odd fn.n is an isomorphism
3) If n is even the kernel of fn n is isomorphic to I""(F).
4) For even n the cokernel of fn—1. is naturally isomorphic to KMW(F).
)

For odd n > 3 the cokernel of fn_1. 15 naturally isomorphic to
2KM(F).

(
(
(
(5

Proof. The proofs of these statements can be found below as follows:

(1) Corollary 5.11.
(2) Corollary 6.12.
(3) Corollary 6.13.
(4)
()

Corollary 6.11.
Corollary 6.13

O

Our strategy is to adapt Suslin’s argument for the general linear group in [23] to
the case of the special linear group. Suslin’s argument is an ingenious variation
on the method of van der Kallen in [25], in turn based on ideas of Quillen.
The broad idea is to find a highly connected simplicial complex on which the
group G; acts and for which the stabilizers of simplices are (approximately) the
groups G,, with r < ¢, and then to use this to construct a spectral sequence
calculating the homology of the GG, in terms of the homology of the G,.. Suslin
constructs a family £(n) of such spectral sequences, calculating the homology
of GL,(F). He constructs partially-defined products £(n) x £(m) — E(n+m)
and then proves some periodicity and decomposabilty properties which allow
him to conclude by an easy induction.

Initially, the attempt to extend these arguments to the case of SL,,(F') does not
appear very promising. Two obstacles to extending Suslin’s arguments become
quickly apparent.

The main obstacle is Suslin’s Theorem 1.8 which says that a certain inclusion of
a block diagonal linear group in a block triangular group is a homology isomor-
phism. The corresponding statement for subgroups of the special linear group
is emphatically false, as elementary calculations easily show. Much of Suslin’s
subsequent results - in particular, the periodicity and decomposability proper-
ties of the spectral sequences £(n) and of the graded algebra Se(F') which plays
a central role - depend on this theorem. And, indeed, the analogous spectral
sequences and graded algebra which arise when we replace the general linear
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with the special linear group do not have these periodicity and decomposability
properties.

However, it turns out - at least when the characteristic is zero - that the failure
of Suslin’s Theorem 1.8 is not fatal. A crucial additional structure is available
to us in the case of the special linear group; almost everything in sight in a
Z[F*]-module. In the analogue of Theorem 1.8, the map of homology groups
is a split inclusion whose cokernel has a completely different character as a
Z[F*]-module than the homology of the block diagonal group. The former is
‘additive ’, while the latter is ‘multiplicative ’, notions which we define and
explore in section 4 below. This leads us to introduce the concept of ‘AM
modules’, which decompose in a canonical way into a direct sum of an additive
factor and a multiplicative factor. This decomposition is sufficiently canonical
that in our graded ring structures the additive and multiplicative parts are
each ideals. By working modulo the messy additive factors and projecting onto
multiplicative parts, we recover an analogue of Suslin’s Theorem 1.8 (Theorem
4.23 below), which we then use to prove the necessary periodicity (Theorem
5.10) and decomposability (Theorem 6.8) results.

A second obstacle to emulating the case of the general linear group is the van-
ishing of the groups Hy (SLy,(F),Z). The algebra He(F'), according to Suslin’s
arguments, is generated by degree 1. On the other hand, SHy1(F) = 0 =
H;(SL1(F'),Z) = 0. This means that the best we can hope for in the case of
the special linear group is that the algebra SH,(F) is generated by degrees 2
and 3. This indeed turns out to be essentially the case, but it means we have
to work harder to get our induction off the ground. The necessary arguments
in degree n = 2 amount to the Theorem of Matsumoto and Moore, as well as
variations due to Suslin ([24]) and Mazzoleni ([11]). The argument in degree
n = 3 was supplied recently in a paper by the present authors ([8]).

We make some remarks on the hypothesis of characteristic zero in this paper:
This assumption is used in our definition of AM-modules and the derivation
of their properties in section 4 below. In fact, a careful reading of the proofs
in that section will show that at any given point all that is required is that
the prime subfield be sufficiently large; it must contain an element of order
not dividing m for some appropriate m. Thus in fact our arguments can easily
be adapted to show that our main results on homology stability for the nth
homology group of the special linear groups are true provided the prime field is
sufficiently large (in a way that depends on n). However, we have not attempted
here to make this more explicit. To do so would make the statements of the
results unappealingly complicated, and we will leave it instead to a later paper
to deal with the case of positive characteristic. We believe that an appropriate
extension of the notion of AM-module will unlock the characteristic p > 0
case.

As to our restriction to fields rather than more general rings, we note that
Daniel Guin [5] has extended Suslin’s results to a larger class of rings with
many units. We have not yet investigated a similar extension of the results
below to this larger class of rings.
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2. NOTATION AND BACKGROUND RESULTS

2.1. GROUP RINGS AND GROTHENDIECK-WITT RINGS. For a group G, we
let Z [G] denote the corresponding integral group ring. It has an additive Z-
basis consisting of the elements g € G, and is made into a ring by linearly
extending the multiplication of group elements. In the case that the group G
is the multiplicative group, F'*, of a field F', we will denote the basis elements
by (a), for a € F*. We use this notation in order, for example, to distinguish
the elements (1 —a) from 1 — {(a), or (—a) from — (a), and also because it
coincides, conveniently for our purposes, with the notation for generators of the
Grothendieck-Witt ring (see below). There is an augmentation homomorphism
€:Z[G) = Z, {g) — 1, whose kernel is the augmentation ideal Z¢, generated
by the elements g — 1. Again, if G = F*, we denote these generators by
({a)) := (a) — 1.

The Grothendieck-Witt ring of a field F is the Grothendieck group, GW(F),
of the set of isometry classes of nondgenerate symmetric bilinear forms under
orthogonal sum. Tensor product of forms induces a natural multiplication on
the group. As an abstract ring, this can be described as the quotient of the
ring Z [F*/(F*)?] by the ideal generated by the elements ((a)) - ((1 — a)),
a # 0,1. (This is just a mild reformulation of the presentation given in Lam,
[9], Chapter II, Theorem 4.1.) Here, the induced ring homomorphism Z [F*] —
Z[F*/(F*)?] - GW(F), sends (a) to the class of the 1-dimensional form with
matrix [a]. This class is (also) denoted (a). GW(F) is again an augmented
ring and the augmentation ideal, I(F'), - also called the fundamental ideal - is
generated by Pfister 1-forms, ({(a)). Tt follows that the n-th power, I"(F), of
this ideal is generated by Pfister n-forms ((a1,...,ay)) := ({a1)) - {{an)).
Now let H := (1) + (=1) = ((-1)) + 2 € GW(F). Then H- I(F) = 0, and the
Witt ring of F' is the ring

GW(F) GW(F)

m)y — H-Z
Since H — 2 under the augmentation, there is a natural ring homomorphism
W(F) — Z/2. The fundamental ideal I(F') of GW(F') maps isomorphically to
the kernel of this ring homomorphism under the map GW(F) — W (F'), and
we also let I(F') denote this ideal.
For n < 0, we define I"(F) := W(F). The graded additive group I*(F) =
{I™(F)}nez is given the structure of a commutative graded ring using the
natural graded multiplication induced from the multiplication on W(F). In
particular, if we let n € I71(F) be the element corresponding to 1 € W (F),
then multiplication by 7 : I"*1(F) — I"(F) is just the natural inclusion.

W(F) =

2.2. MILNOR K-THEORY AND MILNOR-WITT K-THEORY. The Milnor ring of
a field F (see [12]) is the graded ring KM (F) with the following presentation:
Generators: {a} , a € F*, in dimension 1.

Relations:

(a) {ab} ={a} + {b} for all a,b € F*.
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(b) {a}-{1—a}=0forallaec F*\{l}.
The product {a;}---{a,} in KM(F) is also written {a1,...,a,}. So K}}(F) =
Z and KM(F) is an additive group isomorphic to F*.
We let EkM(F) denote the graded ring KM(F)/2 and let i"(F) :=
I"(F)/I™""Y(F), so that i*(F) is a non-negatively graded ring.
In the 1990s, Voevodsky and his collaborators proved a fundamental and deep
theorem - originally conjectured by Milnor ([13]) - relating Milnor K-theory to
quadratic form theory:

THEOREM 2.1 ([20]). There is a natural isomorphism of graded rings kM (F) =
i*(F) sending {a} to {{a)).

In particular for all n > 1 we have a natural identification of kM(F) and
i"(F) under which the symbol {a1,...,a,} corresponds to the class of the form

{{a1,...,an)).

The Milnor-Witt K-theory of a field is the graded ring KMW(F) with the
following presentation (due to F. Morel and M. Hopkins, see [17]):
Generators: [a], a € F*, in dimension 1 and a further generator 7 in dimension
—1.
Relations:

(a) [ab] = [a] + [b] + 71 - [a] - [b] for all a,b € F'*

(b) [a] - [ —a] =0 for all a € F* \ {1}

(¢) n-la] =[a]-n for all a € F*

(d) n-h =0, where h =n-[-1]+2 € K)YW(F).
Clearly there is a unique surjective homomorphism of graded rings KMW (F) —
KM(F) sending [a] to {a} and inducing an isomorphism

K™ (F)
(n)

Furthermore, there is a natural surjective homomorphism of graded rings

KMW(F) — I*(F) sending [a] to ({(a)) and 1 to 7. Morel shows that there
is an induced isomorphism of graded rings

KMW(F)
()

The main structure theorem on Milnor-Witt K-theory is the following theorem
of Morel:

~ KM(F).

>~ J°(F).

THEOREM 2.2 (Morel, [18]). The commutative square of graded rings

KJW(F) — KJ'(F)

L

I*(F) —— i*(F)

s cartesian.
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Thus for each n € Z we have an isomorphism
KYW(F) =2 K)NE) X o gy I™(F).

It follows that for all n there is a natural short exact sequence

0— I""YF) - KMY(F) - KM(F) -0
where the inclusion I"*1(F) — KMW(F) is given by

({a1, . any1)) = mlaa] - fan].

Similarly, for n > 0, there is a short exact sequence

0 — 2KM(F) - KMY(F) = I"(F) = 0
where the inclusion 2KM(F) — KMW(F) is given (for n > 1) by

2{a1,...,an}— hla1] - [an).
Observe that, when n > 2,
hlar)laz] -+ [an] = ([a1][az] — [az][a1])[as] - [an] = [ai][az] - - - [an].

(The first equality follows from Lemma 2.3 (3) below, the second from the
observation that [a?] - [an] € Ker(KMW(F) — I"(F)) = 2KM(F) and the
fact, which follows from Morel’s theorem, that the composite 2KM(F) —
KMW(F) — KM(F) is the natural inclusion map.)

When n = 0 we have an isomorphism of rings

GW(F) 2 W(F) xz/2 Z = K™V (F).
Under this isomorphism ({a)) corresponds to 7|a ] d (a) corresponds to nla] +
1. (Observe that with this identification, h = n[-1] + 2 = (1) + (-1) €

KMW(F) = GW(F), as expected.)

Thus each KMW(F) has the structure of a GW(F)-module (and hence also of a
Z [F*]-module), with the action given by ((a)) - ([a1] - - - [an]) = nla][a1] - - - [an].
We record here some elementary identities in Milnor-Witt K-theory which we
will need below.

LEMMA 2.3. Let a,b € F*. The following identities hold in the Milnor- Witt
K-theory of F':
(1) [a][-1] = la][a].
(2 ) [ab] = [a] + (a)[b].
(3) [a][b] = —(=1)[bl[a]-
Proof.
(1) See, for example, the proof of Lemma 2.7 in [7].

(2) (a)b = (nla] +1)[b] = nla][b] + [b] = [ad] — [a].
(3) See [7], Lemma 2.7.
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2.3. HomoLoGy OF GROUPS. Given a group G and a Z|[G]-module M,
H, (G, M) will denote the nth homology group of G with coeflicients in
the module M. B.(G) will denote the right bar resolution of G: By(G)
is the free right Z[G]-module with basis the elements [g1| - |gn], i € G.
(Bo(G) is isomorphic to Z[G] with generator the symbol [ ].) The boundary
d=d, : B,(G) = Bn,-1(G), n > 1, is given by

n—1

d([g1]--1ga])) = D_(=1)'lg1l -~ 1Gil -~ gn] + (=1)"[g1] - - |gn—1] (gn) -

1=0
The augmentation Bo(G) — Z makes Bo(G) into a free resolution of the trivial
Z[Gl-module Z, and thus H, (G, M) = H,,(B+(G) ®zjc) M).
If Co = (Cy,d) is a non-negative complex of Z[G]-modules, then E,, :=
Be(G) ®zjg) Ce is a double complex of abelian groups. Each of the two fil-
trations on E, o gives a spectral sequence converging to the homology of the
total complex of F, o, which is by definition, He (G, C). (see, for example,
Brown, [3], Chapter VII).
The first spectral sequence has the form

Ez%,q = Hp(Ga Hq(C)) = Hp+q(G7 C)-

In the special case that there is a weak equivalence Cy — Z (the complex
consisting of the trivial module Z concentrated in dimension 0), it follows that
Ho(G,C) =H.(G,Z).
The second spectral sequence has the form

E, ,=Hy(G,Cy) = H,14(G, O).
Thus, if C, is weakly equivalent to Z, this gives a spectral sequence converging
to He(G,Z).
Our analysis of the homology of special linear groups will exploit the action of
these groups on certain permutation modules. It is straightforward to compute
the map induced on homology groups by a map of permutation modules. We
recall the following basic principles (see, for example, [6]): If G is a group and
if X is a G-set, then Shapiro’s Lemma says that

Hy(G.Z[X]) = D Hy(G,,2),

yeX/G

the isomorphism being induced by the maps
HP(Gyv Z) - HP(Ga Z[X])
described at the level of chains by
B, Rz[G,] 7 — B, Rz[a] Z[X], 21— 2zRuy.

Let X;, i = 1,2 be transitive G-sets. Let x; € X; and let H; be the stabiliser
of x;, i =1,2. Let ¢ : Z[X1] — Z[X3] be a map of Z|G]-modules with

p(x1) = Z Nggra, with ng, € Z.
9€G/H>
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Then the induced map ¢o : He(H1,Z) — He(H2,Z) is given by the formula

H “H _
(1) Pe(2) = Z gCOTy %, b g 11, Y OSg—1 Hy g Ho (97" 2)
geHI\G/H>

There is an obvious extension of this formula to non-transitive G-sets.

2.4. HoMoLocy OF SL,(F) AND MILNOR-WITT K-THEORY. Let F' be an
infinite field.
The theorem of Matsumoto and Moore ([10], [16]) gives a presentation of the
group Hy(SLo(F),Z). Tt has the following form: The generators are symbols
(a1,a1), a; € F*, subject to the relations:
(i) {(a1,a2) =0if a; =1 for some i
(it) (a1,a2) = (a3, a1)
(iii) <a17 a2b2> + <a2, b2> = <a1a2, b2> + <a1, a2>
(iv) (a1,a2) = (a1, —a1az)

(v) (a1, a2) = (a1, (1 — ar)ag)
It can be shown that for all n > 2, KMW(F) admits a (generalised) Matsumoto-
Moore presentation:

THEOREM 2.4 ([7], Theorem 2.5). For n > 2, KMW(F) admits the following
presentation as an additive group:

Generators: The elements [a1][az] - - [an], a; € F*.

Relations:

(1) [a1][az] - [an] =0 if a; = 1 for some i.
(i) [a1]---lai-il[ai] - - [an] = [aa] - - - [a; " J[aia] - - [an]
(i) [a1) - [an—1)[anbu] + [a1] - [an—tlan]lbn] = [as] - [an—1an]lba] +
[a1] -+ [an—1][an]
(iv) [a1] -+ [an—a]lan] = [a1] - -+ [an—1][—an-10n]
(v) faa] -+ [an-a]lan] = [aa] -+ [an—1][(1 — an—1)an]
In particular, it follows when n = 2 that there is a natural isomorphism

KMW(F) = Hy(SLo(F),Z). This last fact is essentially due to Suslin (]24]).
A more recent proof, which we will need to invoke below, has been given by
Mazzoleni ([11]).

Recall that Suslin ([23]) has constructed a natural surjective homomorphism
H,,(GL,(F),Z) — KM(F) whose kernel is the image of H,,(GL,_1(F),Z).

In [8], the authors proved that the map H3(SL3(F),Z) — H3(GL3(F),Z) is
injective, that the image of the composite Hs(SL3(F'), Z) — H3(GL3(F),Z) —
KM(F) is 2K} (F) and that the kernel of this composite is precisely the image
In the next section we will construct natural homomorphisms 7;, o €,
H,(SL,(F),Z) — KMW(F), in a manner entirely analogous to Suslin’s con-
struction. In particular, the image of H, (SL,_1(F),Z) is contained in the
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kernel of T, o €, and the diagrams

H, (SLn(F),Z) — KMW(F)

l |

Hy, (GLn(F), Z) — K(F)

commute. It follows that the image of T3 o €3 is 2K3(F) ¢ KW (F), and its
kernel is the image of H3(SL2(F), Z).

3. THE ALGEBRA S(F*)

In this section we introduce a graded algebra functorially associated to F' which
admits a natural homomorphism to Milnor-Witt K-theory and from the ho-
mology of SL,,(F). It is the analogue of Suslin’s algebra Se(F) in [24], which
admits homomorphisms to Milnor K-theory and from the homology of GL,, (F).
However, we will need to modify this algebra in the later sections below, by
projecting onto the ‘multiplicative ’ part, in order to derive our results about
the homology of SL,,(F).

We say that a finite set of vectors vy, ..., v, in an n-dimensional vector space V'
are in general position if every subset of size min(g,n) is linearly independent.
If v1,...,vq4 are elements of the n-dimensional vector space V' and if £ is an
ordered basis of V, we let [v1]---|vg]e denote the n x ¢ matrix whose i-th
column is the components of v; with respect to the basis £.

3.1. DEFINITIONS. For a field F and finite-dimensional vector spaces V and
W, we let X,,(W,V) denote the set of all ordered p-tuples of the form

((wla 'Ul)v SRR (wpa Up))
where (w;,v;) € W @V and the v; are in general position. We also define
Xo(W, V) :=0. X,(W,V) is naturally an A(W,V)-module, where
Idyw Hom(V, W)
0 GL(V)

Let C,(W,V) = Z[X,(W, V)], the free abelian group with basis the elements
of X,,(W,V). We obtain a complex, Co(W, V), of A(W,V)-modules by intro-
ducing the natural simplicial boundary map

dp-‘rl : Cp-‘rl(Wa V) - CP(Wa V)
(w1, v1), -5 (Wpt1, Vpt1)) =

p+1
—_—

Z(*l)iﬂ((wl, V1), (Wisvi), - (Wpt1, Upt1))

i=1

LEMMA 3.1. If F is infinite, then Hy(Co(W,V)) =0 for all p.

AW, V) = ( ) C GL(W & V)
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Proof. If
z = Zni((w’i,vi), cee (w;, v;))) € CL,(W,V)

is a cycle, then since F is infinite, it is possible to choose v € V such that
v, V], ..., v, are in general position for all i. Then z = dp11((—1)?s,(2)) where
Sy is the ‘partial homotopy operator’ defined by s,((w1,v1), ..., (Wp,vp)) =
((w1,v1),- .., (Wp,vp), (0,v)), ifv,v1,...v, are in general position,
0, otherwise

O

We will assume our field F' is infinite for the remainder of this section. (In later
sections, it will even be assumed to be of characteristic zero.)

If n = dimp (V), we let HW,V) := Ker(d,) = Im(d,+1). This is an
A(W,V)-submodule of C,,(W, V). Let S(W,V) := Ho(SA(W, V), H(W,V)) =
If W' C W, there are natural inclusions X,(W’, V) — X,(W,V) inducing a
map of complexes of A(W’,V)-modules Co (W', V) = Co(W, V).

When W = 0, we will use the notation, X, (V), C,,(V), H(V) and S(V) instead
of X,(0,V), Cp(0,V), H(0,V) and S(0,V)

Since, A(W,V)/SA(W,V) = F*, any homology group of the form

H;(SA(W,V), M), where M is a A(W,V)-module,

is naturally a Z[F*]-module: If a« € F* and if ¢ € A(W,V) is any element
of determinant a, then the action of a is the map on homology induced by
conjugation by g on A(W, V) and multiplication by g on M. In particular, the
groups S(W, V) are Z[F*]-modules.

Let eq,...,e, denote the standard basis of F". Given ay,...,a, € F*, we let
lai,...,a,] denote the class of d,11(e1,...,en,a1e1 + -+ anpey,) in S(F™). If
b€ F*, then (b) - |a1,...,a,]| is represented by

dpt1(e1,..., b€ ... en,a1e1 + - abe; -+ aney)

for any . (As a lifting of b € F*, choose the diagonal matrix with b in the
(i,1)-position and 1 in all other diagonal positions.)

REMARK 3.2. Given = (v1,...,0y,0) € Xpi1(F™), let A = [v1]---|vy] €
GL,(F) of determinant det A and let A’ = diag(1,...,1,det A). Then B =
A’A=Y € SL,(F) and thus z is in the SL,,(F)-orbit of

(e1,...,en_1,det Ae,, A'w) with w = A~ v,
and hence d,, 1 (z) represents the element (det A) [w] in S(EF™).

THEOREM 3.3. S(F™) has the following presentation as a Z[F*]-module:
Generators: The elements |a1,...,a,], a; € F*
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Relations: For all ay,...,an, € F* and for all by, ..., b, € F* with b; # b; for
i

|bias,...,bpan] — |a1,...,an] =
DD ) o by~ by sai(b; —b;)s- vy an(bn — bi), bil.

Proof. Taking SL,,(F)-coinvariants of the exact sequence of Z[GL,(F)]-

modules
+2

dn
Crg2(F") — Crnpa (F)

gives the exact sequence of Z[F*]-modules

n

(P —— 0

d dnt1 ~
Cos2(F™)sp, (7)) ——% Crt1 (F™)sL, (r) ——> §(F™) — 0.
It is straightforward to verify that
Xpp1(F7) = 11 GL.(F) - (e1,...,en,a)
a=(a1,...,an),a; 70
as a GL,, (F')-set. It follows that

Cn+1(EF™) @ZGL “(e1,...,en,a)

as a Z[GL, (F)]-module, and thus that
CnJrl SL (F)7®Z ela"'aenaa)

as a Z[F*]-module.

Similarly, every element of X,,1o(F™) is in the GL,,(F')-orbit of a unique el-
ement of the form (eq,...,en,a,b-a) where a = (ay,...,a,) with a; # 0 for
all ¢ and b = (b1,...,b,) with b; # 0 for all ¢ and b; # b; for all i # j, and
b-a:=(biai,...,bpay). Thus

Xnt2(F™) HGL -(e1,...,en,a,b-a)
(a,b)
as a GL,, (F')-set and
Cn_;,_g SL,L F)—@Z 61,...,6n,a7b-a)
(a,b)
as a Z[F*]-module.
So dj,+1 induces an isomorphism
BL[F*] - (e1,...,€n,a)

(dni2(e1, ... en,a,b-a)l(a,b))

Now dpy2(e1,...,en,a,b-a) =

>~ S(F™).

n

Z(il)wrl(ela' "7éia' e aenaaab' a’) + (71)1-((61;' e aenab'a) - (617" 'aenaa))'

i=1
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Applying the idea of Remark 3.2 to the terms (e1,...,€é;,...,en,a,b-a) in
the sum above, we let M;(a) := [e1|---|€] - |en]a] and §; = det M;(a) =
(—1)""‘a,. Since

1 0 70,1/(11' 0 ... 0
0 : : : :
0 1 7(11',1/(11' 0 0
Mi(a)il = 0 0 —Qi4+105 1 0
0 0 : 0 0
0 0 fan/ai 0 1
0 0 1/a; 0 0

it follows that d,, ;1 (e1,. .., €i, ..., en,a,b-a) represents (5;) |w;| € S(F™) where
w; = Mi(a)~'(b-a) = (ar1(br = bi),...,ai(b; = b;), ..., an(by — b;),b;). This
proves the theorem. O

3.2. PropucTs. If W C W, there is a natural bilinear pairing
Cy(W', V) x Cq(W) = Cppg(Wea V), (T,y) — T *xy

defined on the basis elements by

((wll,vl) ,,,,, (w;}, vp)) * (wy, ..., wq) = ((w/l,vl) ,,,,, (w;},vp), (w1,0), ..., (wq,O)) .
This pairing satisfies dpq(x *y) = dp(z) *y + (—1)Pz % dg(y).
Furthermore, if « € A(W',V) C GL(W @ V) then (az) *y = a(z * y), and if
a € GL(V)C AW, V) C GL(W @ V) and 8 € GL(W) C GL(W & V), then
(az) * (By) = (- B)(x xy). (However, if W’ # 0 then the images of A(W', V)
and GL(W) in GL(W & V) don’t commute.)
In particular, there are induced pairings on homology groups

HW V) HW) - HW o V),

which in turn induce well-defined pairings

SW', VY@ HW) — S(W,V) and S(V) @ S(W) = S(W & V).
Observe further that this latter pairing is Z[F'*]-balanced: Ifa € I, z € S(W)
and y € S(V), then ({a)x) *y = x x ({a) y) = (a) (x *xy). Thus there is a well-
defined map
In particular, the groups {H(F™)},>0 form a natural graded (associative) al-
gebra, and the groups {S(F™)},>0 = S(F*) form a graded associative Z[F*]-
algebra. )
The following explicit formula for the product in S(F*) will be needed below:

LEMMA 3.4. Let ay,...,an and af,...,al, be elements of F'*. Let by,..., by,

bi,..., b, be any elements of F* satisfying b; # b; for i # j and V), # bj for
s #t.
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Then

lat,...,an] * lal,... 4] =

= Z i(*nm*"*”j ((=1)"aia} ) x
i=1 j=1

—

X Lal(b1 — bz), . .,ai(bi — bz), .. ~7bi7a/1(b/1 — b;), .. ,a;(b/;?b;), . ,bﬂ

—

(0" (=1 ) Laa(br = bi), o @il = i), b Vi, Bl ]

X
=z
3

~
Il
—

—

(—1)7+! <(,1)j+1a;> 15101, -+, buan, a5 (05 = B5), .., a0 — b)), ... b]

+

\
3
NE

<.
Il
—

! ! ! !
+|bia,...,bpan,bial, ..., bLa]

Proof. This is an entirely straightforward calculation using the defini-
tion of the product, Remark 3.2, the matrices M;(a), M,;(a’) as in
the proof of Theorem 3.3, and the partial homotopy operators s, with
v=(a1b1,...,apnby,aibl,... ;albl). |
3.3. THE MAPS ey. If dimp (V) = n, then the exact sequence of GL(V)-
modules

dn_1 1
0 H(V) ColV) —2re 0y (V) 2 I (V) =2 ——0

gives rise to an iterated connecting homomorphism
ey : Hy(SL(V),Z) — Ho(SL(V), H(V)) = S(V).

Note that the collection of groups {H,(SL,(F),Z)} form a graded Z[F*]-
algebra under the graded product induced by exterior product on homology,
together with the obvious direct sum homomorphism SL, (F) x SL,,(F) —
SLpgm (F).
LEMMA 3.5. The maps €, : H, (SL,(F),Z) — g(F”), n > 0, give a well-defined
homomorphism of graded Z|F*]-algebras; i.e.
(1) Ifa € F* and z € H,(SL,(F),Z), then e,({a) z) = (a) €,(2) in S(F™),
and
(2) If z € H,(SL,(F'),Z) and w € Hy,(SLy(F), Z) then
€nim(z X W) = €,(2) * € (w) in S(F™T™).

Proof.

(1) The exact sequence above is a sequence of GL(V)-modules and hence
all of the connecting homomorphisms §; : H,_;41(SL(V),Im(d;)) —
H,_;(SL(V),Ker(d;)) are F'*-equivariant.

(2) Let C7(V) denote the truncated complex.

oy - 4 Co(V), p<dimp (V)
G (V) = { 0, p > dimp (V)
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Thus H(V) — CI(V) is a weak equivalence of complexes (where we regard
H(V) as a complex concentrated in dimension dim (V)). Since the complexes
CI(V) are complexes of free abelian groups, it follows that for two vector spaces
V and W, the map H(V)®z H(W) — To(V, W) is an equivalence of complexes,
where T,(V, W) is the total complex of the double complex CJ (V) ®z CJ(W).
Now To(V,W) is a complex of SL(V) x SL(W)-modules, and the product =
induces a commutative diagram of complexes of SL(V') x SL(WW)-complexes:

H(V)®z HW) ——=CI(V)@CI (W)

| )

H(V&W) cI(vVaew)

which, in turn, induces a commutative diagram

H,(SL(V), Z) ® H (SL(W), Z) Y24 1o (SL(V), H(V)) @ Ho(SL(W), H(W))

Hypm (SL(V) x SL(W),Z ® Z) ——* > Ho(SL(V) x SL(W), H(V) ® H(W))
Hosm(SL(V & W), Z) —— 22~ Ho(SL(V & W), H(V & W))
(where n = dim (V) and m = dim (W)).

LEMMA 3.6. If V=W @ W' with W’ # 0, then the composite
H, (SL(W), Z) — H,,(SL(V), Z) ——= §(V)
18 2€ro.
Proof. The exact sequence of SL(V)-modules
0—Ker(dy) > C1(V)=>Z—0

is split as a sequence of SL(W)-modules via the map Z — C1(V),m — m e
where e is any nonzero element of W’. Tt follows that the connecting homo-
morphism &y : Hy, (SL(W),Z) — H,,_1(SL(W), Ker(d;)) is zero. O

Let SH,,(F) denote the cokernel of the map H,,(SL,—1(F"), Z) = Hy (SLn (F), Z).
It follows that the maps €, give well-defined homomorphisms SH, (F)) — S(£™),
which yield a homomorphism of graded Z[F'*]-algebras €, : SHe(F') — S(F'*).

3.4. THE MAPS Dy . Suppose now that W and V are vector spaces and that
dim (V) = n. Fix a basis £ of V. The group A(W,V) acts transitively on
X, (W, V) (with trivial stabilizers), while the orbits of SA(W, V') are in one-to-
one correspondence with the points of F'* via the correspondence

X, (W, V) = F*,  ((w1,v1),.- ., (wn,vy)) — det ([v1] -+ - |vn]e) -
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Thus we have an induced isomorphism

Taking SA(W,V)-coinvariants of the inclusion H(W,V) — C,(W,V) then
yields a homomorphism of Z[F*]-modules

Dw.yv : S(W, V) — Z[F*].

In particular, for each n > 1 we have a homomorphism of Z[F*]-modules
D, : S(F™) — Z[F*].
We will also set Do : S(F°) = Z — Z equal to the identity map. Here Z is a
trivial F*-module.
We set

Z, n=>0

An = IFX , n odd

Z[F*], n >0 even
We have A,, C Z[F*] for all n and we make A, into a graded algebra by using
the multiplication on Z[F*].

LEMMA 3.7.
(1) The image of Dy, is A,.
(2) The maps Do : S(F*) — Ae define a homomorphism of graded Z[F*]-
algebras.
(3) For each n > 0, the surjective map D,, : S(F™) — A, has a Z[F*]-
splitting.

Proof.

(1) Consider a generator |ay,...,an| of S(F™).
Let ey, ..., e, be the standard basis of F”. Let a := aije1+- - -+ape,.

Then
la1,...,an] = dnii(e1,...,en,a)
= > (D" er, .., Ernena) + (1) (en, . en).
=1
Thus

Du(lar, - san]) = Z 1) (det ([ea] -+ [&] - |enla])) + (=1)" (1)

_ <a1> —(=ag) + -+ (an) — (1), nodd
- (—a1) — {ag) + -+ — (an) + (1), n>0even
Thus, when niseven, D, (|—1,1,—1,...,—1,1]) = (1) and D,, maps
onto Z[F*].
When n is odd, clearly, D, (la1,...,a,]) € Zpx. However, for any
a€F* Dy(la,—1,1,...,—-1,1]) = ({a)) € A, = Tpx.
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(2) Note that C,(F™) = Z|GL,(F)] naturally. Let pu be the homomor-
phism of additive groups

A®B (‘3 g)

The formula Dy, 4pn (2 % y) = Dyp(x) - Dy (y) now follows from the com-
mutative diagram

H(F") ® H(F™) ———— H(F"*™)

Con(F") @ Cp (F™)

Cn+m (Fn+m)

o oy

Z[GL, (F)] @ Z[GLyy (F)] ——> Z[GLy 4 (F)]

det ® det det

ZIF*) @ Z[F*]

ZIF*]

(3) When n is even the maps D,, are split surjections, since the image is a
free module of rank 1.
It is easy to verify that the map D; : S(F) — A; = Zp« is an
isomorphism. Now let E € S(F?) be any element satisfying Do(E) =
(1) (eg. we can take F = |—1,1]). Then for n = 2m + 1 odd, the
composite S(F) ¥ E*™ — S(F™) — Tpx = A, is an isomorphism.

O

We will let S(W, V)" = Ker(Dw.y). Thus S(F™) = S(F")* @ A, as a Z[F*]-
module by the results above.

Observe that it follows directly from the definitions that the image of ey is
contained in S(V)T for any vector space V.

3.5. THE MAPS Tj,.

LEMMA 3.8. Ifn > 2 and by, ..., b, are distinct elements of F* then

[ba]ba] -+ [bu] = > b1 = bi] -+ [bio1 — bil [bil[bis1 — bi] - - [bn — bi] in KNV (F).

i=1
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Proof. We will use induction on n starting with n = 2: Suppose that by # by €
F*. Then

[b1 = b2]([b1] = [b2])

= (00 [1- 2]) (<00 | 2]) by Lomma 23 2)

— i |72

1] since [z][1 — 2] = 0

= [b1]([b1] — [b2]) by Lemma 2.3(2) again
= [baJ([~1] = [b2]) by Lemma 2.3 (1)

= [b)(—=(=1)[=b2])

= [—=ba][b1] by Lemma 2.3 (3).

Thus

[01][b2 — b1] + [b1 — bo][bo] = —(=1)[b2 — bu][ba] + [b1 — b2][b2]
=([b1 = bo] = [=1])[b1] + [b1 — b2][b2]

= —[b1r = boJ([b1] — [b2]) + [—1][b4]
—[=b2][ba] + [=1][ba] = ([=1] = [=b2])[ba]
—(=1)[bo][b1] = [ba][be]

proving the case n = 2.

Now suppose that n > 2 and that the result holds for n — 1. Let bq,..., by, be

distinct elements of F'*.We wish to prove that

n—1 n

(Z[m b (b o m-]) onl = 311~ b+ i)+ [ow — b
We re-write this as:

n—1

D by = bi] bl -+ b1 = bil([bn] = [bn = bi]) = [b1 = bn] -+ - [br—1 — bn] [bn].

i=1
Now

(b1 — b -+ [bi] -+ - [bn—1 — bi]([br] — [bn — bi])

(1) by — b [ — b3 o) ([bu] — b — bi]))

(
S i RS UROSE [ (RN )

= [br = bi] -+ [bi = bp] - [bn1 — bi][bn].
So the identity to be proved reduces to

n—1

B e e ) [ R CR S R R A 8

i=1
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Letting b} = b; —b,, for 1 <¢ <n—1, then b; —b; :b;-fb; fori,j <n—1and
this reduces to the case n — 1. O

THEOREM 3.9.
(1) For alln > 1, there is a well-defined homomorphism of Z[F*]-modules
T, : S(F™) — KMW(F)

sending |ay,...,a,] to [a1] - [an].

(2) The maps {T,.} define a homomorphism of graded Z[F*]-algebras
S(F*) — KMW(F): We have
Tpom(x*y) = To(z) - Tra(y),  for all x € S(F™),y € S(F™).

Proof.

(1) By Theorem 3.3, in order to show that T;, is well-defined we must prove
the identity

[bras] - [bnan] = [ar] -+ [an] =
D (1) aan (by — b))+ faa(bi = b)] -+ [an (bn — b0
in KMW(F).

Writing [biai] = [a,] + (az)[bl] and [aj (bJ — bl)] = [aj] + (aj>[bj — bl]
and expanding the products on both sides and using (3) of Lemma 2.3
to permute terms, this identity can be rewritten as

> (e ag, - an)ag, ] lag )b - b ) =
0#IC{1,...,n}

S (=0 ay, ) ag,] - 4] X

P#IC{1,...,n}
k
ORI RHCARN R A)
t=1

where T = {i; < -+- < i} and the complement of I is {j; < -+ < js}
(so that k + s = n) and oy is the permutation

1 ... s s+1 ... n
Jio-.- Js i1 e Ak )
The result now follows from the identity of Lemma 3.8.
(2) We can assume that z = |a1,...,a,]| and y = |d),...,a),] with
aq, a;- € F*. From the definition of T} 4., and the formula of Lemma

3.4,
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Trgm(zxy) =

Z Z(il)n+m+i+j <(71)i+ja¢a;> X
x [ar(br = b:)] -~ [ai(bs — b)) -+ - [balla’ (b — b)] - - - [a, (B, — )] -+ - [b)]
FED" DD () ) fan by = b)) s 0] il [Biad] - B

m

FED™ DT ()7 6] ) ] - loran o (0 — b)) - [a (0 — b)) -+ ]
o] Boan] brlpiat] - [,

which factors as X - Y with X =

DD () ) fan by = b)) - fas(hi = b)) [b] + [ran] -+ aa]
= @]+ [an] = T(2) by part (1)
and Y =
I (O e A ) R A A R CARR CEH R AN
= [af] -+ [aln] = Tn(y) by (1) again.
O

Note that T} is the natural surjective map S(F) = Zpx — KMWV(F), |a]
({a)) — [a]. Tt has a nontrivial kernel in general.

Note furthermore that SHo(F) = Ha(SLo(F),Z). It is well-known ([24],[11],
and [7]) that Ho(SLa(F),Z) = K)(F) Xey(ry PP (F) = KYW(F).

In fact we have:

THEOREM 3.10. The composite Ty o €3 : Ho(SLa(F),Z) — KYW(F) is an
isomorphism.

Proof. For p > 1, let X,,(F) denote the set of all p-tuples (z1,...,,) of points
of PL(F) and let Xo(F) = (). We let C,(F) denote the GLy(F) permuta-
tion module Z[X,(F)] and form a complex C,(F) using the natural simplicial
boundary maps, d,. This complex is acyclic and the map F?\ {0} — P!(F),
v — T induces a map of complexes Co(F?) — C,o(F).

Let Ho(F) := Ker(dy : Co(F) — C1(F)) and let Sa(F) = Ho(SLa(F), Ha2(F)).
We obtain a commutative diagram of SLa(F')-modules with exact rows:

ds

H(F?) 0

R

> F)dﬁ‘lc_vg(F) 9 HQ(F) 0

£
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Taking SLo(F')-coinvariants gives the diagram

Ho(SLa(F), C4(F?)) —=> Ho(SLa(F), C3(F?)) —“> §(F?) —= 0

L |

Ho (SLa(F), Cs(F)) —= s Ho (SLa(F), Cs (F)) —=s Sy(F) —= 0

Now the calculations of Mazzoleni, [11], show that Ho(SLa(F),C5(F)) =
ZIF*/(F*)?] via

class of (00,0,a) — (a) € Z[F* /(F*)?],

where a € P}(F) = ¢e; + aez and oo := e7. Furthermore S3(F) & GW(F) in
such a way that the induced map Z[F* /(F*)?] — GW(F) is the natural one.
Since |a,b] = ds(e1, e, ae; + bes), it follows that ¢(|a,b]) = (a/b) = (ab) in
GW(F).

Associated to the complex Cy(F) we have an iterated connecting homomor-
phism w : Ha(SLa(F),Z) — S2(F) = GW(F). Observe that w = ¢ o €z. In
fact, (Mazzoleni, [11], Lemma 5) the image of w is I?(F) C GW(F).

On the other hand, the module S (F?)* is generated by the elements

[[a,b]] := |a,b]—Da2(|a,b])-E (where E, as above, denotes the element |[—1,11).

Note that T([[a,b]]) = T2(la,b]) = [a][b] since To(F) = [-1][1] = 0 in
KXW(F).
Furthermore,
¢([la,bl]) = ¢(la,b]) — D2(la,b])(E)

= {ab) = ((=a) = (0) + (1N){-1)

= (ab) = (a) + (=b) = (1)

= (ab) = {a) = (b) + (1)

= ((a,0))

(using the identity (b) + (—=b) = (1) 4+ (—1) in GW(F)).
Using these calculations we thus obtain the commutative diagram

Hy(SLa(F), Z) —2= §(F2)+ — 2= KMW(F)

\P(l;)/

Now, the natural embedding F* — SLa(F), a + diag(a,a™!) := a induces a
homomorphism, u:

2
N (F¥) = Hy(F*,Z) — Hy(SLo(F),Z),

ant v ([l - Bla)) @1 € Ba(SLa(F)) @gse, () Z
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Mazzoleni’s calculations (see [11], Lemma 6) show that p(A? (F*)) = Ker(w)
and that there is an isomorphism p(A* (F*)) 2 2- KM(F) given by pu(aAb) —
2{a,b}.
On the other hand, a straightforward calculation shows that e (1u(a A b)) =
1 1 1 1 1 1

(@) 1B, 221 = [0y ] = {a) (1,214 () 11,51+ L 21 = (B} Lo, ] += Cuy

Now by the diagram above,
T5(Cap) = Ta(ez ((a A D)) € Ker(KYW(F) — I*(F)) = 2K)'(F).

Recall that the natural embedding 2K (F) — KMW(F) is given by 2{a, b}
[a?][b] = [a][b] — [b][a] and the composite

2K} (F) — K}V (F) —= K}!(F)
is the natural inclusion map. Since
1 1 1 1 1 1
i) = ot {gh-{eof s {rgfe et {o )
{a” b} - {b7 a} = 2{&, b}a

it follows that we have a commutative diagram with exact rows

0 — u(\’ (F*)) —= Ha(SL(F), Z) === I*(F) 0
- T
) —— 2R} (F) ——— KYV(F) —— P(F) —0
proving the theorem. 0

4. AM-MODULES

From the results of the last section, it follows that there is a Z[F*]-
decomposition

S(F?) = KMW(F) @ Z[F*]a?
It is not difficult to determine that the missing factor is isomorphic to the
1-dimensional vector space F' (with the tautological F*-action). However,
as we will see, this extra term will not play any role in the calculations of
Hn(SLk(F)7 Z)'
As Z[F*]-modules, our main objects of interest (Milnor-Witt K-theory, the
homology of the special linear group, the powers of the fundamental ideal in
the Grothendieck-Witt ring) are what we call below ‘multiplicative ’; there
exists m > 1 such that, for all a € F*, (a™) acts trivially. This is certainly not
true of the vector space F above. In this section we formalise this difference,
and use this formalism to prove an analogue of Suslin’s Theorem 1.8 ([23]) (see
Theorem 4.23 below).
Throughout the remainder of this article, F' will denote a field of characteristic
0.
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Let Sp C Z[F*] denote the multiplicative set generated by the elements

{{{a)) = (a) — 1| a € F*\ {1}}. Note that 0 ¢ S, since the elements of S
map to units under the natural ring homomorphism Z[F*] — F. We will also
let Séf C Z[Q*] denote the multiplicative set generated by {{(a)) = (a)—1|a €

Q*\ {£1}}.

DEFINITION 4.1. A Z[F*]-module M is said to be multiplicative if there exists
s € 86 with sM = 0.

DEFINITION 4.2. We will say that a Z[F*]-module is additive if every s € 86
acts as an automorphism on M.

EXAMPLE 4.3. Any trivial Z[F*]-module M is multiplicative , since ({(a)) an-
nihilates M for all a # 1.

EXAMPLE 4.4. GW(F), and more generally I™(F), is multiplicative since ((a?))
annihilates these modules for all a € F'*X.

EXAMPLE 4.5. Similarly, the groups H, (SL,(F),Z) are multiplicative since
they are annihilated by the elements ((a™)).

EXAMPLE 4.6. Any vector space over F, with the induced action of Z[F*], is
additive since all elements of Sg act as automorphisms.

EXAMPLE 4.7. More generally, if V' is a vector space over F, then for all
r > 1, the rth tensor power T7(V) = Tg(V) is an additive module since,
if a € Q\ {£1}, (a) acts as multiplication by a" and hence ({(a)) acts as
multiplication by a” — 1. For the same reasons, the rth exterior power, A7 (V),
is an additive module.

REMARK 4.8. Observe that if ((a™)) acts as an automorphism of the Z[F*]-
module M for some a € F*, m > 1, then so does ({(a)), since ((a™)) =
{a))((a™ =)+ +(a) +1) = ((a™ ) + -+ (a) + 1)((a)) in Z[F*].
LEMMA 4.9. Let

0—>M — M — My —0

be a short exact sequence of Z[F*]|-modules.
Then M is multiplicative if and only if My and M are.

Proof. Suppose M is multiplicative . If s € 86 satisfies sM = 0, it follows that
sMy = sMy = 0.
Conversely, if M7 and M are multiplicative then there exist s1,s9 € 86 with
siM; = 0 for i = 1,2. It follows that sM = 0 for s = s189 € 85. O
LEMMA 4.10. Let

0—>A - A— A —0
be a short exact sequence of Z[F*]|-modules. If Ay and Az are additive modules,
then so is A.

Proof. This is immediate from the definition. |
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LEMMA 4.11. Let ¢ : M — N be a homomorphism of Z[F*]-modules.

(1) If M and N are multiplicative , then so are Ker(¢) and Coker(¢).
(2) If M and N are additive , then so are Ker(¢) and Coker(¢).

Proof. (1) This follows from Lemma 4.9 above.
(2) If s € S&f , then s acts as an automorphism of M and N, and hence of
Coker(¢) and Ker(¢).
]

COROLLARY 4.12. Let C = (C,,d) be a complex of Z[F*]-modules. If Cq is
additive (i.e. if each Cy, is an additive module), then each Hy,(C) is an additive
module. If each C,, is multiplicative then each H,(C) is a multiplicative module.

LEMMA 4.13. Let M be a multiplicative Z[F*]-module and A an additive
Z[F*]-module. Then Homgpx)(M, A) = 0 and Homgpx (A, M) = 0.

Proof. Let f: M — A be a Z[F*]-homomorphism. Every s € 86 acts as an
automorphism of A. However, there exists s € 85 with sM = 0. Thus, for
m € M, 0= f(sm)=sf(m) = f(m)=0.

Let g : A — M be a Z[F*]-homomorphism. Again, choose s € S&f acting as
an automorphism of A and annihilating M. If a € A, then there exists b € a
with a = sb. Hence g(a) = sg(b) =0 in M. O

LEMMA 4.14. If P is a Z[F*]-module and if A is an additive submodule and
M a multiplicative submodule, then AN M = 0.

Proof. There exists s € Z[Q*] which annihilates any submodule of M but is

injective on any submodule of A. O
LEMMA 4.15.
(1) If
0 M H——A 0

is an exact sequence of Z[F*]-modules with M multiplicative and A
additive then the sequence splits (over Z[F*]).
(2) Similarly, if

0 A H M 0

is an exact sequence of Z[F*|-modules with M multiplicative and A
additive then the sequence splits.

Proof. As above we can find s € Z[Q*] such that s- M = 0 and s acts as an
automorphism of A.
(1) Then sH is a Z[F*]-submodule of H and 7 induces an isomorphism
sH = A, since n(sH) = sw(H) = sA = A and if n(sh) = 0 then
sm(h) =01in A, so that 7(h) =0 and h € M.
(2) We have sH = A and multiplication by s gives an automorphism, a,
of A. Thus the Z[F*]-homomorphism H — A, h — a (s - h) splits
the sequence.
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O

DEFINITION 4.16. We will say that a Z[F*]-module H is an AM module if
there exists a multiplicative Z[F*]-module M and an additive Z[F*] module
A and an isomorphism of Z[F*]-modules H 2 A& M.

LEMMA 4.17. Let H be an AM module and let ¢ : H — AD M be an isomor-
phism of Z[F*]-modules, with M multiplicative and A additive .
Then

p1(A) = U Al and ¢~ H(M) = U M’
A’CH,A’additive M’'C H,M’'multiplicative

Proof. Let M’ C H be multiplicative. Then the composite

M——=H— Ao M ——A

is zero by Lemma 4.13, and thus M’ C ¢~ 1(M).
An analogous argument can be applied to ¢~1(A). O

It follows that the submodules ¢~1(A) and ¢~'(M) are independent of the
choice of ¢, A and M. We will denote the first as H 4 and the second as H .
Thus if H is an AM module then there is a canonical decomposition H =
H 4 ® Hpq, where H 4 (resp. Haq) is the maximal additive (resp. multiplicative
) submodule of H. We have canonical projections

A H— Hy, mm s H — Hyg.
LEMMA 4.18. Let H be a AM module. Suppose that H is also a module over

a ring R and that the action of R commutes with that of Z[F*]. Then H and
Haq are R-submodules of H.

Proof. Let r € R. Then the composite

His—>H M H g
is a Z[F*]-homomorphism and thus is 0 by Lemma 4.13. It follows that r-H 4 C
Ker(wM) = HA. O

LEMMA 4.19. Let f: H — H' be a Z[F*]-homomorphism of AM modules.
Then there exist Z|F*|-homomorphisms fa : Ha — H' 4 and faq : Hpm —
H' g such that f = fA® fm.

Suppose that H and H' are modules over a ring R and that the R-action com-
mutes with the Z[F*]-action in each case. If f is an R-homomorphism, then
so are fa and faq.

Proof. This is immediate from Lemmas 4.13 and 4.18. O
LEMMA 4.20. If
0 L—>H—"+K 0

is a short exact sequence of Z[F*]|-modules and if L and K are AM modules,
then so is H.
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Proof. Let H = 7' (K ). Then the exact sequence
05L—>H—Kuy—0

gives the exact sequence

0— L — H — Knpm — 0
= M i
Ly §(Lm)

Since L/La = L4 is additive , this latter sequence is split, by Lemma 4.15
(2).
So H/j(La) is a AM module, and there is a Z[k*]-isomorphism

~ . @
H/j(Lp) —=>=La® Km.
Let ¢ be the composite
- ~ ¢
H _>H/j(LM)—>LA@KM.

Let H,, = ¢~ (K ) C H C H. Then, we have an exact sequence
0—->Lypm—>Hp — Kp—0

so that Hp, is multiplicative . }
On the other hand, since H/H,, = L4 and H/H = K 4, we have a short exact
sequence

H
0—>Lg—— —>K4—0.
Hy,

This implies that H/H,, is additive , and thus H is AM by Lemma 4.15
(1). O

LEMMA 4.21. Let (C,,d) be a complex of Z[k*]|-modules. If each C, is AM,
then Hqe(C) is AM, and furthermore

He(Cu) = Ho(C) 4
He(Cam) = He(C) oy

Proof. The differentials d decompose as d = d 4 ® dpq by Lemma 4.19. |

THEOREM 4.22. Let (E",d") be a first quadrant spectral sequence of Z[k™]-
modules converging to the Z[k™]-module Hy = {Hp }n>0-

If for some 1o > 1 all of the modules £, are AM, then the same holds for all
the modules Ey , for all 7 > 1o and hence for the modules E%,.

Furthermore, Hq is AM and the spectral sequence decomposes as a direct sum
E"=E"4®E"pm (r > 1) with E” 4 converging to He 4 and E" pq converging
to H’M .
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Proof. Since E™T1 = H(E", d") for all r, the first statement follows from Lemma
4.21.

Since E" is a first quadrant spectral sequence (and, in particular, is bounded),
it follows that for any fixed (p,q), £, = E} , for all sufficiently large r. Thus
E* is also AM.

Now H,, admits a filtration 0 = Fy H,, C --- C F, H,, = H,, with corresponding
quotients gr, H, = E, _ .
Since all the quotients are AM, it follows by Lemma 4.20, together with an
induction on the filtration length, that H,, is AM.

The final two statements follow again from Lemma 4.21. U

If G is a subgroup of GL(V'), we let SG denote G N SL(V).

THEOREM 4.23. Let V., W be finite-dimensional vector spaces over F' and let
G1 C GL(W), G2 € GL(V) be subgroups and suppose that Ga contains the
group F* of scalar matrices.

Let M be a subspace of Homp(V, W) for which GiM = M = MG,.

Let

0 Gs

Then, for i > 1, the groups H;(SG,Z) are AM and the natural embedding
J :S(G1 x G3) = SG induces an isomorphism

Proof. We begin by noting that the groups H;(SG, Z) are Z[F*]-modules: The
action of F'* is derived from the short exact sequence

a= (G1 M) C QLW & V).

det

1 SG G F* 1

We have a split extension of groups (split by the map j) which is F'*-stable:

0 M SG —= 5(G1 x G2) — 1.

The resulting Hochschild-Serre spectral sequence has the form
B}, =H,(S(G1 x Ga),Hy(M,Z)) = H,,,(SG, Z).

This spectral sequence exists in the category of Z[F*]-modules and all differ-
entials and edge homomorphisms are Z[F*]-maps.

Since the map 7 is split by j it induces a split surjection on integral homology
groups. Thus

H,(S(G1 x G2),Z) = E} y = E;5,  foralln > 0.

n

Observe furthermore that the Z[F*]-module H, (S(G1 x G2),Z) is multiplica-
tive : Given a € F'*, the element

(w0
”“'(o a-IdV>€G
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has determinant a™ ( m = dimp (V)) and centralizes S(G; x Gz). It follows
that (a™) acts trivially on H,,(S(G1 x G2),Z) for all n; i.e. {((a™)) annihilates
Hn(S(Gl X G2)7 Z)

Recall (Example 4.7 above) that for ¢ > 1, the modules Hy(M,Z) = AL(M),
with the Z[F*]-action derived from the action of F by scalars on M, are addi-
tive modules.

Now if a € F*, then conjugation by p, is trivial on S(G;1 x G2) but acts on
M as scalar multiplication by a. It follows that for ¢ > 0, ((a™)) acts as an
automorphism on H,(S(G1 x G2),Hy(M,Z)) for all a € Q\ {£1}. Thus, for
g > 0, the groups H,(S(G1 x G2),H,(M,Z)) are additive Z[F*]-modules; i.e.,
all Efm are additive for ¢ > 0. It follows at once that the groups EJ7, are
additive for all ¢ > 0. Thus, from the convergence of the spectral sequence,
we have a short exact sequence

0— H — H,(SG,Z) = E5, = j (Ha(S(G1 x G2),Z)) = 0

and H has a filtration whose graded quotients are all additive .
So H,(SG,Z) is AM as claimed, and H,(SG,Z) ,, = H,,(S(G1 x G2),Z).
O

COROLLARY 4.24. Suppose that W' C W. Then there is a corresponding in-
clusion SA(W', V) — SA(W, V). This inclusion induces an isomorphism

for alln > 1.

5. THE SPECTRAL SEQUENCES

Recall that F is a field of characteristic 0 throughout this section.

In this section we use the complexes C (W, V') to construct spectral sequences
converging to 0 in dimensions less than n = dimg (V), and to S(W,V) in
dimension n. By projecting onto the multiplicative part, we obtain spectral se-
quences with good properties: the terms in the E'-page are just the kernels and
cokernels of the stabilization maps f; ., : H,(SLi(F),Z) — H,(SLi+1(F), Z).
We then prove that the higher differentials are all zero. Since the spectral se-
quences converge to 0 in low degrees, this already implies the main stability
result (Corollary 5.11); the maps f; , are isomorphisms for ¢t > n + 1 and are
surjective for £ = n. The remainder of the paper is devoted to an analysis of
the case t = n — 1, which requires some more delicate calculations.

Let CJ(W, V) denote the truncated complex.

, _ | GWYV), p<dimp(V)
Cp(VV,V){ ! 0, p>dim§(V)
Thus
) ={ Gy Bl

where n = dimp (V).
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Thus the natural action of SA(W, V) on CJ (W, V) gives rise to a spectral se-
quence E(W, V') which has the form

By =Hy(SA(W,V),C7(W,V)) = Hyiqn(SAW, V), H(W,V)).

The groups C7 (W, V) are permutation modules for SA(W, V) and thus the E'-
terms (and the differentials d') can be computed in terms of the homology of
stabilizers.

Fix a basis {e1,...,e,} of V. Let V. be the span of {e1,...,e.} and let V! be
the span of {e,_g,...,en}, s0that V=V, @& V/__if0<r <n.

For any 0 < ¢ < n — 1, the group SA(W, V) acts transitively on the basis of
C7(W,V) and the stabilizer of

((Oa 61), ey (07 eq))

is SAW e Vg, V)
Thus, for ¢ <n —1,

E;,q = HZ)(SA(Wa V)a C;— (Wa V)) = HP(SA(W & ‘/;17 Vr;—q)a Z)

by Shapiro’s Lemma.
By the results in section 4 we have:

LEMMA 5.1. The terms E;,q in the spectral sequence E(W,V) are AM for
q >0, and

(Epq) o = Hp(SL(Vyy_y), Z) = Hp(SLy—o(F), Z).
For ¢ = n, the orbits of SA(W,V) on the basis of C7(W, V) are in bijective

correspondence with F'* via

(w1, v1), ..., (wn,vn)) = det ([v1] - - - vn]e) -
The stabilizer of any basis element of C7 (W, V) is trivial. Thus

Z[FX], p=0
1 . )
%m{o, p>0

Of course, Ezl,’q =0 for ¢ > n.
The first column of the El-page of the spectral sequence £(W, V') has the form

Z, qg<n
E&q: ZIF*], g=n
0, q>n

and the differentials are easily computed: For ¢ < n

Idz, ¢ is odd

1.l 1 _
dog: Foq = Foq = { 0, q is even

and
& TF] =7 = augmentation , n odd
O - ] 0, n even
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It follows that Ef , = 0 for ¢ # n and

52 Tpx, n odd
On ™ 1 Z[FX], neven
Note that the composite

~ edge

S(W,V) —= Eg5, C E§,, = Ay
is just the map Dyw,y of section 3 above.

LEMMA 5.2. The map Dw,v is a split surjective homomorphism of Z[F*]-
modules.

Proof. If W = 0, this is Lemma 3.7 (1) and (3), since V = F™.
In general the natural map of complexes C] (V) — CI(W, V) gives rise to a
commutative diagram of Z[F*]-modules

S(vV) S(W,V)
PN

An

We let S(W, V)t := Ker(Dwy : S(W,V) — A,), so that S(W,V) =

S(W,V)* & A, for all W, V.

COROLLARY 5.3. In the spectral sequence E(W, V'), we have an = Eg5, for all
q=>0.
All higher differentials di, , : Ef , — E;_y .4, are zero.

It follows that the spectral sequences £(W, V) decompose as a direct sum of
two spectral sequences

EW,V)=EW, V)@ ET(W,V)
where £°(W, V) is the first column of (W, V') and £* (W, V) involves only the

terms £ with ¢ > 0.
The spectral sequence E°(W, V') converges in degree d to

0, d#n

A,, d=n
The spectral sequence ET (W, V) converges in degree d to
Q7 d <n
S(VVv V)+7 d=n

Hy_n(SA(W, V), H(W,V)), d>n

By Lemma 5.1 above, all the terms of the spectral sequence £ (W, V') are AM.
We thus have

COROLLARY 5.4.
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(1) The Z[F*]-modules S”(W, V)t are AM.
(2) The graded submodule S(F*)" , C S(F*®) is an ideal.

Proof.

(1) This follows from Theorem 4.22. ) )
(2) This follows from Lemma 4.18, since S(F*)" is an ideal in S(F*) by
Lemma 3.7 (2).

O

COROLLARY 5.5. The natural embedding H(V) — H(W,V) induces an iso-
morphism

SVt == SW.V)* .
Proof. The map of complexes of SL(V)-modules C] (V) — CI(W,V) gives
rise to a map of spectral sequences ET(V) — (W, V) and hence a map
ET(V)p — EF(W, V) . The induced map on the E'-terms is

Id

H, (SLu—q(F). Z) H, (SLu—q(F).Z)

lg lg

H, (SL(V),C(V)) oy —— Hp(SA(W, V), Cg(W, V)

and thus is an isomorphism.
It follows that there is an induced isomorphism of abutments

SV ZSW V)T oy
and
Hk(SL(V)7 H(V))M = Hk(SA(Wa V)a H(VV, V))M

O
For convenience, we now define
SW, V) 1= SWV)
SWV)* 4
(even though S(W, V') is not an AM module).

This gives:
COROLLARY 5.6.

S V) ZSW V)T @ An 2 S(V)F @ Ay 2 S(V)
as Z[F*]-modules, and S(F*) ,, is a graded Z[F*]-algebra.
LEMMA 5.7. For any k > 1, the corestriction map

cor : H;(SLk(F),Z) — H;(SLg4+1(F), Z)
is F* -invariant;i.e. if a € F* and z € H;(SLk(F),Z), then

cor({a) z) = (a) cor(z) = cor(z).
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Proof. Of course, cor is a homomorphism of Z[F*]-modules. However, for
a € F*, {(a*) acts trivially on H;(SLi(F),Z) while (a**1) acts trivially on
H;(SLy+1(F),Z) so that

cor({a) z) = cor({a**1) 2) = (a**1) cor(z) = cor(z).
g

LEMMA 5.8. For 0 < q < n, the differentials of the spectral sequence
EXWV)

d;),q : (E;;,q)M = HP(SL’”*Q(FLZ) - (E;,q—l)M = HP(SLn*qul(F)ﬂZ)
are zero when q is even and are equal to the corestriction map when q is odd.
Proof. d" is derived from the map d, : C; (W, V) — C7_, (W, V) of permutation

modules. Here

dQ((anl)a"'a(()?eq)) -

—

(71)i+1((0a 61), SERE) (Oa ei)a R (07 eq))

M=

1

.
I

[
M=

(—1)i+1¢i((07 61), ey (0, eq_l))

-
Il
-

where ¢; € SA(W, V') can be chosen to be of the form

i = <IdOW 121> , Y= (U(; 7(_1) € GL(V)

with ; € GL(V;) a permutation matrix of determinant ¢; and ; € GL(V};_,)
also of determinant ¢;.
¢i normalises SA(W @ Vy, V) and SL(V,;_ ). Thus for z € H,(SL(V},_,), Z),

d'(z) = (—1)"cor(r;2)

B

-
Il
-

(1) cor((e) 2)

[
M=

-
Il
-

I
.MQ

s
Il
—

it ~f cor(z), qodd
(-1) cor(z){ 0, ¢ even

O
Let E :=|—1,1] € S(F?),,. E is represented by the element
E = ds(e1, ez, ea—e1) = (e2,e2—e1)—(e1,ea—e1)+(e1, e2) € H(F?) C C3(F?).
Multiplication by E induces a map of complexes of GL,,—2(F)-modules
Co(Fm2)[2] = CI(F™)

There is an induced map of spectral sequences £(F"72)[2] — E(F™),
which in turn induces a map ET(F""?)[2] — E£T(F"), and hence a map
ET(F"2) 2] = EF(F™) oy
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By the work above, the E'-page of £T(F™),, has the form
E;#I =Hp(SLn—¢(F),Z) (p>0)
while the E'-page of £T(F™~?),,[2] has the form

Bt Z HP(SL(n—Q)—(q—Q) (F),Z) = HP(SLn*q(F)vz)a q>2,p>0
Pq 0, g<lorp=0

LEMMA 5.9. For ¢ > 2 (and p > 0), the map
1 1
E/p,q ~H,(SL,—¢(F),Z) — E,,= H,(SL,,—4(F),Z)
induced by E % — is the identity map.
Proof. There is a commutative diagram
B’} = Hp(SLp_q(F),Z) — H,(SA(F1~2, F"~49),7) = Hy(SLy _2(F),C]_5(F™~2))

\L(E*)M lﬁ'* lE*

Bl , = Hp(SLy,_ ¢ (F), Z) —— H,(SA(FY, F*~9),2) ——— > H,(SLn (F), C] (F™))

We number the standard basis of F"2 es3,...,e, so that the inclusion
SL,—2(F) — SL,(F) has the form
I, 0
A~ (0 A) .

So we have a commutative diagram of inclusions of groups
SLy—g(F) —— SA(F9=2, F"~9) —— SLy_o(F)
SL,,—q(F) —— SA(F1, F"~%) —— SL,,(F).

Let Be = Be(SL,,(F)) be the right bar resolution of SL, (F). We can use it to
compute the homology of any of the groups occurring in this diagram.
Suppose now that ¢ > 2 and we have a class, w, in E’Il,,q =H,(SL,,—¢(F),Z)
represented by a cycle

z2®1e€ Bp ®Z[SLn,q(F)] 7.
Its image in H,(SLy,—2(F),Cy_o(F"?)) is represented by 2z ® (es, ..., e,). The
image of this in Hy(SL,(F),C7 (F")) is
z® E*(€37...,€q):|
z ® [(62562 —€1,€3,.. ) - (61762 —€1,€3,.. ) + (615627637 .- )]

= z2®[(g1 — g2+ 1)(e1,e2,e3,...)] € By ®@zsL, (r)) Cg (F")
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o0
0 0 O

This corresponds to the element in Hy,(SL,—_,(F),Z

o o

= O

1 -1
0 1
y 92 = 0 0
0 0

0o ... 0
0o ... 0
1 0 € SL,(F).
0 0
0 1

~

represented by

2(g1—g2+1)®@1 € By, ®zsL,_,(F) 2

Since the elements g; centralize SL,,_,(F") it follows that this is (g1 —g2+1)-w =

w.

O

Recall that the spectral sequence E*(F™) , , converges in degree n to S(F™)* .

Thus there is a filtration

0=Fn-1CFrnoCFn1C--Fpn= S'(Fn)-l,-M

with

«Fn,i & oo

n—i,4°
Frni—1 ’

The E'-page of £ (F™),, has the form

0 0 0 0
0 Hi(SL2(F),Z) Ha(SL2(F),Z) Hn (SL2(F), Z)
0 Hi (SLn—2(F), Z) Hy(SLy—2(F), Z) Hn(SLn—2(F),Z)
0 0 0
0 Hi(SLn—1(F), Z) Hy(SLy—1(F), Z) Hn(SLn—1(F),Z)
0 Hi (SLn (F), Z) Hy(SLn(F), Z) Hn(SLn (F), Z)
THEOREM 5.10.
(1) The higher differentials d*,d*, ..., in the spectral sequence ET(F™) ,,
are all 0.

(2) ,S~’(F”_2)M >~ Fx ,S~’(F”_2)M and this latter is a direct summand of

S(F™) -
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Proof.

(1) We will use induction on n. For n < 2 the statement is true for trivial
reasons.
On the other hand, if n > 2, by Lemma 5.9, the map

Ex—:EHF"2) 2] = ET(F™)
induces an isomorphism on E!-terms for ¢ > 2. By induction (and the
fact that E’zl,’q =0 for ¢ < 1), the result follows for n.

(2) The map of spectral sequences ET(F"2)  [2] — ET(F™),, induces a
homomorphism on abutments

g(Fn—2)+M & g(Fn)+M

By Lemma 5.9 again, it follows that the composite
S(F"2)* g SN g — (S 1) [ Fo
is an isomorphism. 3
Thus S(F"2)* ,, 2 E*S(F"?)* ,, and
S = (B SF™2)" ) @ Fa.
O

As a corollary we obtain the following general homology stability result for the
homology of special linear groups:

COROLLARY 5.11.
The corestriction maps H,(SL,—1(F),Z) — H,(SL,.(F),Z) are isomorphisms
for p <n —1 and are surjective when p =n — 1.

Proof. Using (1) of Theorem 5.10 and Lemma 5.8, we have (for the spectral
sequence E(F™) () that E° = E2 =
Ker(d') _ | Ker(H,(SLy—q(F),Z) = Hp(SLu—q11(F), Z)) q odd
Im(d') | Coker(H,(SL,—q—1(F),Z) — Hy(SL,—4(F),Z)) q even
But the abutment of the spectral sequence is 0 in dimensions less than n. It
follows that £ = 0 whenever p+¢q <n —1. g

REMARK 5.12. Note that in the spectral sequence 8+(F")M,
o = Coker(H,,(SLy,—1(F), Z) — H,(SL,(F), Z)) = SH,(F).

Clearly, the edge homomorphism H,,(SL,(F),Z) — E;5 — S(F”)M is just
the iterated connecting homomorphism €, of section 3 above. Thus we have:

COROLLARY 5.13. The maps
€o : SHo(F) — S(F®) ,,

define an injective homomorphism of graded Z[F*]-algebras.
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COROLLARY 5.14. S(F?),, = Fo1 ® Z|F*]E and for all n > 3,
S(E™) g = (B S(F™2) ) @ Fo = S(F"™2) & Fus.
Proof. Clearly g(F2)+M = Fi,2, while for n > 3 we have
- { S(F™)* , ® Z[F*|E*% n even

S ) p = S(F”)*‘M@(S‘(F)*E*%l) n odd
COROLLARY 5.15. For all n > 3,

S(F™) ., = Fn1 ®Fno21®- @ Fo1 ®LFX] n even
M7 Fao1®Fn21® D Fs1 D Lpx n odd

as a Z[F*]-module.

Note that Fi1 = ,S~’(F) = Zpx, and for all n > 2, F,; fits into an exact
sequence associated to the spectral sequence ET(F™) M

0— B =Fno— Fn1— E211—0.
COROLLARY 5.16. For all n > 2 we have an exact sequence
H,(SL,_1(F),Z) — H,(SL,(F),Z) = Fp1 —
H,-1(SL,—1(F),Z) — H,,—1(SL,,(F),Z) — 0.
LEMMA 5.17. For all n > 2, the map T, induces a surjective map Fn1 —
KW (F).
Proof. First observe that since KMW(F) is generated by the elements of the

form [a1]---[ay] it follows from the definition of T, that T, : S(F") —
KMW(F) is surjective for all n > 1.

Next, since KMW(F) is multiplicative, T, factors through an algebra homo-
morphism S(F*),, — KMW(F). The lemma thus follows from Corollary 5.14
and the fact that T»(E) = 0. O

LEMMA 5.18. Fo1 = Fao and Ty : Fo 1 — K%V[W(F) 18 an isomorphism.

Proof. Since Hy(SLy(F),Z) = 0, Fa1 = Fap = ESS = ea(Ha(SLa(F), Z)).
Now apply Theorem 3.10. g

It is natural to define elements [a,b] € Fo g C S(F?),, by [a,b] := Ty *([a][b]).
LEMMA 5.19. In S’(FQ)M we have the formula
[a,6] = [a] * [b] = ((@)){(b))E.
Proof. The results above show that the maps T and D5 induce an isomorphism
(T2, D3) : S(F?) \ =2 KY™W(F) & Z[F*].
Since Dy(|a] * |b]) = ((a))((b)), while Ds(E) = 1, the result follows. O

THEOREM 5.20.
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(1) The product * respects the filtrations on S(F™); i.e. for all n,m > 1
and i,5 >0
]:n,i * ]:m,j C ]:n+m,i+j-
(2) For n > 1, let €541, denote the composite Fpi11 — Ex = E?m —
H,(SL,(F),Z). For alla € F* and for allm > 1 the following diagram
commutes:

Fno Ll Frnt1,1

EWT lfn+1,1
((a})-

Hn(SLn(F)7 Z) - Hn(SLn(F)7 Z)

Proof.

(1) The filtration on S(F"),, is derived from the spectral sequence &(F™).
This is the spectral sequence of the double complex B, ®gr,, (7)CJ (F™),
regarded as a filtered complex by truncating CJ (F™) at i fori =0, 1,.. ..
Since the product * is derived from a graded bilinear pairing on the
complexes CJ (F™), the result easily follows.

(2) The spectral sequence £(F™T1) calculates

Ha(SLoy1(F), €7 (F™4)) & Hy(SLys1 (F), H(F™)[n + 1]
(where [n + 1] denotes a degree shift by n + 1).
Let C[1,n] denote the truncated complex
CF (F™ 1) == G5 ()
and let Z; denote the kernel of d;. Then
He(SLy41(F),C[1,n]) = He(SL,41(F), Z1)[1].

If F; denotes the filtration on He(SLy11(F),C™(F™*1)) associated to
the spectral sequence £(F™*1), then from the definition of this filtra-
tion, FiHg(SLp11(F),CT(F™H)) =

Im(Hy, (SLy11(F), C[1,n]) = Hp(SLyq 1 (F),CT(F™T1Y)).
In particular,
Fr1,1 =2 Im(Hni1 (SLyt1 (F), O[1,1]) = Hpg1 (SLnga (F),CT(F™H))
and with this identification the diagram

Hpt1(SLns1 (F), C[1, n]) Fni1

QT l€n+1,1

Hy, (SLnt1 (F), Z1) Hy, (SLingt (F), CT (F™F1))

commutes (and H,(SL,41(F),CT(F"*!)) = H,(SA(F,F"),Z) by
Shapiro’s Lemma, of course).
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We consider SL,, (F') C SA(F,F™) C SLp11(F) C GLp11(F') where
the first inclusion is obtained by inserting a 1 in the (1,1) posi-
tion. Let B, denote a projective resolution of Z over Z[GL,+1(F)].
Let z € H,(SL,(F),Z) be represented by =z ® 1 € B, ®gzsL, (r)]
7 = Bp @z, r) C5(F™). Then |a] * €,(2) is represented by
z ® [(ae1) — (e1)] € By ®si,.,(F) Z1 which maps to the element of
H,,(SLy,41(F),CT(F™*1)) represented by 2(g — 1) ® (e1) where g =
diag(a,1,...,1,a71). But this is just the image of ((a))z under the
map H,,(SL,,(F),Z) — Hp(SA(F, F™),Z) = H,,(SLy,+1(F),C] (F™*1)).

O

LEMMA 5.21. The map Ty : F31 — KYW(F) is an isomorphism.
Proof. Consider the short exact sequence
0 — E5H — Fz1 — E3q — 0.
Here €3 induces an isomorphism
E55y = Coker(H3(SLa(F'), Z) — H3(SL3(F'), Z)).

By the main result of [8] (Theorem 4.7 - see also section 2.4 of this article), T3
thus induces an isomorphism E5% = 2K31(F) ¢ KY'W(F).
On the other hand,

E54 = Ker(Hy(SLa(F), Z) — Ha(SLs(F), Z)) = I*(F)

Thus we have a commutative diagram

0 E5% Fy1 —L— I3(F) 0

:lTS ng l

0 —— 2KM(F) — K}V (F)

where the vertical arrows are surjections.
Now the inclusion I?(F) — K)W(F) is given by ((a,b,c)) — {((a))[b][c]. Thus
the inclusion j : I*(F) — Ha(SLa(F),Z) is given by ({a,b,c)) — ({a))(b,c)
where (b, ¢) = €5 ' ([b, ¢]). Thus for all a,b,c € F* we have
jop(lal x[b,e]) = es1([a] * b, ¢]) = ((a)) (b, c)

using Theorem 5.20 (2), and thus p(|a] * [b,c]) = ((a,b,c)) € I3(F). It follows
from the diagram that

a(((a,b,¢))) = aop(la] *[b,c]) = ps o Tz([a] * [, ¢]) = {{a,b,¢))

so that « is the identity map, and the result follows. O
LEMMA 5.22. For alla € F*, |a] «E = Ex |a] in S(F®) .

Proof. By the calculations above, F3 1 = g(F3)+M = Ker(D3). Thus
R, = |a]*E—Ex|a] € F31. But then T3(R,) = 0 since T5(E) = 0 and thus
R, = 0 by the previous lemma. O
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LEMMA 5.23.
(1) For all a,b,c € F*
la] % [b,c] = [a,b] % |c] in g(F3)M.
(2) For all a,b,c € F*
a]  [b] % [c] = [] = [a]  [b] in S(F?) .
(3) For all a,b,c,d € F*
[a,b] % [c,d] = [a,c™ '] % [b,d] in S(F*) .
Proof. The calculations above have established that the map
(T3, D3) : S(F®) v, — K™V (F) @ Zpx
is an isomorphism.
(1) This follows from the identities
Ts(lal * b, c]) = [a][bl[c] = Ts([a, b] = |c])

and

Ds(la] *[b,¢]) = {{a,,¢)) = Ds([a,b] * |¢])

(2) This follows from the fact that [a][b][c] = [c][a][b] in KXW(F).
(3) We begin by observing that, since S(F) = Zpx as a Z[F*]-module we

have ((a))|b] = ab] — |a] — |[b] = {(b))|a] for all a,b € F*.

For x4, ..., Ty € F* and 4,7 > 1 with ¢ + j = n we set
Lij(@y,.. n) = {(@0) - (@) ([@iga] %o % [2a]) € S(F7) .
By the observation just made, we have
Lm»(xl ..... xn) = Li,j (ch(l) ..... xg(n))

for any permutation o of 1,... n.
So

[a, 0] % [¢,d] = (a] * [b] = ({@))((0)) E) * ([c] * [d] = ((c))((d))E)
= [a] = [b] * [c] * |d] = 2La2(a, b, ¢, d) * B + {(a)){(b))((c)){(d)) E**
Let R = [a,b] x [¢,d] — [a,c™ ] x [b, d].
So R=
la] * [b] % [¢] * [d] = [a] * [ '] * [b] * |d
+(

(ng(a b, e, d) Los(a,c b bd)) + E
a))((d)) [(( — ({7 B)E] * E.
However, since [b,c] = [¢~1,b] in S(F?),, we have (by Lemma 5.19)
(B () — (e PONE = (6] * e] — 1] * 18],
Thus {(a)) () [(B) () — () (BN)E] = B =
(La2(a,b,c,d) — Laa(a,c™t,b,d)) x E
and hence R =

la]*[b]* ] * |d] — |a] * ¢~ ]* [b] * |d] — (L22(a,b,c,d) — Lao(a, ¢, b,d))* E

-
(
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o

V_li/\
o)
]
\

—
x —
*

Ld] Uﬂ * [e]) - L(ﬂ (Ld] * [ = [b])
= la]* [b] % [c] * [d] — [a] * [c™'] % [b] ]
using (2) in the last step.
O

THEOREM 5.24. For all n > 2 there is a homomorphism p, : KMW(F) — F, 1
such that the composite T,, o u, is the identity map.

Proof. For n > 2 and aq,...,a, € F*, let {{a1,...,a,}} =

[a1, ag] * -+ x [an—1,an], n even .
{ la1] * [a2,a3] * - - * [an—1,an]), n odd € Faa CS(EF") p

By Lemma 5.23 (1) and (3), as well as the definition of [z,y], the elements

{{a1,...,a,}} satisfy the ‘Matsumoto-Moore’ relations (see Section 2.4 above),

and thus there is a well-defined homomorphism of groups
n:Ki}/IW(F)%]:n,l, [al]---[an]l—>{{al,...,an}}.

Since T, ({{a1,-..,an}}) = [a1] - - - [an], the result follows. O

COROLLARY 5.25. The subalgebra of SHae(F) generated by SHo(F) =

Hs(SLa(F),Z) is isomorphic to KXW (F) and is a direct summand of SHae (F).

Proof. This is immediate from Theorems 3.10 and 5.24. g

6. DECOMPOSABILTY

Recall that F is a field of characteristic 0 throughout this section.

In [24], Suslin proved that H,,(GL,(F),Z)/H,(GL,_1(F),Z) = KM(F). This
is, in particular, a decomposability result. It says that H,,(GL,(F),Z) is gen-
erated, modulo the image of H, (GL,_1(F),Z) by products of 1-dimensional
cycles. In this section we will prove analogous results for the special linear
group, with Milnor-Witt K-theory replacing Milnor K-theory. To do this, we
prove the decomposability of the algebra S(F*),, (for n > 3). Theorem 6.2 is
an analogue of Suslin’s Proposition 3.3.1. The proof is essentially identical, and
we reproduce it here for the convenience of the reader. From this we deduce our
decomposability result (Theorem 6.8), which requires still a little more work
than in the case of the general linear group.

LEMMA 6.1. For any finite-dimensional vector spaces W and V', the image of
the pairing

(2) SW, V)@ HW) = S(WaV),,
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coincides with the image of the pairing
(3) S(V)@S(W) = S(WaV),,
Proof. The image of the pairing (2) is equal to the image of
SW, V), @ HW) = SW aV),,
which coincides with the image of
SV) @S(W)\ = SWa V),
by the isomorphism of Corollary 5.6. |

Let S(F™)dc C S(F™),, be the Z[F*]-submodule of decomposable elements;
i.e. S(F™)c is the image of

Dr+a=npa>0 (S(FP)M ® S(Fq)M) ——S(F") .

More generally, note that if V.= V4, & V5 = V/ & VJ and if dimp (V;) =
dimp (V/) for i = 1,2, then the image of S(V;) ® S(Va) — S(V) coincides with
S(V{) ® S(V4) — S(V). This follows from the fact that there exists ¢ € SL(V)
with ¢(V;) =V/ for i =1,2.

Therefore S(F™)% is the image of

Drr—vievsvizo (S(VI)M ® S(V2)M> — S(Fn)/w
Ife=3, nl(:ﬂl, cap) € Cp(V) and y = 37, m;(yl,....yl) € Cy(V) and if
(@5, b yls -5 yl) € Xpig(V) for all 4, j, then we let

T®Y = mej(z’l, .. ,x;,y{, . ,yg) € Cpyq(V).
4,J
Of course, if z € Cp(V1) and y € Cy(Vo) with V =V @V, then z ® y = x x y.
Furthermore, when = ® y is defined, we have

dz®y) =d(z)®y+ (—1)Pz®d(y).
THEOREM 6.2. Let n > 1. For any ay,...,an,b € F* and for any 1 <i<n
la1, ..., bag, ..., a,] = ) lay,...,an,] (mod S(F™)%).

Proof. Let a =a1e1 + -+ baje; + -+ - anen.
We have

lay,...,bai,...,a,] — () |a1,...,an]
= dler,...,€iy...,en,a) —d(er,...,bie; ... en,0a)
= () ® (@) - () @ (e cava))
= d(el,l. . .,ei_l) ® ((ei) — (bez)) ® (6i+1, ... ,en,a)
+ (=D)%(e1,...,ei—1) ® ((e;) — (be;)) ® d(€is1,-..,€n,a)
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Let u=aie1 + - +a;_1€;—1 + baje; = a — Z?:i-i—l aje;. Then

(—1)i_1(€1, RN ei_l) = d((el, ceey ei_l) ® (u)) — d(el, ey ei_l) ® (u)
and

(ei+17 .- 'aeTMa) = d((’U;) ® (ei-'rla v en7a)) + (’LL) ® d(ei+17 .- 'aeTMa)'

Thus |ai,...,ba;,...,an] — (b) |a1,...,an] = X1 — Xo + X3 where
X1 = d(er,...,ei—1) ((e beZ )@d(u,ei+1,...,en,a),
Xo = d(er,...,ei—1,u) ( — (be;) )@d(eiﬂ,...,en,a), and
Xs; = d(er,...,ei—1) ((ez (bei)) ® (u) + (u) ® ((e5) — (be;))

® d(6i+1,.. , €ny Q)

We show that each X; is decomposable: Let V' C F™ be the span of
U, €541, ... ,en (Which is also equal to the span of a,e;41,...,e,), and let V' be
the span of e1,...,€;-1. Then F" = V'@V and d(u,€;41,...,en,a) € H(V)
while

d(el, ceey €i_1) ® ((61) — (bez)) S H(V, V’)

Thus X; lies in the image of

H(V,V')® H(V) —— S(F") ,,

and so is decomposable.
Similarly, if we let W be the span of eq,...,e; and W’ the span of €;11,...,€n,
then

derso e w) @ () = (e, dlerseoveimn) ® [(e0) = (be) ® () + () ® ((e2) = (be))
belongs to H(W) and d(e;11,...,en,a) € H(W,W'). Thus X5, X3 lie in the
image of

HW)® H(W,W') —= S(F") ,,

and are also decomposable. O
Let S(F™)»d .= S(F"),,/S(F™)d.
The main goal of this section is to show that S(F")™¢ = 0 for all n > 3
(Theorem 6.8 below).

LEMMA 6.3. For all n >3, S(F™)™ is a multiplicative Z[F*]-module.

Proof. We have
A = ZIF1E*™/2, n even
T S(F)x E*»=D/2 0 podd
and these modules are decomposable for all n > 3. It follows that the map
S(F™)F = SFE™)™

is surjective for all n > 3. O
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REMARK 6.4. Since E * S(F"72),, C S(F")%°, in fact we have that F, 1 —

S(F™)d is surjective.

Theorem 6.2 shows that for all ay,...,a, € F*

lai,...,an] & <Hai> |1,...,1] (mod g(F”)dec).

In other words the map
ZIF*] = S(FM)™, aw—all,..., 1]

is a surjective homomorphism of Z[F*]-modules. Thus, we are required to
establish that |1,...,1] € S(F™)% for all n > 3.
For convenience below, we will let %,,(F) denote the free Z[F*]-module on the
symbols [al, .. .,an}, ai,...,a, € F*. Let p, : fln(F) — S(F”) be the Z[F*]-
module homomorphism sending [a1,...,a,] to |a1,...,a,]. We will say that
o € S(F™) is represented by ¢ € ,,(F) if p,(5) = 0.
Note that %4(F) can be given the structure of a graded Z[F*]-algebra by
setting

[a1,. . an] * [Gns1, - s Gngm) = [a1, s G5
i.e., we can identify ,(F) with the tensor algebra over Z[F*] on the free
module with basis [a], ac F*.
Let Il, : ¥4(F) — Z[F*][z] be the homomorphism of graded Z[F*]-algebras
sending [a] to (a) .
For all n > 1 we have a commutative square of surjective homomorphisms of
Z[F*]-modules

S0 (F) —2> Z[FX] - 2"
lpn lvn
S(F") —— S(Fm)nd
where v, (™) = |1,...,1].
LEMMA 6.5. If n is odd and n > 3 then S(F™)™ = 0; i.e.,
S(F™) p = S(F™)%e.

Proof. From the fundamental relation in g(F") (Theorem 3.3), if by, ..., b, are
distinct elements of F*, then 0 € S(F™) is represented by Ry, :=

i i=1

|:<Hbq,> - (1) - Z(*l)nJrj ((bj —b1) -+ (bj —bj_1) - (bjp1 —bj) - (bn —bj) - bj)| a™.
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We choose b; =4, i =1,...,n. Then

3

IL,(Ry) = | (n!) — (1) — Z(fl)”"’j Gl n—HN | ™ = — (1) 2" since n is odd.

j=1
It follows that —|[1,...,1] = 0 in S(F™)"™ as required. O

The case n even requires a little more work.
The maps {p,}n» do not define a map of graded algebras. However, we do have
the following:

LEMMA 6.6. For1+#a € F*, let

L(z) = (-1)[1 —x,1] — () [1 - é i} + [1,1] € Sy(F).

Then for all a1, ...,a, € F* \ {1}, the product

n

[T ail = [1,a1] %% [1,a,] € S(F?)

i=1
is represented by [[; L(a;) € Yo, (F).

Proof. For convenience of notation, we will represent standard basis elements
of Cy(F™) as n x g matrices [v1] - - |vg].

Let e = (1,...,1) and let 0;(C) denote the sum of the entries in the ith row
of the n x n matrix C. By Remark 3.2, if A € GL,(F) and [Ale] € X, +1(F™)
then d, ;1 ([Ale]) represents (det A) |o1 (A1), ..., 0n(A71)] € S(F™).

Now, for a # 1, |1, a] is represented in S(F?) by

dgqé ) ﬂ)ﬁ) ﬂ[(l) ﬂ+[(1) ﬂTl(a)Tg(a)+T3(a)€C’2(F2).

From the definition of the product x, it follows that [1,a1] *--- * |1,a,] is
represented by

Tj, (al)
T St )

5=(1,0n0dn) €(1,2,3)" T;, (an) J

where k(j) := |{i < nlj; = 2}|

Since a; # 1 for all 4, the vector e = (1, ..., 1) is in general position with respect
to the columns of all these matrices. Thus we can use the partial homotopy
operator s, to write this cycle as a boundary:

Z = Z(—l)k(j)dm-ﬂ ([T'(4,a)le]) -
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By the remarks above

dant1 ([T'(j, a)le]) = <H det T}, (az‘)> x

x|o1(T), (a1)), 02(T}, (a1)), 01(Ty, (az)), - - -, 01(T}, (an)), 02(T5, (an))]-

This is represented by

<H det Tji (az)> X
x[o1(T}, (a1)), 02(Tj, (a1)), 01(Th, (az2)), - - -, 01(T}, (an)), 02T}, (an))]

=HQw@mmh@mmm@mm)d%w»

Thus Z is represented by

n

S0 T ( et ) o0 (T (). (T ) )

n 3
= H (Z(l)jJrl <det Tj(a1)> [Ul(Tj(ai)),Ug(Tj(ai))]) HL((ZZ) c ign(F)

i=1 \j=1 i=1

O
Observe that all of our multiplicative modules (and in particular S(F™) ,,) have
the following property: they admit a finite filtration 0 = My C M; C --- C

M; = M such that each of the associated quotients M,./M,_; is annihilated by
Z(px k- for some k. > 1. From this observation it easily follows that

LEMMA 6.7.
S(F™)™ =0 <= S(F")"™/(Zpxyr - S(F™)™) =0 for all r > 1.
THEOREM 6.8. S(F™)™ =0 for alln > 3.

Proof. The case n odd has already been dealt with in Lemma 6.5
For the even case, by Lemma 6.7 it will be enough to prove that for all r > 1

ZIF* J(F*)] @zpx) S(F™)™ =0
Fixr>1. If a € (F*)" \ {1}, then

HﬂLm»::Oa—1>—<1—1>+«m)x2=<nx2eZﬁ“ﬂFﬂﬂf

a

since
1 -1
1--=2
a a

=a—1 (mod (F*)").
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Now let n > 1 and choose ay,...,an € (F*)"\ {1}. Let 0 = [1,a1] %%
[1,a,] € S(F?"), so that o + 0 in S(F?")™*. By Lemma 6.6, o is represented
by ¢ = [[;—, L(a;) in X5, (F) and thus
Man(5) = [[ (Ma(E(@:))) = (1) € ZIF= /(F* )]
i=1
so that the image of o in Z[F™ /(F*)"] ®zpx] S(F?m)irdis 1@ [1,...,1]. This
proves the theorem. O

COROLLARY 6.9. For all n > 2, the map T, induces an isomorphism F, 1 =
KMW(F).

Proof. Since, by the computations above, S(F?) ., = S(F)*? + Z[F*|E it fol-
lows, using Theorem 6.8 and induction on n, that S(F'®),, is generated as a
Z[F*]-algebra by {|a] € S(F)|1 # a € F*} and E.

Thus E is central in the algebra S(F*),, and for all n > 2,

SUE™) m
ExS(Fr2),,
is generated by the elements of the form |a;]*---*|a,], and hence also by the
elements {{a1,...,a,}} since [a,b] = |a] * |b] (mod (E)) for all a,b € F*.
Since

SE™) m
Ex S(Fn=2),,
by Corollary 5.14, it follows that JF,; is generated by the elements

{{a1,...,a,}}, and thus that the homomorphisms p, of Theorem 5.24
are surjective. O

]:'n,lg

COROLLARY 6.10. For all n > 3,
Sy KM F) e KNS (F)& - & KYW(F)8 Z[F*] n even
M7 KMYV(F) e KMY(F) @ - & KYW(F) & Tpx 1 odd
as a Z[F*]-module.
COROLLARY 6.11. For all even n > 2 the cokernel of the map
H,(SL,—1(F),Z) — H,(SL,(F),Z)
is isomorphic to KMW(F).
Proof. Recall that ez induces an isomorphism Hy(SLo(F),Z) = Fo1 = Fap.
Let (a,b) denote the generator e, *([a,b]) of Hy(SLa(F),Z). Then for even n
{{ala”-aan}} - [al,aQ]*"'*[anflaan]
= 62(<a1,a2)) O 62(<an—1;an>)
= enl{a1,a2) X -+ X (an—1,an))

by Lemma 3.5 (2).
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Since Fp,1 is generated by the elements {{a1,...,a,}}, it follows that F, 1 =
en(Hn(SLn(F),Z)) = E;Sy = Fn,0, proving the result. O

COROLLARY 6.12. For all odd n > 1 the maps
H, (SLk(F),Z) — H,(SLg+1(F), Z)
are isomorphisms for k > n.
Proof. In view of Corollary 5.11, the only point at issue is the injectivity of
H,(SL,(F),Z) = H,(SLp41(F), Z).
But the proof of Corollary 6.11 shows that the term
Fnr11/ B0 = B = Ker(Hy, (SLy (F), Z) — Hp (SLi41(F), Z))

n,1 —

in the spectral sequence ET(F™T1) s zero. O

COROLLARY 6.13. If n > 3 is odd, then
Coker(H,,(SL,,_1(F),Z) — H, (SL,(F),Z)) = 2KM(F)
Ker(H,_1(SL,,_1(F),Z) — H,_1(SL,(F),Z)) = I"(F).

Proof. Since we have already proved this result for n = 3 above, we will assume
that n > 5 (n odd).

Let ai,...,an, € F* and let z € H,,_1(SL,_1(F),Z) satisfy €,_1(z) =
Haz,...,an}} € Fro1o0 = KMWY(F). Thus {{a1,...,a,}} = [a1] * €n—1(2)
and hence €, 1({{a1,...,an}}) = ({a1))z by Theorem 5.20 (2). It follows that
the diagram

€n,1

-Fn,l —— anl(SLnfl(F)aZ)

ngn lTnloénl

KMV (F) — s KN (F)

n—1
commutes.
Now Ker(e,1) = Im(e, : H,(SL,(F),Z) — F,1). Since Im(es) =
Ty (2KY(F)) and Im(e,,—3) = Fpog,1 = T, 5 (KXY (F)) we have

T, (Im(e,)) = Im(Ty, 0 €,) D 2K3N(F) - KM (F) = 2K)(F) ¢ KMW(F)
(using the fact that Ty and €, are algebra homomorphisms).

Thus we get a commutative diagram

—1
KMV Ta Fna

2KM(F) Ker(en,1)
:ln //06 o€
I"(F)

from which it follows that the map 7, ! in this diagram is an isomorphism, and
hence Im(e,) = Ker(e, 1) = 2KM(F) and Im(e,, 1) = I™(F). O
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INTRODUCTION

Given a simple algebra A with centre F', the group SK;(A) is defined for i = 1,2
as the kernel of the reduced norm

Nrd; : Kz(A) — Kz(F)

The definition of Nrd; is classical, and Nrdy was defined by Suslin in [47, Cor.
5.7]. For further reference, let us recall these definitions in a uniform way: let
X be the Severi-Brauer variety of A. After Quillen [42, Th. 8.4], there is an
isomorphism

d—1

P Ki(A5) =5 Ki(X)  (d = deg(A))

r=0
for any ¢ > 0. The reduced norm is then given by the composition

Ki(A) — Ki(X) — H°(X,K;) < K;(F)

where the right isomorphism is obvious for ¢ = 1 and is due to Suslin [47, Cor.
5.6] for i = 2.

Of course, this definition also makes sense for ¢« = 0: in this case, Nrd is simply
multiplication by the index of A:

Ko(A) ~ 7 2, 7.~ Ko(F)

and SKy(A) =0.
[For ¢ > 2, a reduced norm satisfying reasonable properties cannot exist (Rost,
Merkurjev [33, p. 81, Prop. 4]): the right generalisation is in the framework of
motivic cohomology, see [22].]
The groups SK;(A) and SK2(A) remain mysterious and are known only in
very special cases. Here are a few elementary properties they enjoy:

(1) SK;(A) is Morita-invariant.

(2) ind(A)SK;(A) = 0 (from Morita invariance, reduce to the case where

A is division, and then use a transfer argument thanks to a maximal

commutative subfield of A).
(3) The cup-product K1 (F)® K1(A) — K2(A) induces a map

(4) Let v be a discrete valuation of rank 1 on F, with residue field k, and
assume that A spreads as an Azumaya algebra A over the discrete
valuation ring O,. It can be shown that the map SK;(A) — SK;(A)
is surjective and that, if K2(O,) — K2(F') is injective, there is a short
exact sequence

SKy(A) = SKo(A) -5 SK(Ar)
with

O{f}-x) =o(f)z
for f € F* and z € SK;(A).
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(5) Let A(t) = F(t) ®F A, and similarly A(x) = F(z) ®F A for any closed
point z € AL. Then there is an isomorphism

SKi(A) = SK;(A(t))
due to Platonov and an exact sequence
0 — SKy(A) = SK(A(t)) — @ SKi(A(x)).
z€AL
From (3) and (4), one deduces that SK;(A) is a direct summand of SK5(A(t))

via the map x — {¢} - x: in particular, the latter group is nonzero as soon as
the former is. More intriguing is the Calmeés symbol

L A2 K1(4)
¥ (G
aAbw~— Nrd(a)-b— a- Nrd(b).

) — SK(A)

The image of this symbol is not detected by residues.

Let us now review known results about SK; and SK,. If F is a global field,
then SK;(A) = 0 for ¢ = 1,2: this is classical for i = 1 as a consequence of
class field theory, while for ¢ = 2 it is due to Bak and Rehmann using the
Merkurjev-Suslin theorem [2]. In the sequel, I concentrate on more general
fields F' and always assume that the index of A is invertible in F'.

0.A. SK;. The first one to give an example where SK;(A) # 0 was Platonov
[41]. In his example, F is provided with a discrete valuation of rank 2 and the
Brauer group of the second residue field is nontrivial; in particular, cd(F) > 4.
Over general fields, a striking and early result for SK; is Wang’s theorem:

THEOREM 1 (Wang [58]). If the index of A is square-free, then SK;(A) = 0.

The most successful approach to SK1(A) for other A has been to relate it to
Galois cohomology groups. This approach was initiated by Suslin, who (based
on Platonov’s results) conjectured the existence of a canonical homomorphism

SKl(A) - H4(Fa H%3)/[A] 'H2(F7 MS?Q)

where n is the index of A, supposed to be prime to char F' [49, Conj. 1.16]. In
[49], Suslin was only able to partially carry over this project: he had to assume
that p,s C F and then could only construct twice the expected map, assuming
the Bloch-Kato conjecture in degree 3.

The next result in this direction is due to Rost in the case of a biquaternion
algebra:

THEOREM 2 (Rost [33, th. 4]). If A is a biquaternion algebra, there is an exact
sequence

0 — SK(A) — HYF,Z/2) — HYF(Y),Z/2)
where Y is the quadric defined by an ‘Albert form’ associated to A.
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The surprise here is that Rost gets in particular a finer map than the one
expected by Suslin, as he does not have to mod out by multiples of [A].
Merkurjev generalised Rost’s theorem to the case of a simple algebra of degree
4 but not necessarily of exponent 2:

THEOREM 3 (Merkurjev [35, th. 6.6]). If A has degree 4, there is an exact
sequence

0— SK(A) — H*(F,Z/2)/2[A]- H*(F,Z/2) — H*(F(Y),Z/2)
where Y is the generalised Severi-Brauer variety SB(2,A), a twisted form of
the Grassmannian G(2,4).

Note that the right map makes sense because Ap(y) has exponent 2.
Merkurjev’s exact sequence is obtained from Rost’s by descent from F(Z) to
F, where Z = SB(A®?). The point is that neither SK;(A) nor the kernel of
the right map in Theorem 3 changes when one passes from F' to F(Z).

More recently, Suslin revisited his homomorphism of [49] in [50], where he
constructs an (a priori different) homomorphism using motivic cohomology
rather than Chern classes in K-theory. He compares it with the one of Rost-
Merkurjev and proves the following amazing theorem:

THEOREM 4 (Suslin [50, Th. 6]). For any central simple algebra A of degree 4,
there exists a commutative diagram of isomorphisms
K H4 F ®3 H4 F(X ®3
i) o Kol E ) o HUEC0. )
~ [A] -H (Fa 12 )

I -
K H4 F ®3 H4 F(Y ®3
sy b Kol E") - B0, 5%)
~ 2[A] - H?(F, py”)
where X = SB(A), Y = SB(2, A), ¢ is Suslin’s homomorphism just mentioned
and 1 is Merkurjev’s isomorphism from Theorem 3.

0.B. SK3. Concerning SK2(A), the first result (over an arbitrary base field)
was the following theorem of Rost and Merkurjev:

THEOREM 5 (Rost [43], Merkurjev [31]). For any quaternion algebra A,
SKs(A) =0.

Rost and Merkurjev used this theorem as a step to prove the Milnor conjecture
in degree 3; conversely, this conjecture and techniques of motivic cohomology
were used in [21, th. 9.3] to give a very short proof of Theorem 5. We revisit
this proof in Remark 7.3, in the spirit of the techniques developed here.

The following theorem is more recent. In view of the still fluctuant status of the
Bloch-Kato conjecture for odd primes, we assume its validity in the statement.
(See §2.A for the Bloch-Kato conjecture.)

THEOREM 6 (Kahn-Levine [22, Cor. 2], Merkurjev-Suslin [38, Th. 2.4]). As-
sume the Bloch-Kato conjecture in degree < 3. For any central simple algebra
A of square-free index, SKo(A) = 0.
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From Theorems 1 and 6, we get by a well-known dévissage argument a re-
finement of the elementary property (2) given above: for any A and ¢ = 1,2,
inﬁ#SKi(A) = 0, where the [; are the distinct primes dividing ind(A).

On the other hand, Baptiste Calmes gave a version of Rost’s theorem 2 for

S Ky of biquaternion algebras:

THEOREM 7 (Calmes [5]). Under the assumptions of Theorem 2, assume fur-
ther that F contains a separably closed field. Then there is an exact sequence

Ker(Ag(Z, Ks) — Ko(F)) — SK3(A) — H*(F,Z/2) — H*(F(Y),Z/2)
where Z is a hyperplane section of Y.

(Note that in the case of SKj, the corresponding group Ker(Ao(Z, K1) —
K1(F)) is 0 by a difficult theorem of Rost.)
Finally, let us mention the construction of homomorphisms a la Suslin

(0.1) SKi(A) — H*(F,Q/Z(3))/[A] - K2(F)
(0.2) SKy(A) — H°(F,Q/Z(4))/[A] - K3'(F)

in [22, §6.9], using an étale version of the Bloch-Lichtenbaum spectral sequence
for the motive associated to A. The second map depends on the Bloch-Kato
conjecture in degree 3 and assumes, as in Theorem 7, that F' contains a sep-
arably closed field. This construction goes back to 1999 (correspondence with
M. Levine), although the targets of (0.1) and (0.2) were only determined in
[22, Prop. 6.9.1].

0.C. THE rRESULTS. Calmes’ proof of Theorem 7 is based in part on the meth-
ods of [18]. In this paper, I propose to generalise his construction to arbitrary
central simple algebras, with the same technique. The methods will also shed
some light on the difference between Suslin’s conjecture and the theorems of
Rost and Merkurjev. The main new results are the following:

THEOREM A. Let F be a field and A a simple algebra with centre F' and index
e, supposed to be a power of a prime | different from char F'. Then, for any
divisor v of e, there is a complex

0 SKi(A) 25 HY(F,Q/2(3))/r[A] - Ka(F) — (Y1), HA(Q/Z(3)))

where Y"1 is the generalised Severi-Brauer variety SB(r,A) and the groups
AO(Y[T], —) denote unramified cohomology. If the Bloch-Kato conjecture holds
in degree 3 for the prime l, these complexes refine into complexes

0 SKi(A) — H*(F,u23) r[A] - H(F,pf2) — AP HA(uE0)).

They are exact for r =1,2 and e = 4.

I don’t know, and don’t conjecture, that these complexes are exact in general.
The map of theorem A coincides with those of Rost and Merkurjev, which is
the way we get their nontriviality for [ = 2 [34].
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THEOREM B. Let F', A, e and Y" be as in Theorem A; assume the Bloch-Kato
conjecture in degree < 3 at the prime | and that F' contains a separably closed
subfield. Then, for any divisor r of e, there is a complex

0_2
0 — SKy(A) = H*(F,Q/Z(4))/r[A] - K3'(F) — A° (Y H.(Q/Z(4))).
If, moreover, the Bloch-Kato conjecture holds in degree 4 for the prime [, these
complezes refine into complezes

0 — SKy(A) — H*(F,pu&) /r[A] - H*(F, p&2) — A°(Y1, HE, (u pE)).

Forl =2, the maps starting from SKo(A) are nontrivial in general for r = 1,2
(unless ind(A) < 2).

THEOREM C. For any smooth F-variety X, define
SK1(X, A) = lim Homp (X, SL, (4))*

where SL,,(A) is the reductive group representing the functor R — SL,(A®F
R). Then there exists a natural transformation

ca(X): SK(X,A) — H3(X,Z(3)).

Restricted to fields, ca is the universal invariant with values in HZ (Z(3)) ~
H.(Q/Z(3)) in the sense of Merkurjev [35].

Loosely speaking, ca is defined out of the “positive” generator of the group
H3.(SL1(A),Z(3))/HZ,(F,Z(3)) which turns out to be infinite cyclic, much
hke the Rost invariant is defined out of the “positive” generator of the infinite
cyclic group HJ (SL1(A),Z(2)) ~ Hf (BSLy(A), Z(2)) (see [8, App. B]). This
replies [35, Rk. 5.8] in the same way as what was done for the Arason invariant
in [8].

THEOREM D. Let K be the function field of SLy(A). If ind(A) = 4, we have
S (Ak) [SKL(A) ~ Z/2.
In Conjecture 10.16 we conjecture that SK1(Ax)/SK1(A) is cyclic for any A.
THEOREM E. Ifexp(A) =2 < ind(A), then
Inv*(SLy (A), H*(Q/Z(x — 1))) ~ Z/2

where the former group is Merkurjev’s group of invariants of SLy(A) with val-
ues in H4(—,Q/Z(3)) [35]. In particular the invariant of Theorem C' is non-
trivial in this case, and equals the invariant o} of Theorem A.

Theorems A, B and C were obtained around 2001/2002, except for the exactness
and nontriviality statements for » = 1, which follow from the work of Suslin
[50]. They were presented at the 2002 Talca-Pucén conference on quadratic
forms [20]. Theorems A and C are used by Tim Wouters in recent work [60].
Theorems D and E were obtained while revising this paper for publication.

This paper is organised as follows. We set up notation in Section 1. In Section
2, we recall the slice spectral sequences in the case of geometrically cellular
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varieties. Sections 3 to 5 are technical. In particular, Section 3 recalls the
diagrams of exact sequences from [18, §5], trying to keep track of where the
Bloch-Kato conjecture is used; we deduce a simple proof of Suslin’s theorem [50,
Th. 1], as indicated by himself in the introduction of [50] (see Remark 3.2). In
Section 6 we get our first main result, Theorem 6.1, which constructs functorial
injections sending a part of lower K-theory of some projective homogeneous
varieties into a certain subquotient of the Galois cohomology of the base field.
We apply this result in Section 7 to twisted flag varieties, thus getting Theorems
A and B (see Corollaries 7.4 and 7.5); in Remark 7.3, we revisit the proof
of Theorem 5 given in [21]. In Section 8, we push the main result of [22]
one step further. In Section 9, we do some preliminary computations on the
slice spectral sequences associated to a reductive group G: the main result is
that, if G is simple simply connected of inner type A, for r > 2, then the
complex a*c3(G) of [14] is quasi-isomorphic to Z[—1] (see Theorem 9.5 for a
more complete statement). In section 10, the approach of Merkurjev in [35]
plays a central role: we prove Theorem C, see Theorem 10.7, Theorem D, see
Corollary 10.15 and part of Theorem E, see Proposition 10.11. We conclude
with some incomplete computations in Section 11 trying to evaluate the group
SKi(Ak)/SK1(A) in general, where K is the function field of SLq(A): see
Theorem 11.9 and Corollary 11.10. At the end of this section we complete the
proof of Theorem E, see Corollary 11.12.

This paper contains results which are mostly 8 to 9 years old. The main reason
why it was delayed so much is that I tried to compare the 3 ways to construct
homomorphisms & la Suslin indicated above: in (0.1)—(0.2), Theorems A and B
and Theorem C, and to prove their nontriviality in some new cases. In the first
version of this work, I wrote that I had been mostly unsuccessful. Since then
the situation has changed a bit with Theorems D and E: they were potentially
already in the first version, but Wouters’ work [60] was an eye-opener for this.
The easy comparisons are, for Theorems A and B, with the Rost and Calmes
homomorphisms of Theorems 2 and 7, and with the new Suslin homomorphism
of Theorem 4. We can now also compare those of Theorems A and C in certain
cases as in Theorem E, see also Corollary 10.10 and [60, §4]. A complete
comparison of all invariants still seems challenging!: I give some comments on
these comparison issues in Subsection 7.F and Remark 10.12.

ACKNOWLEDGEMENTS. This project was started in 2001. I would like to thank
Marc Levine, Baptiste Calmes, Annette Huber, Sasha Merkurjev, Evgueny
Schinder, Philippe Gille, Tim Wouters and Nikita Karpenko for helpful discus-
sions and exchanges. Especially, I thank Gille and Wouters for explaining me
my own work. Last, I would like to express my admiration for Suslin’s work:
the inspiration I have drawn from it will be obvious throughout this paper.

1Including with the first homomorphism of Suslin in [49], a comparison I had initiated in
a preliminary version of this paper. (A vestige remains in §11.C.)
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1. NOTATION

If X is a projective homogeneous variety, we denote as in [18] by E; the étale F-
algebra corresponding to the canonical Z-basis of C H*(X,) given by Schubert
cycles, where Xy = X ®p Fy and Fj is a separable closure of F.

The motivic cohomology groups used in this paper are (mostly) the Hom groups
in Voevodsky’s category DM Effét (F) of [54, §3.3] (étale topology). In particular,
the exponential characteristic p of F is inverted in this category by [54, Prop.
3.3.3 2)], so that those groups are Z[1/p]-modules. Very occasionally we shall
use Hom groups in the category DM®*(F) (Nisnevich topology).

Let (Q/Z) = @#p Qi/Z;. We abbreviate the étale cohomology groups
H! (X,(Q/Z)(j)) with the notation H*(X, j).

Unless otherwise specified, all cohomology groups appearing are étale cohomol-
ogy groups, with the exception of cycle cohomology groups in the sense of Rost
[44]. The latter are denoted by AP(X,M,), where M., is the relevant cycle
module. By Gersten’s conjecture [44, Cor. 6.5], these groups are canonically
isomorphic to the Zariski cohomology groups Hj (X, M,), where M, is the
Zariski sheaf on X associated to M,; we shall occasionally but rarely use this
isomorphism, implicitly or explicitly.

2. MOTIVIC COHOMOLOGY OF SMOOTH GEOMETRICALLY CELLULAR
VARIETIES UPDATED

2.A. THE BLOCH-KATO CONJECTURE AND THE BEILINSON-LICHTENBAUM
CONJECTURE. At the referee’s request, I recall these two conjectures and their
equivalence:

2.1. CoNJECTURE (Milnor, Bloch, Kato). Let n > 0, m > 1 be two integers.
Then, for any field F of characteristic not dividing m, the “norm residue sym-
bol”

K (F)/m — H™(F,u")
(first defined by Tate in [52]) is bijective.

2.2. CONJECTURE (Suslin-Voevodsky). Let n > 0, m > 1, i € Z be three
integers. Then, for any field F' of characteristic not dividing m and any smooth
F-scheme X, the change of topology map

HY (X, Z/m(n)) — He (X, Z/m(n))

is bijective for i < n and injective for i = n + 1, where Z/m(n) is the mod m
version of the n-th motivic complex of Suslin- Voevodsky.

Conjecture 2.2 appears in [51] where (among other places like [54]) the com-
plexes Z(n) are introduced. It therefore cannot be literally attributed to Beilin-
son and Lichtenbaum, although it is indeed a common part of conjectures they
made in the eighties on the properties of the still conjectural complexes Z(n).
Voevodsky observed in [56] that the special case X = Spec F', i = n of Conjec-
ture 2.2 is a reformulation of Conjecture 2.1. Conversely:
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2.3. THEOREM ([51, 10], see also [19]). Conjecture 2.1 (for the pair (n,m))
implies Conjecture 2.2 (for the triples (n,m,1i)).

We shall actually use in this paper the following variant of Conjecture 2.2 with
integral coefficients:

2.4. PROPOSITION. Congjecture 2.2 for m a power of a prime l is equivalent
to the following: let n > 0, i € Z be two integers. Then, for any field F' of
characteristic # 1 and any smooth F-scheme X, the change of topology map

HIi\Iis(Xv Z(n)) - He?t (Xa Z(n))
1s bijective for i < n+ 1 and injective for i = n + 2 after localising at .

The equivalence is an easy consequence of the fact that the map in Proposition
2.4 is an isomorphism after tensoring with Q for any ¢ € Z [53, Prop. 5.28].
The special case X = SpecF, i = n + 1 of Proposition 2.4 enunciates that
HIPY(F,Z(n)® Z;) = 0: this is called “Hilbert’s theorem 90 in degree n” and
is actually equivalent (for all F) to the above conjectures.

At the time of writing, the status of Conjecture 2.1 is as follows. For n = 0
it is trivial, for n = 1 it is Kummer theory ( <= Hilbert’s theorem 90), for
n = 2 it is the Merkurjev-Suslin theorem [36], for m a power of 2 it is due to
Voevodsky [56]. In general it seems now to be fully proven as a combination
of works by several authors, merging in [57] (see [59] for an overview).

In this paper, we use these conjectures for n = 2 (resp. n = 3) when dealing
with SK; (resp. SK3) and Q/Z coefficients, and for n = 3 (resp. n = 4) when
dealing with SK; (resp. SK3) and finite coefficients.

2.B. THE SLICE SPECTRAL SEQUENCES. In [18], we constructed spectral se-
quences for the étale motivic cohomology of smooth geometrically cellular va-
rieties. These results were limited in two respects:

(1) the ground field F' was assumed to be of characteristic 0;
(2) the spectral sequences had a strange abutment, which was nevertheless
sufficient for applications.

The results of [14] solved both issues. The first one was due to the fact that
[18] worked with motives with compact support in Voevodsky’s triangulated
category of motives [54], which are known to be geometric only in characteristic
0: indeed, it was shown that the motive with compact supports of a cellular
variety X is a pure Tate motive in the sense of [14], from which it was deduced
by duality that the motive of X (without supports) is also pure Tate if X is
smooth. In [14, Prop. 4.11], we prove directly that, over any field, the motive
of X is pure Tate if X is smooth and cellular.

The second issue was more subtle and is discussed in [14, Remark 6.3]. The
short answer is that by considering a different filtration than the one used in
[18], one gets the “right” spectral sequence.

We summarize this discussion by stating the following theorem, which follows
from [14, (3.2) and Prop. 4.11] and replaces [18, Th. 4.4]:
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2.5. THEOREM. Let X be a smooth, equidimensional, geometrically cellular
variety over a perfect field F. For all n > 0, there is a spectral sequence
E(X,n):

(1) EPI(X.n) = HEU(F,CHY(X,) ® Z(n — q)) = HE(X, Z(n).

Note that, by cellularity, each CHY(X,) is a permutation Galois module. These
spectral sequences have the following properties:

(i) NATURALITY. (2.1) is covariant in F' and contravariant in X (varying
among smooth, equidimensional, geometrically cellular varieties) under
any maps (even finite correspondences).

(i) ProbpucTs. There are pairings of spectral sequences

EP9(X,m) x BP9 (X,n) — EPTP 0 (X, m 4 n)

which coincide with the usual cup-product on the Es-terms and the
abutments.

(iii) TRANSFER. For any finite extension E/F and any n > 0, there is a
morphism of spectral sequences

EPi(Xp,n) = EP(X,n)

which coincides with the usual transfer on the Es-terms and the abut-
ment.

(iv) COVARIANCE FOR CLOSED EQUIDIMENSIONAL IMMERSIONS. For any
closed immersion i : Y — X of pure codimension ¢, where X and
Y are smooth, geometrically cellular, there is a morphism of spectral
sequences

EP=e1=¢(Y,n — ¢) == EP9(X,n)
“abutting” to the Gysin homomorphisms
HEPT72(Y, Z(n — ) = HET(X, Z(n)).
If X is split, then (2.1) degenerates at Es.

The only nonobvious point in this theorem is (ii) (products). In [14, p. 915],
it is claimed that there are pairings of slice spectral sequences for the tensor
product of two arbitrary motives M and N. This is not true in general: I thank
Evgeny Shinder for pointing out this issue. However, these pairings certainly
exist if M or N is a mixed Tate motive: the argument is essentially the same as
the one that proves that the Kiinneth maps of [14, Cor. 1.6] are isomorphisms
in this case [14, Lemma 4.8]. For the reader’s convenience, we outline the
construction. We take the notation of [14]:

Given the way the slice spectral sequence is constructed in [14, §3] (bottom of
p. 914), to get a morphism of filtrations, we need to get morphisms

Vegrg (M @ M') = v<gM ®@ v<g M’

for two motives M, M’ and two integers q, ¢'.
From the canonical maps M — v<,M and M’ — v<yM’, we get a morphism

M®M’ — Z/SQM®VSQIMI
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and we would like to prove that its composition with >4+ (M®@M') — M&M'
is 0. This will be true provided

v (ve M @ veg M') =
Hom(Z(q +q' + 1), v<qM @ v<g M')(q +q' + 1) = 0.
This is false in general (for example M = M’ = hy(C), ¢ = ¢’ = 0, where C

is a curve of genus > 0 over an algebraically closed field), but it is true if M
or M’ is a mixed Tate motive. Indeed, we may reduce to M = Z(a) for some

integer a. Then
if

Ve M = 0 1 qg<a

- Z(a) ifqg>a
hence Hom(Z(qg + ¢’ + 1), v<qM @ v<gM') =0 if ¢ < a, and if ¢ > a we get

Hom(Z(q + ¢ +1),v<gM @ v<y M')
— Hom(Z(q + ¢ + 1), Z(a) ® vey M)

=Hom(Z(g+q¢ +1—a),v<gM') =0

because ¢ +¢ +1—a > ¢'.

Dealing with the spectral sequences for étale motivic cohomology, it will suffice
that M or N is geometrically mixed Tate in the sense of [14, §5] to have these
products.

2.6. Remark. As stressed in §1, the spectral sequences of Theorem 2.5 are
spectral sequences of Z[1/p]-modules, where p is the exponential characteristic
of F. Thus all results of this paper are “away from p”. It is nevertheless
possible to extend the methods to p-algebras in characteristic p, at some cost:
this is briefly discussed in Appendix A. I am grateful to Tim Wouters for a
discussion leading to this observation.

2.C. VANISHING OF FE5-TERMS. Since this issue may be confusing, we include
here an estimate in the case of the spectral sequences (2.1) and of the coniveau
spectral sequences, which will be used in the next section (compare [18, p. 161]).
It shows that these two spectral sequences live in somewhat complementary
regions of the Fs-plane.

2.7. PROPOSITION. a) In the spectral sequence (2.1), we have ES"(X,n) = 0
in the following cases:

(al) a <b,b>n—1, except a=b=n.

(aii) a =n+ 1 under the Bloch-Kato conjecture in degree n. — b.
Moreover, E;’b(X, n) is uniquely divisible for a < b and b <n — 1.
b) Let X be a smooth variety. In the coniveau spectral sequence for étale motivic
cohomology

Ef' = @ H (k) Z(n - a)) = H(X, Z(n))
zeX (@)

we have Ef’b = 0 in the following cases:
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(bi) a>b,a>n—1, except a =b=n.

(bii) b=mn+ 1 under the Bloch-Kato conjecture in degree n — a.
Moreover, ES*(X,n) is uniquely divisible for a > b and a < n — 1.
Finally, for b =n, the natural map

AYX, KDL /p) = By

s surjective under the Bloch-Kato conjecture in degrees < n — a, and bijective
under the Bloch-Kato conjecture in degrees < n —a + 1.

Proof. For (ai), we use that ES"(X,n) = H{P(F,CHY(Xs) @ Z(n — b)) ~
HL Y F,CHY(X5) ® Q/Z(n — b)) for n — b < 0 (by definition of Zg(n — b)
for n — b < 0, see [14, Def. 3.1]), and also that Z(0) = Z and Z(1) = G,,[—1].
(aii) follows from Hilbert 90 in degree n — b (see §2.A after Proposition 2.4).
The proofs of (bi) and (bii) are similar. The divisibility claims reduce to the
unique divisibility of HY, (K, Z(r)) for i <0 (r > 0, K/F a function field): this
is obvious for i < 0, while for i = 0 we may reduce to finitely generated fields
as in [17, proof of Th. 3.1 a)]. Finally, the last claim follows from a diagram
chase in the comparison map between the Gersten complexes for Nisnevich and
étale cohomology with Z(n) coefficients. O

3. WEIGHT 3 AND WEIGHT 4 ETALE MOTIVIC COHOMOLOGY

In this section, we examine in more detail the diagrams obtained in [18] by
mixing the slice and coniveau spectral sequences, and expand the results in
weight 4. In order to stress the irrelevance of Gersten’s conjecture, we replace
the notation H?(X,H9) or HP(X, ;) used in [18] by the notation AP(X, H?)
or AP(X, K,) (see §1).

3.A. WEIGHT 3. Let X be a projective homogeneous F-variety. In [18, §5.4],
we drew a commutative diagram with some exactness properties, by mixing
the coniveau spectral sequence and the spectral sequence of [18, Th. 4.4] for
étale motivic cohomology in weight 3. We can now use the spectral sequence
(2.1) to get the same diagram over any perfect field. To get the diagram of [18,
§5.4], we made the blanket assumption in [18] that all groups were localised at
2, because calculations relied on the Bloch-Kato conjecture in degree 3, which
was only proven for [ = 2.

In this paper, we are also interested in making the dependence on this conjec-
ture explicit. How much exactness remains in this diagram if we don’t wish to
use it in degree 37 Using Proposition 2.7, we see that at least the following
part of the diagram of [18, §5.4] remains exact by only using the Bloch-Kato
conjecture in degree < 2 (= the Merkurjev-Suslin theorem): the exponential
characteristic p is implicitly inverted in this diagram as well as in the next one,
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HY(F,Z(3))

B} CH3(X)
HS(X,Z(3)).

The group A%(X, H*(Z(3))), which appears twice in this diagram, is of course
torsion, as well as H*(F,Z(3)), and their [-primary components are 0 under
the Bloch-Kato conjecture in degree 3 for the prime .

3.B. WEIGHT 4. In weight 4, we cannot avoid using the Bloch-Kato conjecture
in degree 3. There is a commutative diagram, which was only written down in
a special case in [18]:

H*(X,Z(4)) = K3(E2)ina K3'(En)

\f§’2(4) ld§'1(4)

A0(X, HO(Z(4))) HO(F,4)

l AN

(3.2) AY(X,KM) —— HS(X,Z(4)) — A%X,H®°(4))

N l

Ky(Es) H3 (X, KM)

ﬁ‘é‘g@l) ld‘é’g(zl) l

HG(Fa4) H4(E1a3) H7(X,Z(4))

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 317-369



330 BruNnO KAHN

In this diagram, the differentials appearing correspond to the spectral sequence
(2.1) in weight 4. The path snaking from A°%(X, H%(Z(4))) to H"(X,Z(4)) is
exact (it comes from the coniveau spectral sequence for weight 4 étale motivic
cohomology: see Proposition 2.7). The differential d§’3(4) is only defined on
the kernel of dy®(4) and the differential da*(4) takes values in the cokernel of
d3?(4). The column is a complex, exact at H®(X, Z(4)); its exactness proper-
ties at H(F,4) and Ka(Es) involve the differentials d3 in an obvious sense.
All these exactness properties depend on the Bloch-Kato conjecture in degree
¢ for any field E and any ¢ < 3, and also on Hilbert’s theorem 90 in degree ¢
under the same conditions (which follows from the Bloch-Kato conjecture, see
§2.A).

The map 7° is the natural map from the Galois cohomology of the ground field
to the unramified cohomology of X.

3.C. THE GroUPS Ker n* AND Ker 7°.

3.1. DEFINITION. For i = 1,2, we denote by Ker 7n**3 the homology of the
complex

i+2,1 i o i+3 s -
Lo OB (R4 2) 1 AY(X, HIP (i + 2)).

KN (B
Diagram (3.1) yields an exact sequence
A%(X, H*(Z(3))) — Keré* — Ker n* =0
hence an isomorphism
(3.3) Ker&* = Ker n?

under the Bloch-Kato conjecture in degree < 3.

If F contains an algebraically closed subfield, then K3(Es)inq is divisible and
the differential dy*(4) is 0 since it is a priori torsion [18, Prop. 4.6]. Then
diagram (3.2) yields an exact sequence

AY(X, H?(Z(4))) — Keré&® — Ker n° =0
under the Bloch-Kato conjecture in degree < 3 and an isomorphism
(3.4) Ker &% = Ker 7°
under the Bloch-Kato conjecture in degree < 4.

3.2. Remark. Let us recover Suslin’s theorem [50, Th. 1] from (3.3). The point
is simply that the coniveau spectral sequence for Nisnevich motivic cohomology
yields an isomorphism

(¢f. [50, Lemma 9]). The differential d3'(3) was computed in [18, Th. 7.1] for
Severi-Brauer varieties.
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4. SOME K-COHOMOLOGY GROUPS

4.A. AY(X, K3) AND A°(X, K3). Recall from [18, Prop. 4.5] that
(4.1) ANX, K3 =5 AYX, K3) for i > 0.
For A'(X, K3), we have:

4.1. PROPOSITION. Let X be a projective homogeneous variety over F, and
K/F a regular extension. Under the Bloch-Kato conjecture in degree 3, the
map

AYX,K3) — AN ( Xk, K3)

has p-primary torsion kernel, where p is the exponential characteristic of F.
More precisely, the kernel of this map is torsion and its l-primary part vanishes
for 1 # p if the Bloch-Kato conjecture holds at the prime | in degree 3.

Proof. Up to passing to its perfect closure, we may assume F' perfect. By
Diagram (3.1) and (4.1), there is a canonical map

AYX, K3) = Ko(Ey)

where E is a certain étale F-algebra associated to X, whose kernel is contained
in H{ (F,Z(3)): hence the [-primary part of this kernel vanishes under the
condition in Proposition 4.1. The result now follows from [47, th. 3.6]. O

Let still X be a projective homogeneous F-variety. Asin [18, §5.1], for alli > 0
we write F; for the étale F-algebra determined by the Galois-permutation basis
of CH*(X5) given by Schubert cycles (see §1).

4.2. THEOREM. a) For i <2, the map K;(F) — A%(X, K;) is bijective.
b) Under the Bloch-Kato conjecture in degree 3, the cokernel of the homomor-
phism
K3(F) — AY(X, K3)
is torsion, and its prime-to-the-characteristic part is

(1) finite if F is finitely generated over its prime subfield;
(2) 0 in the following cases:
(i) F contains a separably closed subfield;
(ii) the map CHY(Xg,) — CHY(Xj) is surjective.
More precisely, under the Bloch-Kato conjecture in degree 3 for the prime I,
the above is true after localisation at .

Proof. a) is well-known and is quoted for reference purposes: it is obvious for
i = 0,1 (since X is proper geometrically connected), and for ¢ = 2 it is a
theorem of Suslin [47, Cor. 5.6].

b) After [17, Th. 3 a)] (see also [27, Th. 16.4]), the homomorphism K (K) —
K3(K) is injective for any field K. Consider the commutative diagram with
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exact rows

0 —— K (F) —— K3(F) —— K3(F)ia — 0

! ! !

0 —— AYX,KM) —— AY%X,K3) —— A%(X, Kipd),

As X is a rational variety, the right vertical map is bijective [8, lemma 6.2]. It
therefore suffices to prove the claims of theorem 4.2 for the left vertical map.
Let us first assume F' perfect: then we can use Theorem 2.5. Mixing the weight
3 coniveau spectral sequence for étale motivic cohomology with the spectral
sequence (2.1) in weight 3, we get modulo the Bloch-Kato conjecture in degree
3 the following commutative diagram with exact rows:

0

K31(F)

e

0—AL(X, H2(Z(3))) —— H3(X,Z(3)) — A°(X,KM)—0

N

K3(E1)ind

0.

For the reader’s convenience, let us explain where the Bloch-Kato conjecture
in degree 3 is necessary. The weight 3 spectral sequence (2.1) gives a priori an
exact sequence

dyt(X,3)

H°(Ey,Z(2)) H3(F,Z(3)) — H*(X,Z(3))

— HY(Ey,Z(2)) — H*(F,Z(3)).

Recall that all groups are étale cohomology groups here. The group
HC(E1,Z(2)) is conjecturally 0; it is uniquely divisible in any case, see proof
of Proposition 2.7. Since the differential dy' (X, 3) is torsion (proof as in [18,
Prop. 4.6]), it must be 0. The identification of H'(E1,Z(2)) with K3(E1)ina
only depends on the Merkurjev-Suslin theorem. On the other hand, the bijec-
tivity of K} (F) — H?3(F,Z(3)) and the vanishing of H*(F,Z(3)) depend on
the Bloch-Kato conjecture in degree 3. This takes care of the vertical exact
sequence. Similarly, the Bloch-Kato conjecture in degree 3 is necessary to iden-
tify the last term of the horizontal exact sequence (stemming from the coniveau
spectral sequence) with A%(X, K37).
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The diagram above gives an isomorphism
Coker o ~ Coker 3.

Let us show that Coker 8 is m-torsion for some m > 0. The group K3(F1)ind
appearing in the diagram is really
HY(F,CH'(X,) ® H'(Fy,Z(2)))

via Shapiro’s lemma, the isomorphism H!(K,Z(2)) ~ K3(K )ina for any field
and Galois descent for K3(K )ing [37, 23]. A standard computation shows that
the corestriction map

HO(By, CH'(X,) @ H'(Fo, Z(2))) <= H°(F,CH'(X,) @ H'(F,, Z(2)))

is split surjective. On the other hand, since CH!(Xj) is finitely generated, there
exists a finite extension E/F such that CH'(Xg) — CH'(Xj) is surjective.
Without loss of generality, we may assume that F contains all the residue
fields of the étale algebra F;. A transfer argument then shows that the map
CHY(Xg,) — CH'(X) has cokernel killed by some integer m > 0. Hence the
composition

CH'(Xp,)® H'(Er, Z(2)) - CH' (X,) ® H'(B1,Z(2))
= CHY(X,) ® HY(Ey, H (F,, Z(2)))
~ H(E;,CH'(X,) ® H'(F,,Z(2)))
has cokernel killed by m, and the same holds for the composition

CHY(Xp,) ® HY(E1,Z(2)) - H°(E,,CH'(X,) ® H'(F,,Z(2)))
Lo HO(F,CHY(X,) ® H'(F,, Z(2))).
But this composition factors via cup-product as

CH'(Xp,)® H'(E1,Z(2)) = A (Xg,, H(Z(1))) © H'(E1, Z(2))
— AY(Xp,, HA(Z(3))) =25 AY(X, HX(Z(3)))

Ly HYF,CH (X,) ® H'(F., Z(2)))

which proves the claim.

Coming back the the case where F is not necessarily perfect, let F’ be its
perfect (radicial?) closure and o’ the map a “viewed over F’”. Then a trans-
fer argument shows that the natural map Coker o — Coker o’ has p-primary
torsion kernel and cokernel, where p is the exponential characteristic of F'. In
particular, Coker «v is torsion, and its prime-to-p part is killed by some m.
The integer m equals 1 provided CH(Xg,) — CH'(Xj) is surjective, which
proves 2) (ii) in Theorem 4.2. In general, the map

K3(Fo)ina/m — K3(F)ina/m

is bijective, where Fp is the field of constants of F' [37, 23]. If F} is separably
closed, then K3(Fp)ina/m = 0 (ibid.), which proves 2) (i); if F is finitely
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generated, then Fj is a finite field or a number field with ring of integers A and
K3(Fp)ina is a quotient of K3(A); in both cases it is finitely generated, which
proves 1). O

4.3. Example. X is a conic curve. Then Coker 3 is isomorphic to the cokernel
of the map

@ K3(F(2))ina M K3(F)ind-
zeX )
Even in the case F = Q, K5(Q)ina ~ Z/24, I am not able either to produce
an example where this map is not onto, or to prove that it is always onto.
As a first try, one might restrict to points of degree 2 on X. To have an
idea of how complex the situation is, the reader may refer to [15, §8]. In
particular, Theorem 8.1 (iv) of loc. cit. shows that the map is onto provided
X has a quadratic splitting field of the form Q(y/—p), where p is prime and
= —1 (mod 8). If X corresponds to the Hilbert symbol (a,b), with a,b two
coprime integers, the theorem of the arithmetic progression shows that there

are infinitely many p = —1 (mod 8) such that p t ab and (Tp> = —1 for all

primes [ | ab. Since —p is a square in Qg, this implies that (a,b)q /=5 = 0 if
and only if (a,b)q, = 0. Thus the above map is surjective if X (Qz) # 0, but I
don’t know the answer in the other case.

4.B. AY(X,KM) anDp AY(X, K,).
4.4. THEOREM. a) For any smooth variety X, the natural map
it AYX KT = AY(X, Ky)

1s bijective for i > 3 and surjective for i = 2 with kernel killed by 2.
b) Suppose that F' contains a separably closed subfield. Then w2 is bijective.

Proof. a) By definition, both groups are cohomology groups of the respective
Gersten complexes

Therefore, Theorem 4.4 is obvious for ¢ > 3, and ¢ is surjective. Using the
Adams operations on algebraic K-theory, we see that, for any field K, the exact
sequence

0 = K3'(K) = K3(K) = K3(K)ina — 0
is split up to 2-torsion. It follows that 2 Ker o = 0.
b) We have an exact sequence

B Ks(F(x)ma 2+ A2(X, K}T) 22 A2(X,K,) — 0.
zeX @)
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By assumption, each group K3(F(x))ing is divisible (compare the proof of The-
orem 4.2). Since their images in A%(X, K}) are killed by 2, they are 0. O

4.5. Remark. 1 don’t know if the condition on F' is necessary for the bijectivity
of 3. Note that 1 factors through the group A(X, H?(Z(3))) appearing in
the proof of Theorem 4.2.

5. AN APPROXIMATION OF CYCLE COHOMOLOGY

Let M, be a cycle module in the sense of Rost [44] and let X be projective
homogeneous. There are cup-products

(5.1) CH?(X)® M,_,(F) — AP(X, M,).

which are isomorphisms when X is split, by [8, Prop. 3.7].

Assume now that X is not necessarily split. Let Y be a splitting variety for X:
if X; = G5/P where G is a semi-simple F-algebraic group and P is a parabolic
subgroup of Gy, we may take Y such that Y; = G5/B for B a Borel subgroup
contained in P. Then Xp,) is cellular for any point y € Y. It is possible to
define a map

(5-2) Ap(Xa Mq) §—> AO(YEpan—p)

which is an isomorphism after tensoring with Q and corresponds to the inverse
of (5.1) when X is split. When ¢ —p < 2 and M, = KM, this map refines into
a map

gpwq
(5.3) AP(X K" =—— KM (E))

thanks to Suslin’s theorem [47, Cor. 5.6] for ¢ — p = 2 and trivially for ¢ —p =
0,1. In this paper, we shall only construct such a map in the substantially
simpler inner case where all algebras £, are split, which is sufficient for our
needs.

We note that, if X is split, the functor K — CHP(Xk) from field extensions
of F' to abelian groups is constant, with finitely generated free value. When
X is arbitrary, we shall authorise ourselves of this to denote by C H?(X,) the
common value of CH? (X ) for all splitting fields K of X.

For Y a splitting variety of X as above, consider the Rost spectral sequence
[44, 58]

EY? = AP(Y, Rim,M,) = APT9(X x Y, M,)

where 7 is the projection X x Y — Y and the Ri7, M, are the higher direct
images of M, in the sense of Rost [44, §7]. Using the fact that (5.1) is an
isomorphism in the split case, we get canonical isomorphisms

Rin M, =CHY(X;) ® M.,
hence an edge homomorphism

AP(X X Y, M,) — Ey? = CHP(X,) @ A°(Y, M,_,).
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In the inner case, the composition of this map with the obvious map
AP(X, My) — AP(X x Y, M,) is the desired map £79 of (5.2).
In the special case M, = KM, a functoriality argument shows that the map

€23 (resp. £€24) of (5.3) coincides with the map £* of Diagram (3.1) (resp. with
the map &5 of Diagram (3.2)).

6. A GENERAL K-THEORETIC CONSTRUCTION

Let X be projective homogeneous, and let K be a splitting field for X such
that K/F is geometrically rational (for example, take for K the function field
of the corresponding full flag variety, see beginning of §5). We assume as in
the previous section that the associated algebras E, are split: this is probably
not essential. We write K.(X)® for the coniveau filtration on K,.(X), and
K.(X)@/#1) for its successive quotients.

6.A. THE FIRST STEPS OF THE CONIVEAU FILTRATION.

6.1. THEOREM. For i < 2,
a) The map
Ki(F)® K; (X)) - K;(X)
18 an isomorphism.
b) The maps

Ker(K;(X)® — K;(Xx)®) = Ker(K; (X)) — K;(Xx)D)

— Ker(K;(X) = K;(Xk))
are isomorphisms. (For i = 2, we assume the Bloch-Kato conjecture in degree
3 for the torsion primes of X.)
¢) There are canonical monomorphisms

Ker(K;(X)®/® & Ki(Xg)®/®) — Kern' ™3

where Kern*3 was introduced in Definition 3.1. (If i = 2, we assume the
Bloch-Kato conjecture in degree 3 for the torsion primes of X, and also that F

contains a separably closed field.) These homomorphisms are contravariant in
X.

Proof. a) By Theorem 4.2 a), the composition
Ki(F) = Ki(X) = A°(X, K;)
is bijective; hence this composition yields a splitting to the exact sequence
0— Ki(X) = K;(X) = A%(X, K;).

b) It suffices to show that the maps K;(X)U/7+D) — K;(Xg)U/itD are in-
jective for j = 0,1. For j = 0, this is clear from a) (reapplying Theorem 4.2
a)).
For j = 1, by the (Brown-Gersten-)Quillen spectral sequence it suffices to show
that the map

ANX, K1) = AN (XK, Kig1)
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is injective. For ¢ = 0, the statement (concerning Pic) is classical; for i = 1, it
follows from [32, Theorem] and for ¢ = 2 it follows from Proposition 4.1.
¢) The BGQ spectral sequence gives a map

0,—i—1
dy

Ki(X)?/3) =5 E27172 o Coker(A%(X, K1) ——— A%(X, Kiy2)).
The differential dg’ﬂ;l is 0 by Theorem 4.2. Therefore, we get an injection
Ker(K;(X)?/® = K;(Xg)?/3) < Ker(A%(X, Kiy2) = A2 (Xk, Kir2)).

Clearly, the right-hand-side kernel is equal to Ker 22, where £2%+2 is the
map defined in the previous section. As observed at the end of this section,
this map coincides with the map £+3 of diagrams (3.1) and (3.2) (for i = 1,2;
similarly for ¢ = 0). The result then follows from (3.3) and (3.4) (and their
analogue for i = 0). O

6.B. THE REDUCED NORM AND PROJECTIVE HOMOGENEOUS VARIETIES.

6.2. PROPOSITION. Let B be a central simple F-algebra, and let F be a locally
free sheaf on X, provided with an action of B. For i < 2, consider the map

ur : K;(B) = K;j(X)
induced by the exact functor
(6.1) P(B) —» P(X)
M- FopM

where P(B) (resp. P(X)) denotes the category of finitely generated [projective]
B-modules (resp. of locally free Ox -sheaves of finite rank).
a) The composition
K;(B) “5 Ki(X) — A°(X, K;) +— K;(F)
rk(F)

equals tkp(F) Nrdp, where tkp(F) := dea(B)
e

b) The map

defined by x +— ur(X) — rkp(F) Nrdg(x) has image contained in K;(X)™W).
The composition

W 1,041
Ki(B) 25 Ky(X)W = AYX, K1) —— Ki(By) = CHY(X) ® Ki(F)
where 111 is as in Section 5, equals c1(F) @ Nrdp.

Proof. Observe that Nrdp is characterised by the commutation of the diagram

I I

Ki(B) 2, K,(F)
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for any extension L/F that splits B and such that L = F(Y), where Y is a
smooth projective geometrically rational F-variety and the upper isomorphism
is given by Morita theory. Indeed, this diagram then refines to a diagram of

the form
AO(Y, K;(B®F Oy)) = AO(Y, K;)

I 1

K;(B) e k(R

see [47, Cor. 5.6] for the right vertical isomorphism.

It is therefore sufficient to check Proposition 6.2 after extending scalars to
L = K(Y), where Y is the Severi-Brauer variety of B. Thus, we may assume
X and B split.

By Morita, uz then corresponds to the map K;(F) — K;(X) given by cup-
product with [F ® g S] € Ko(X), where S is a simple B-module. a) is now
obvious, the first statement of b) follows, and the second one is also obvious
since &' commutes with products in the split case. O

From Proposition 6.2 and Theorem 6.1 a), it follows that the restriction of uz
and Uz to SK;(B) induce the same map: SK;(B) — K;(X)®), that we shall
still denote by uz. If L/F is chosen as in the proof of Proposition 6.2, then
clearly the composition SK;(B) — K;(X)® — K;(X1)® is 0. This yields:

6.3. DEFINITION. Let L/F be a geometrically rational extension splitting both
X and B. We denote by 0% : SK;(B) — Kern'™ the composition

SKi(B) 5 Ker(K;(X)®/® = Ki(X1)#?%) — Kern'+?

where the second map is that of Theorem 6.1 c).

7. TWISTED FLAG VARIETIES

In this section, we define maps from SK;(A) to Galois cohomology as promised
in Theorems A and B. We use the results of the previous section. In order
to get these maps, it is enough to deal with generalised Severi-Brauer varieties
(twisted Grassmannians); however, we start with the apparently greater gener-
ality of twisted flag varieties. The reason for doing this is the hope to be able
to compare the various maps with each other in the future, see Subsection 7.F.

7.A. K-THEORY OF TWISTED FLAG VARIETIES. Let A be a simple algebra of
degree d, with centre F. For r = (r1,...,r;) withd > r > -+ > 1 > 0,
let Y = SB(r; A) be the twist of the flag variety G(r1,...,7;d) by a 1-
cocycle defining A: its function field is generic among extensions K/F such
that Ax acquires a chain I; D --- D Iy, of left ideals of respective K-dimensions
dry,...,drg. If s is a subset of r, there is an obvious projection
vl s ylsl
The variety Y2 carries a chain of locally free sheaves

(7.1) Ay —> Try —» oo — T
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where Ay, is the constant sheaf with value A: if A is split, (7.1) corresponds by
Morita theory to the tautological flag A‘;,[ﬂ > Vi oo » Vo, onG(ry, ..., 15 d)
(J,-J. is the quotient of End(Ad)Y[ﬂ by the sheaf of ideals consisting of endo-
morphisms vanishing on Ker(Af,[z] — V).

There is an action of A on this chain. More generally, for any partition
a = (a1,...,am) of o = > a; with aq > -+ > a,, > 0, with associated
Schur functor S¢, the sheaf S*(V;,) on G(ry,...,7%;d) defines by faithfully

flat descent a sheaf S%(J;,) of A®l%l-algebras on Y [26, §4].
By Levine-Srinivas-Weyman [26, Th. 4.6], we have an isomorphism

(7.2) @K*(A@O") (a) K, (v
«
where a = (al,...,a¥) is a family of partitions, with 0 < af < 1= Ty,
la| = >~ Jad| and u, is induced by the exact functor
P(Alel) — p(yl)
M — Sa(j) ® glet M

with $%(7) = 8% (J1) @ --- ® S (Ji). Actually our choice of generators is
not the one of [26], but rather the same as in Panin [40, Th. 7.1], who proves
the same results by a different method.

7.B. MApPs FROM SK; TO GALOIS COHOMOLOGY. We now apply Definition
6.3 with 7 = 7, for each j: in the above notation, this corresponds to the

case o =0 for j # j and of = (1,0,...). We find maps
(7.3) o+ SKi(A) — Kerngt).

We now proceed to compute the differential d§+2’1(Ym ,i+2) involved in Def-
inition 3.1. Using the multiplicativity of (2.1) (Th. 2.5 (ii)), we reduce to
computing the differential dy' (Y, 1) (¢f. [18, lemma 6.1]). We have an exact
sequence [18, 5.2]

Gr d;wl(y[ﬂJ)
_

CH' (vt Br(F) — Br(Y),

The group CH 1(Y;m) has a basis consisting of the first Chern classes of the
bundles V;.,: in particular, G acts trivially on it. For j € [1, k], write Yyl for
the twisted Grassmannian (generalised Severi-Brauer variety) corresponding to
r;. Then we have a commutative diagram

‘ 1,10y [r]
cH\YE) LD pup) . Byl

(7.4) T I T

[ry]y 42 (L)
Z=CH'(Y,") -——5 Br(F) —— Br(Yl).
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This shows that CH 1(Ys[z]) is generated by the images of the maps
CHI(YS[Tj]) — CHI(Y;[Z]) for j = 1,...,k, and thus there is no loss of gen-
erality in assuming k = 1 for the computation of the differential, which we do
now. Let us simplify the notation by writing r for r;. We have the following

7.1. LEMMA ([39, Cor. 2.7]). Ker(Br(F) — Br(Yl)) = (r[A]). O

Hence we get dé’l (Y1 1)(1) = 7[A] (up to a unit), and therefore from Diagram
(7.4):
dyt (v, 1)(Vz,;) = r;[A] (up to a unit).

We conclude:

7.2. COROLLARY. a) The maps (7.3) give rise to commutative diagrams of
complezes (i =1,2):
o HT(F,Z(i + 2))
0—SK;(A)— ~
SR AT B (R 2T 1)

I | v

o HY(EZ +2))

— AN(YIN, HH(Z(i + 2)))

Ki(A)— : AV Irsly, HiHA(Z(i + 2
where Yl = SB(rj,A) is the generalised Severi-Brauer variety of ideals of

rank r;, and the middle vertical map is the natural surjection.
b) If j = k and ry, divides the other r;, then both vertical maps are isomor-
phisms.

Proof. The only thing to remain proven is b). The generic fibre of p : yll —
Y[+l is then easily seen to be the split flag variety G(ri1—7Thky .., Ti—1 — ;5 d);
in particular it is rational and the claim follows. ]

7.3. Remark. By construction, this homomorphism for i = 2 factors through
an injection

SKy(A) — Ko(VIH)2),
If A is a quaternion algebra, the only choice for Y2 is the conic corresponding
to A and Kg(Ym)(2) = 0. This is a variant of the proof of Theorem 5 given in
[21].

As seen above, for ¢ = 1, the definition of Uf,j only involves the Merkurjev-Suslin
theorem, while for ¢ = 2 it involves the Bloch-Kato conjecture in degree 3 (for
the primes dividing d). If we are ready to grant the Bloch-Kato conjecture one
degree further, we get a refinement of these maps:

7.4. COROLLARY. Assume the Bloch-Kato conjecture in degree i +2 (i =1,2).
Assume also for simplicity that v; divides d. The the complexes on the bottom

row of Corollary 7.2 refine into complexes
(7.5)  SKi(A) = HY(F, S8 )/ril A - HX(F, %) — AV I A (u53 )
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(7.6)  SKa(A) — HY(F, ), ) /r;[A]- HY(F, p3 ) — AP (YTl HP () ).

Proof. Use the fact that d/r Kern® = 0 (transfer argument), and that the map
HA(F, 15, ) — H(F,Q/Z(3)) = H(F,Z(3)) (resp. the map H3(F, uG% ) —

d/’l“j d/Tj
H5(F,Q/Z(4)) = H%(F,Z(4))) is injective under the Bloch-Kato conjecture in
degree 3 (resp. 4). O

7.C. EXAMPLES: MAPS A LA SUSLIN AND A LA ROST-MERKURJEV. The case
of Suslin corresponds to r; = 1 for any A. More precisely, the way Suslin
constructs his map in [50, §3] shows that it coincides with the one here for
r; = 1, compare Remark 3.2. Similarly, the cases of Rost-Merkurjev correspond
to d =4, r; = 2. Using the work of Calmes [5, §2.5], one can check that in the
case of a biquaternion algebra we get back Rost’s map for SK; (resp. Calmes’
map for SK3). This implies:

7.5. COROLLARY. a) For i = 1, the bottom sequence in Corollary 7.2 is exact
forr; =1,2 and deg(A) = 4.
b) The maps o1 and ol are nonzero in general if 4 | ind(A).

Proof. a) Let us first assume 7; = 1. Then, as explained above, the map o
coincides with Suslin’s map in [50, §3], and the exactness is loc. cit., Th. 3.
Suppose now that r; = 2. If A is a biquaternion algebra, the exactness is Rost’s
theorem [33, Th. 4]. If exp(A) = 4, we reduce to the biquaternion case by the
same argument as in [35, proof of Th. 6.6].

b) This follows from a) by a standard argument, cf. [34]. O

7.D. SOME PROPERTIES OF THE MAPS o. For simplicity, we replace r; by 73
we still assume that r divides d.

7.6. LEMMA. Ifr =d, the maps (7.5) and (7.6) are 0.

Proof. In this case the variety Yl has a rational point, hence the two ker-
nels are 0. (Alternately, the coefficients of the cohomology groups involved in
Corollary 7.4 are 0!) O

7.7. PROPOSITION. Let a € F*. Then, for all v | d, the diagram

SKI(A) L> H4(Fa /_L?/BT)/T‘[A] : H2(F7 M?ﬁ,)

o | o |

SKy(A) —=— H(F,uGh)/r[A]- H*(F,u5})

commutes, where the vertical maps are cup-product by {a} and the horizontal
maps are those of (7.5) and (7.6).
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Proof. Since the spectral sequences of [18, Th. 4.4] are multiplicative, it suffices
to chek that the diagram

SKi(A) —— Kerél,,

o} o} |
0_2
SKy(A) —— Keré&l,,
commutes. This in turn reduces to the compatibility of the BGQ spectral
sequence and the isomorphisms (7.2) with products. g
Similarly:

7.8. PROPOSITION. Let A be a discrete valuation F-algebra, with quotient field
K and residue field E. Then the diagrams

SK2(AK) L H5(K7M§/4T)/T[A] 'H3(K,/J/§/3T)

| |

SKI(AE) L H4(E7M§/?;)/T[A]HQ(EHU/E?/%«)

commutes, where the homomorphisms 0 are induced by the residue maps in
K-theory and Galois cohomology respectively.

Proof. Similar. |

Using Corollary 7.5 b), Proposition 7.7 and Proposition 7.8, we find that o?
and o3 are nontrivial when 4 | ind(A).

7.E. A REFINEMENT. In this subsection, where we keep the previous notation,
we assume that A is a division algebra, d is a power of a prime [ and r[A] = 0:
for r strictly dividing d, this is possible if and only if the exponent ¢ of A is
smaller than d (and then we may choose for r any l-power between ¢ and d/1).
Then we can compute K;(X)/? and extend the map

SKi(A) = Ki(X)®?
of the previous section to a map
Ki(A) = K;(X)®.

This approach corresponds to that of Rost in the case where A is a biquaternion
algebra [33].
Let H be the class of a hyperplane section in KO(Y[’“]).

7.9. PROPOSITION. Fori < 2,
a) The composition
fl'i-H

Ki(F) & k(v o Ayl KL S KG(F)
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is the identity.
b) The induced map

Ki(F) — Ki(y[r])(l/Q)

s an isomorphism.
c) Let J be the tautological bundle on Y. Then the image of the map

ol K;(4) = K;(yIh)m
x> ug(x) — Nrd(z) - H
(see Proposition 6.2 b)) sits into K;(X)®3).
Proof. By Lemma 7.1, the map
CHY(Y!) - cHY(Y[T)
is bijective. In particular, ¢;(H) = h in CHI(YSM). We then get a) by multi-
plicativity. b) follows from a) and the fact that the maps

glitt

K;(yh2 o gvvll K, ) —— Ki(F)

are injective. c) follows immediately from a). O

7.F. THE COMPARISON ISSUE. For s | 7 | d, let YI"*l = SB(r,s, A) be as in
7.A with the two projections

ylrsl

ylr] ylsl,

We have corresponding diagrams (i = 1, 2)

i+3
Yr]

SK;(A) Kernit?

Yr:s]

i+3
Yls]

Kern

Kern

The comparison issue is to know whether this diagram commutes: if this is the
case, then the maps o, and ¢! are compatible in an obvious sense thanks to
Corollary 7.2 b). In view of Theorem 6.1 c), this commutation is equivalent to
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the commutation of the diagram

Ki(y[rl )@

A)
K; (2)

SKi( K;(YIsh®)

(Yl)
or to the vanishing of the map
ug, —ug, : SK;(A) = Ki(Y["s])(Q).

We may also consider the sheaf Z, ; = Ker(Z, — Z;); then the above amounts
to the vanishing of the map

uz, . Ki(A) = K; (Y

T,

on the subgroup SK;(A). In [50, Th. 4], Suslin obtains this commutation (or
vanishing) for (s,r,d) = (1,2,4) in a very sophisticated and roundabout way.
I have no idea how to prove it in general.

8. MOTIVIC COHOMOLOGY OF SOME SEVERI-BRAUER VARIETIES

In this section, unlike in the rest of the paper, we write H*(X,Z(n)) (resp.
H} (X, Z(n)) for motivic cohomology of some smooth variety X computed in
the Nisnevich (resp. étale) topology. We also use Zariski cohomology with
coeflicients into sheafified étale cohomology groups instead of cycle cohomology,
as those are the groups that come naturally.

8.1. THEOREM. Let A have prime index [, and let X be its Severi-Brauer va-
riety. Let Z be the Nisnevich sheaf with transfers defined in [22, 5.3]. Let
n > 0, and assume the Bloch-Kato conjecture in degrees < n + 1. Then:

a) There is an exact sequence

0 = H(F,ZA(n)) 23 H™(F, Z(n)) 12} H243(F, Z(n + 1))
— HY(X,HE(Z(n +1))) — 0.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 317-369



SK;1 AND SK5 OF CENTRAL SIMPLE ALGEBRAS 345

b) There is a cross of exact sequences

0

|

HY (X, 1y (Z(n + 1))

l

0—H Y (F,Z(n+1)— H"X,Z(n+1)) —H(X,HL2(Z(n))

| ]
HOX, M (2 + 1)) HE (R 2+ 1))

where Z(n) is the cone of the morphism Z(n) — Ra.a*Z(n), with o the pro-
jection of the big étale site onto the big Nisnevich site.

Proof. This is an extension of [22, Th. 8.1.4 and 8.2.2], and it is proven by
the same method. The exact sequence of a) is part 2 of Theorem 8.1.4 of loc.
cit. (where the differential is identified with the cup-product with [4] in 8.2),
except that in [22, Th. 8.1.4 (2)], the last term is HQ""?’(F(X), Z(n + 3)) and
there is no surjectivity claimed.

To prove a) and b) we look at the spectral sequence (8.4) of [22]. Let d =
dim X (=1 —1). In the proof of Theorem 8.1.4 and in 8.2, the following was
established:

o BN =0for —q¢ [0,d,p<d—1,p=dor (p,q) =(d—1,-d).
e The differential

dy : Coker(H"(F,ZA(n)) — HY(F,Z(n))) ~ B3~ 174
N Eg+1’7d ~ H;+3(F,Z(n+ 1))

is injective, and induced by the cup-product HZ(F,Z(n)) ﬂ
HEP(F,Z(n + 1)).

The abutment of this spectral sequence on the diagonal p + ¢ = N is
Hom(Z(d)[2d), M (X)(n + 1)[n + 2 + NJ)
computed in DM (F), where
M(X) = cone(M(X) = Ra.a*M(X)).

Note that M (X)(n+1) ~ M(X)®Z(n + 1) (by a projection formula). Hence
the abutment may be rewritten (by Poincaré duality)

H" 2N (X, Z(n +1)).
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The Bloch-Kato conjecture in degree n + 1 identifies Z(n + 1) with
Tsnt2(Raxa*Z(n)). The hypercohomology spectral sequence then gives

H"WHN(X Z(n+1))=0for N<0
H" (X, Z(n+1)) ~ H (X, H P (Z(n + 1))

and for N = 2 an exact sequence
0— H'(X,HLP(Z(n+1))) = H" (X, Z(n+ 1))
X, 2+ 1)),
Consider the differentials d2~ "7 : ES 17 — B&T1471 for —g < d—1. We have
EY? =Hom(Z,Z go—a+vy(n+1—d—q)[n+2—2d+p—q))

where Z 4o (—qr1) = cone(Z go(-qr1) = Roa*Z go(—q+1)). Therefore

EYM = Hom(Z, Z qo—esn(n+ 1 —d — q)n+1—d —q)
= Coker(H" M =4 YF, Zs(n+1-d—q)) = H""'" U UF, Z(n+1—d—q)))
and
BT — Hom(Z, Z yo—arey (n+2 —d — ¢)[n + 4 — d — q])
= Hi MR Z(n +2 — d —q))).

The computation of [22, 8.2] identifies dgfl’q with the map induced by cup-
product by [A]. By the above, we get that dg_l’q is injective. The computation
of [22, 8.2] also identifies dgﬂ’q*l with the cup-product by [A]. This gives both
a) and b). O

9. ETALE MOTIVIC COHOMOLOGY OF REDUCTIVE GROUPS

9.A. THE SLICE SPECTRAL SEQUENCE FOR A REDUCTIVE GROUP. Let X be
a smooth F-variety. There are spectral sequences [14, (3.1), (3.2)], similar to
those of Theorem 2.5:

(9.1) E5*(X,n)nis = Homp ypere () (cq(X), Z(n — q)[p — a]) = H{' (X, Z(n))

(9.2)
EYY(X,n)e = Homp yerr, () (0" cq(X), Z(n — q)lp — q]) = HE™(X, Z(n))

where ¢,(X) are complexes of Nisnevich sheaves with transfers associated to
X (canonically in the derived category) and « is the projection from the étale
site of smooth F-varieties to the Nisnevich site. These spectral sequences have
the same formal properties as (2.1): transfers, and products if the motive of X
is mixed Tate (resp. geometrically mixed Tate), c¢f. discussion in the proof of
Th. 2.5 (ii).

Let X = G be a connected reductive group over F', with maximal torus T
defined over F. Set Y = G/T. Assume first G and T split. In [14, Prop. 9.3],
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it was shown that ¢,(G) is dual, in the derived category, to the complex of
constant Nisnevich sheaves ¢?(G) (denoted by K(G, q) in loc. cit.) given by

(9.3) 0= AYT*) - AT (T CHY(Y) — ...
e T*QCHT YY) - CHY(Y) = 0

in which T is the group of characters of T, CH%(Y") is in degree 0 and the
maps are induced by intersection products and the characteristic map v : T* —
CH'(X) (compare [8, 3.14]). Thus (9.1) may be rewritten in this case as

EYU(G,n)xis = H{,"(F,¢'(G) ® Z(n — q)) = H' (G, Z(n)).

Since ¢?(G) is concentrated in degrees < 0, ¢?(G) ® Z(n — q) is concentrated in
degrees < n—q and EYY(G,n)nis = 0 for p > n. We also have EYY(G, n)nis = 0
for ¢ > n, since Z(n — ¢) = 0 in this case. For (p,q) = (n,n) this yields

9.1. LEMMA (¢f. Grothendieck [13, p. 21, Rem. 2|). If G is split, we have
isomorphisms Ey""(G,n)nis ~ ERI(G,n)nis ~ H*"(G,Z(n)), hence an exact
sequence

T*® CH" ' (Y) - CH"(Y) — CH"(G) — 0.

We shall also use:

9.2. LEMMA. Suppose G split, simply connected and absolutely simple. Then,
for all n > 0, CH™(G) is killed by (n — 1)! and by the torsion index t¢ of G
[7, 85]. In particular, CH'(G) = 0 for i = 1,2. If G is of type A, or C,,
CHY(G) =0 for all i > 0.

Proof. The first fact follows from Ko(G) = Z, cf. [8, Proof of Prop. 3.20 (iii)].
For the second one, Demazure proves in [7, Prop. 5] that the cokernels of the
characteristic maps 4™ : S™(T*) — CH™(Y) are killed by tg: the claim then
follows from Lemma 9.1 and a small diagram chase. The last fact follows from
[7, Lemme 5|, which says that ¢t = 1 for G of type A, or C,.. (This also follows
from Suslin [48, Th. 2.7 and 2.12].) O

We now relax the assumption that G is split, and would like to study the
spectral sequences (9.2). If we knew that

(9.4) " cq(G) =~ ¢c4(Gs)

in the derived category of complexes of étale sheaves (or Gp-modules), this
would allow us to rewrite (9.2) in the form

EyY(G,n)e = HY (F.c'(Gs) ® Z(n — q)) = HE (G, Z(n))

as for the split case, in the Nisnevich topology.

I don’t know how to prove (9.4), but at least the proof of [14, Prop. 9.3]
shows that the two complexes have isomorphic cohomology sheaves. Hence
they are quasi-isomorphic at least in the case where the cohomology of ¢P(Gy)
is concentrated in at most one degree. We shall therefore make-do with (9.2)
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and be saved by the fact that, for low values of ¢ and for the groups G we are
interested in, the latter fact is true. For simplicity, we shall write

Homp yrerr, () (@ ¢q(G), Z(n = q)p — q]) = Extg(a”cy(G), Z(n — q))-

We always have c*(G) = CH®(Y;) = Z™(%). Suppose that G is semi-simple,
simply connected. Then c¢ is bijective and one finds [8]
(9.5) cH(Gs) =0
(9.6) *(Gy) = S*(T)" 1]
where W is the Weyl group of G. If G is absolutely simple, then rk S?(T:)" =
1 (with trivial Galois action).
We note that the unit section of G splits off from (9.2) spectral sequences
ES(G.n) = HE (G, Z(n))

with

E2(Gon) = Extl, Y(a*cq(G),Z(n —q)) for ¢ >0

forg=0

and HM(G,Z(n)) = HYYY(F,Z(n)) @ HY (G, Z(n)) via the unit section.
These spectral sequences are modules over (9.2).
From the above spectral sequence in weight 3, the corresponding coniveau

spectral sequence, (9.5) and (9.6), we get a commutative diagram analogous to
(3.1):

(9.7)
0
0— A2(G, KM) _ H5(G,Z(3)) —AYG, H4(3))

l |

Exty'(a*c3(G), Z) CH*(@)

;lg’s(G,B)J( l

H2(F, Gy @ SHTH)W) —"— ExtZ(a*c2(G),Z(1)) H(G,Z(3))

l

HS(G,Z(3))

l

Ext), (0 c(G), 2)
In this diagram, the column and the row forking downwards are both exact.

The groups marked with a™ are, as above, the direct summands of the corre-
sponding groups without a” defined by the unit section of G.
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9.B. AN INVARIANT COMPUTATION. In this subsection, we want to compute
S3(T*)" when G is absolutely simple simply connected. We start with the
case of type A,. It is then convenient to think of G5 as SL,; embedded into
GL, ;1. The maximal torus T, of G is then a subtorus of a maximal torus S
of GL, 1, conjugate to its canonical maximal subtorus. The character group
S* is free of rank r + 1, with basis (e1,...,er4+1), and T is the quotient of S*
by Zoy, with o1 = > e;.

The Weyl group W of G5 coincides with that of GL,1; it is isomorphic to
G, 41 and permutes the e;. Let o; be the i-th symmetric function in the e;: by
the symmetric functions theorem, we have

S(S*)W = Z[O'17 ey 0'7-+1].

It is clear that the sequence
(9.8) 0 — 01S(5*) = S(5*) —» S(Ty) =0
is exact.
9.3. LEMMA. If r > 2, the map S3(S*)W — S3(TH)W is surjective; S3(T)W
is free of rank 1, with basis the image &3 of o3. If r =1, S3(T*)W =0.
Proof. Suppose first » > 2. In view of (9.8), for the first assertion it suf-
fices to check that H'(W,S2(S*)) = 0. A basis of S?(S*) is given by
(e2,..., efﬂ, eiea,...). The group W permutes the squares and the rectan-
gular products transitively; the isotropy group of €3 is &, while the isotropy
group of ejes is &,_1. By Shapiro lemma, we get

HY(W,8%(5*)) ~ HY(&,,Z) ® H(S,_1,Z) = 0.
For the second assertion, we use (9.8) again and get an exact sequence (thanks

to the symmetric functions theorem)

w

0 — 01(07,02) — (0},0102,03) = S(T))" — 0.

If » = 1, the same calculation gives the result. O
In the other cases, an application of the theory of exponents [4, V.6.2, Prop. 3
and tables of Ch. VI] gives

9.4. LEMMA. If G is not of type A,, S*(T)V = 0. O
9.C. SOME FACTS ABOUT THE c¢?(G,). Part a) of the following theorem is a
version of S. Gille’s theorem [11, th. 1.5]%

9.5. THEOREM. Let G be semi-simple and simply connected. Then:

a) For ¢ > 3, H"(¢1(Gy)) = 0 for r = —q,—q + 1, and H972(c%(Gy)) is
torsion-free.

b) Suppose G simple. For q = 3, H1(c*(Gy)) ~ S*(TH)V and H°(*(Gy))
~ CH?(Gy).

c¢) If G is simple of type A,., with r > 2, then ¢3(Gs) ~ Z(x)[1], generated by

2For g = 3 and G of type A, it was obtained in 2001/2002. The general case was inspired
by Gille’s work.
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a3 (see Lemma 9.3) where x is the quadratic character of Gg corresponding to
its (possibly trivial) outer action on the Dynkin diagram of G. If G is of type
Ay, A(Gs) = 0. If G is not of type A,., 3(Gs) = CH3(G,)[0].

Proof. a) For two split reductive groups G, H and n > 0, we have the Kiinneth
formula

(9.9) (G x H) ~ @ cp(G)QL@cq(H)
p+q=n

in the derived category [14, Lemma 4.8], since M (G) and M (H) are mixed Tate
motives. Thus we may assume G to be simple. Consider now the commutative
diagram

AT @S (T W AT (1) @SH (T W R T!

| /|

AUTH—  ATHTHRTY  — ATHINSH(TY) —  ATH(TN@S(TY)

[ o]

ANT) =A™ HTHRCH! (Ya) =7 A2 (TH)QCH? (Yo) = AT*(T1)®CH? (Ys)

where the bottom row is the beginning of ¢?(G,), the middle row is the g-th
Koszul complex for T, 4¢ are induced by the characteristic map, the top row is
S2(T)W tensored with the beginning of the (¢ —2)-nd Koszul complex for T,
the middle column is obtained by tensoring the exact sequence of free abelian
groups

0— S2(THW — S%(TF) — CH*(Y:) — 0

with A?=2(T¥) and, finally, f is induced by the product S*(T})V @ T; —
S3(T). The middle row is universally exact as the Koszul complex of a free
module, and the middle column is (split) short exact.

Since G is simple, S%(T7)" is a rank 1 direct summand of S?(77), which
implies that f is injective and remains so after tensoring with Z/m for any m.
The same is true for e by the acyclicity of Koszul complexes. A diagram chase
then gives the result.

b) For ¢ = 3, let us rewrite part of the above diagram, for clarity:

0—A(TH)— AX(THRTy — TreS*(TY) — S3(TF) —0

1) = 18y | |

0—A3(T*)=A2(T*) @ CHY(Y,) =T @ CH2(Y,)—CH3(Y,)—0.

The two left vertical maps are isomorphisms; by (9.6), 1®+?2 is surjective, with
kernel T @ S?(T*)W; also, by [7, p. 292, Cor. 2] Kerv? is the Q-span of
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T*SYHTHW + S3(T)W in S3(T%)*. Using Lemma 9.1, it follows that

0 for i = -3
. K for 1 = —2
H(AG)) =S oo o
Cokeryp  fori=—1
CH3(Gs) fori=0
where ¢ is the map
T: @ ST = (1781 + 83T ),
(—)q denoting the Q-span. We have seen in a) that Ker ¢ = 0 and Coker ¢ is
torsion-free. We may factor ¢ as a composition

T @ 8(15)"W 5 TeSH(TH)Y + 87(15)" — (15831 +8°(T5) " )a.
Thus Coker ¢ is an extension of the finite group
(TeS*(THY +8°(T)W)a
TeS2(T3)W 4 S¥(T)W
by a group isomorphic to S*(T*)W /S3(T)W N TxS?(T)W; but
SUT)Y N TISHI)Y C (17T = TV ST =0,
Thus, the map S*(T7)" — Coker ¢ is bijective. To conclude, we use the fact
that S*(TF)W is pure in S3(T7) (the quotient is torsion-free), which follows
from Lemmas 9.3 and 9.4: since Coker ¢ is torsion-free, this implies that it is
isomorphic to S*(T:)W.
c¢) now follows from b), Lemmas 9.3, 9.4 and 9.2. For G of type A, with
r > 2, the claim on the Galois action follows from the well-known fact that

the nontrivial outer automorphism of the Dynkin diagram of G3 maps é; to
—€r4+1-i, where €; is the image of e; in T O

Here is a complement to Theorem 9.5:

9.6. LEMMA. Let r > 2, and consider the embedding ¢ : SL,41 < SL, o given
by u s (%9). Then the induced morphism v* : ¢(SLy42) — ¢*(SL,41) is a
quasi-isomorphism for i = 2, 3.

Proof. Let Ty41, T2 be the diagonal tori of SL, 11 and SL, 5 respectively. It

suffices to check that S*(T7%, ,)®+2 — S (T, ;) +! for i = 2,3. This follows
from the computations in the proof of Lemma 9.3. g

9.7. Remark. For G of type C,., CH*(G,) = 0 for all i > 0, and for general G,
CH?(Gy) is a 2-torsion group (see Lemma 9.2). Marlin computed CH*(Gy)
for G of type By, D,,Gs or Fy in [29]: he finds CH?(Gs) = Z/2 in each case.
I don’t know the value of C H?(G,) for G of type Eg, Fr, Fg: is it also Z/2?

10. THE GENERIC ELEMENT

In this section we prove Theorem C, see (10.2), (10.3) and Theorem 10.7,
Theorem D, see Corollary 10.15, and part of Theorem E, see Proposition 10.11.
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10.A. THE COHOMOLOGICAL GENERIC ELEMENT. Let G be an absolutely sim-
ple simply connected group. From Theorem 9.5 and Diagram (9.7), we first
deduce:

10.1. COROLLARY. If G is not of inner type A, for r > 2, we have
A2(G,KM) = H5(G,Z(3)) = 0; the group A°(G,H*(3)) is isomorphic to the
kernel of the étale motivic cycle map CH?(G) — H(G,Z(3)) (hence is at most
Z/2 except perhaps for types Eg, E7, Es, see Remark 9.7).

Proof. All claims follow from the diagram and the fact that we have
H1(F,c3(Gs)) = 0 in these cases (note that obviously

Ker(CH?(G) — H%(G, Z(3)) = Ker(CH®(G) — H%(G, Z(3))).

10.2. PROPOSITION. If G is of inner type A, with r > 2, the map « in Diagram
(9.7) is 0.

Proof. We have G = SL; (A) for some central simple algebra A. If CH3(G) = 0,
there is nothing to prove; by Merkurjev [35, Prop. 4.3], this happens if and only
ifind(A) is odd. Suppose now ind(A) even. If A is a quaternion algebra, we have
EO(G, H*(3)) = 0 by [35, Lemma 5.1]. In general, we proceed as in [35, proof of
Prop. 4.3]. Note that « really comes from a map o/ : A°(G, H*(3)) — CH?(G)
and that @ = 0 if and only if o/ = 0. Let K/F be a field extension such that
ind(Ag) = 2, so that Ax = M,,(Q) for some quaternion division algebra @
over K and Gg = SL,(Q). Set H = SL1(Q) and X = Gx/H. By loc. cit.,
the generic fibre of the projection Gx — X is Hg, with E = K(X). We then
have a commutative diagram

ANG, HY(3)) —— A%(Gk, H'(3)) —— A%(Hp, H'(3))

. g ]

CH3(G) —— CH3Ggx) —— CH3(Hg)

and the bottom horizontal maps are isomorphisms by loc. cit. (see [35, Rk
4.4]). a

From now on, we suppose G of inner type A, with r > 2, i.e. deg(4) > 2 if
G = SL1(A). Then H~1(F, c*(Gy)) is canonically isomorphic to Z, H?(F, G,,®
S2(T*)V) ~ Br(F) and H°(F,c3(Gs)) = 0. For the reader’s convenience, let
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us redraw Diagram (9.7) in this case, taking Proposition 10.2 into account:
0
0—A2(G, K}y —— H>(G,Z(3))—A%G, H*(3))—=0
/

(10.1) %ﬁmﬂ
Br(F)

l

HS(G,Z(3))

l

0
Since A°(G, H*(3)) and Br(F) are torsion, we recover Merkurjev’s result that
A%(G,KM) = A%(G, K3) is infinite cyclic [35, Lemma 5.7]. We also find
10.3. THEOREM. The group 1’?5(6'7 Z(3)) is infinite cyclic and the group
A%G, H4(3)) is cyclic of order (H?(G,Z(3)) : A%(G, K})).
10.4. DEFINITION. Let G = SL;1(A). We denote by c4 the “positive” generator
of H?(G,Z(3)) C H?(G,Z(3)), that is, the generator that maps to a positive
multiple of 1 € Z, and by ¢4 its image in A°(G, H*(3)) c A°(G,H*(3)) (¢a
generates A°(G, H*(3))).
10.5. LEMMA. Let still G = SL1(A), and let p1,p2, 1 : G xp G — G be repec-

tively the first projection, the second projection and the multiplication map.
Then

piea = pica +paca.
Proof. Since H3(G,Z(3)) — H~'(F,c3(G,)) is injective for any group G, it is
sufficient to show that the maps p* and p} + pj from ¢3(G5) to ¢(Gs X, Gs)
are equal.’
The Kiinneth formula (9.9) gives an isomorphism

A(Gy) ® A(Gs) == Gy xp, Gy)

induced by p} @ p3, since ¢! (Gy) = 0.
Let C = ¢3(Gs). The inclusion ¢ : G x {1} — G x G induces a map ¢} :
C & C — C; since p; o1 = Id and py o ¢y is the trivial map, ¢ is the first

3Note that morphisms between reductive groups preserving the unit sections act on the
spectral sequences (9.2) by preserving the spectral sequences E2’¢. This applies to p and to
the maps ¢1 and tg further below.
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projection. Similarly, ¢s : {1} x G — G x G induces the second projection. We
conclude that pu* : C' — C @ C is the diagonal map, using the left and right
unit formulas pot; = powe = Id. O

Let X be a smooth F-variety. To any morphism f : X — SL;(A), we associate
the pull-back of c4:

ca(f) = fYca € H5(X,Z(3)).
Lemma 10.5 shows that we have
ca(fg) =ca(f)+calg)

for two maps f, g, where fg:=po (f,g).
Recall that deg(A) > 2. Consider the embedding ¢y, : SL;(A4) — SL,(A) given

by u+ (¢9). Noting that SL, (A) = SL;(M,(A)), Lemma 9.6 shows that
CM,L(A)(Ln) = CA.

In particular, ¢* : ﬁ5(SLn(A),Z(3)) — §5(SL1(A),Z(3)) is an isomor-

n

phism. So, if f is a morphism from X to SL,(A4), we may define c4(f) =
() tenr, a)(f), and this definition is “stable”. We record this as:

10.6. PROPOSITION. If deg(A) > 2, the maps
H5(SL,(A),Z(3)) — H*(SL1(A), Z(3))
A%(SL,(A), H(Z(3))) — A°(SLy(A), H°(%(3)))
induced by the inclusion SLy(A) < SLy,(A) are isomorphisms. O

In particular, suppose X = SpecR affine. Then Homp(X,SL,(A4)) =
SL,(A®p R). Define SL(A®F R) = li_n>15Ln(A ®r R) as usual, and

SK(X,A) = SL(A®r R)*.
For X smooth in general, we may similarly define
SL(X,A) = li_n>1HomF(X, SL,(A)), SKi(X,A)=SL(X,A)?.
The above discussion then yields a homomorphism
(10.2) SKy(X,A) — H(X,Z(3))

which is contravariant in X.
In particular, for X = Spec L, L/F a function field, we get a homomorphism

(10.3) ca(L) : SK(Ar) — H5(L,Z(3)) «<— H*(L,3).

The following theorem was (embarrassingly) pointed out by Philippe Gille,
whom I thank here.

10.7. THEOREM. In (10.3), L — ¢a(L) defines the universal invariant of
SL1(A) of degree 4 with values in H*(3), in the sense of Merkurjev [35, Def.
2.1].

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 317-369



SK;1 AND SK5 OF CENTRAL SIMPLE ALGEBRAS 355

Proof. Let G be an algebraic group and let M be a cycle module of bounded
exponent as in [35, p. 133]. By [35, Th. 2.3], we have an isomorphism

v (G, M) = A%(G, My)ma, de€Z
induced by evaluation on the generic point of GG, where the left group is the
group of invariants of G with values in My as in [35, Def. 2.1] and the right
group is the multipicative part of A°(G, M) as in [35, 1.3].
We cannot apply this directly to My(K) = H%(K,d — 1), which is not of
bounded exponent. However, any cycle module M, such that M(K) is torsion
prime to char F' for any d € Z and any function field K/F may be written as
the filtering direct limit of its torsion sub-cycle modules ,, M., m > 1. Then
the maps

lii>nIan(G7 mM) — Invd(G7 M)tors

hﬂ AO (Ga de)mult — AO (Ga Md)mult
are bijective, so that [35, Th. 2.3] extends to an isomorphism
(10.4) Inv (G, M)tors — A%(G, Mg)mue
for any torsion cycle module M (excluding the characteristic of F') and any
deZ.
In the case G = SL;(A), any invariant of G, evaluated at a function field K,
factors through G(K)*” = SK;(Ak), which is of exponent bounded by ind(A)
(see introduction), so any invariant is a torsion invariant.
(This argument extends to any simply connected semisimple group G by [35,
Cor. 2.6] and a transfer argument. On the other hand, Inv!(G,,, KM) = Z as
the construction of [35, beg. of 2.3] shows.)
Thanks to Theorem 10.3, the only thing which remains to be proven is that
A%(G, H4(3)) = A%(G, H*(3))mult (notation as in [35, 1.3]): this follows from
Lemma 10.5. O

10.8. Remark. The above proof yields a little more: if eSK;(Ag) = 0 for all
K/F, then eInv?(SLi(A), M) = 0 for any cycle module M and any d € Z. In
particular, eA°(G, H*(3)) = 0. This will be amplified in Lemma 10.13 below.

A delicate issue is the behaviour of ¢4 and ¢4 under extension of scalars: in
other words, the universal invariant of Theorem 10.7 might cease to be uni-
versal after extending the base field. This is directly related to the differential
%’B(G,S) in Diagram (10.1). Here is at least one case where this does not
happen:

10.9. LEMMA. Let L/F be an extension such that exp(Ar) = exp(A). Then
H*(G,Z(3)) = H°(G1, Z(3))
A(G, H(Z(3))) —» A°(Gr, HO(2(3)).

In particular, the image of cs (resp. ¢a) under extension of scalars equals ca,
(resp. Ca, ).
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Proof. We shall show in Corollary 11.3 that %’B(G, 3)(1) is a multiple of [A] €
Br(F). The claim then follows from a diagram chase with (10.1). O

The following corollary to Theorem 10.7 is a special case of [60, Prop. 4.1].

10.10. COROLLARY. Assume A of degree d = 1™ (I prime) and of exponent
e <d. Letr be such that e | r | d/l. Then there is an integer m(A,r) such that
1

r =

where o} is the invariant in (7.3) (see §7.D). O

o, =m(A,r)ca

As in [60, proof of Prop. 4.3], one might learn more on m(A,r) by considering
the generic algebra of degree d and exponent €. We shall content ourselves with

10.11. PROPOSITION (cf. [34]). For e = 2 < ind(A), A°(SLy(A), H(3)) # 0
and m(A,2) is odd.

Proof. 1) If A is a biquaternion algebra, the Rost invariant of Theorem 2 is
nontrivial [34, proof of Cor.] and, by Remark 10.8 and the remark after Theo-
rem 6 in the introduction, A°(SL;(A), H*(3)) is cyclic of order < 2. Hence this
group is cyclic of order 2 and the Rost invariant coincides with ¢4 (recovering
[35, Th. 5.4]). Thus m(A4,2) =1 in this case.
2) If ind(A) = 4, let D be the division algebra similar to A, so that A = M,,(D)
for some n > 1. By Morita invariance of algebraic K-theory, the invariant o3
is the same for A and D. On the other hand, Proposition 10.6 yields an
isomorphism

AY(SLy(A), H*(3)) = A°(SL(D), H*(3))
so 1) extends to this case.
3) In general, let L = F(SB(4, A)), so that ind(Ay) = 4. By 2), ¢4, # 0, hence
¢a # 0 by Lemma 10.9. Since o} commutes with any extension of scalars by
construction, we have m(A4,2) = m(Ay,2) in Z/2, which shows that m(A4,2) is
odd. |

We shall show in Corollary 11.12 that actually A°(SLy(A), H*(3)) ~ Z/2 in
Proposition 10.11.

10.12. Remark. Let r be a divisor of d = deg(A). Let us write H*(3)/r[A] for
the degree 4 part of the cycle module given by

K H"(K,n—1)/r[A]

= Coker(H" (K, u®"~2) "8 (K, Q/Z(n — 1))).

T
It is tempting to conjecture that the map
A(SLi(A), H*(3))mue — A°(SLa(A), H*(3)/7[A]) mmure
is surjective, which would provide a relationship between the invariant c4 and
the invariant 071. of Corollary 7.2 in general.4 However, since Ao(f)mult is left

4Since this was written, Wouters has resolved this question in the negative, [60, Prop.
4.2].
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exact rather than right exact, this does not look straightforward at all. A
description of the kernel of cup-product with r[A] seems a major issue to solve

(cf. (3.3)).

10.B. THE K-THEORETIC GENERIC ELEMENT. In the universal case X =
SL;(A), we may write SK;(SLi(A), A) = SK;1(A) & SK;(SL;1(A), A) using
the unit section of SLj(A). The induced morphism

SK1(SLi(A), A) — H*(SL1(A), Z(3))
is surjective, hence split surjective since H?(SLy(A),Z(3)) = Z. An explicit
splitting sends c4 to the class of the inclusions ¢,, : SL;(A) < SL,,(A).

10.13. LEMMA. a) For any smooth F-variety Y, the map
H(Y,SK,(Oy @p A)) = SK1(F(Y) ®r A)
is surjective; the image of cp(y)gpa is contained in AO(Y, H*(3)).
b) ForY = SLq(A) and K = F(Y'), the map ca, induces a surjection
(10.5) SK1(Ax)/SK1(A) —» A°(SLy(A), H*(3))
sending the generic element to c4.
Proof. The first assertion of a) is classical (Rost, ¢f. [6, p. 38]), and the second
one follows from this and the construction of c4. For b), let n = Spec K be
the generic point of SLy(A). It defines an element 77 € SK1(Ak): the generic

element. By construction, we have

A () = Ca
from which b) follows. O

We want to better understand the map (10.5). This is possible if A is biquater-
nion:

10.14. THEOREM. If A is a biquaternion algebra, (10.5) is an isomorphism and

both sides are isomorphic to Z/2.

Proof. By Lemma 10.9 and Proposition 10.11, we have a commutative diagram
of injections )
0 —— SKi(4) —2— H5(F,Z(3))

I dl
0 — SKi(Ag) —E H5(K,Z(3)).

Since SL;(A) has a rational point, a and b have compatible retractions and
this diagram induces a third injection

(10.6) 0 — SK(Ax)/SK\(A) — H(K,Z(3))/H(F, Z(3))

which is obviously also induced by (10.5). This proves the first claim. The
second one follows from [35, Th. 5.4] (or part 1) of the proof of Proposition
10.11). O
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10.15. COROLLARY. Ifind(A) =4, then SK1(Ak)/SK1(A) ~Z/2.

Proof. If A is biquaternion, this follows from Theorem 10.14. In general, let
L = F(SB(A®?)). By [35, Prop. 6.3], the maps SK;(A) — SKi(AL) and
SK1(Ak) — SK1(Aky) are isomorphisms, so we are reduced to the biquater-
nion case. O

In an earlier version of this paper, I had conjectured that (10.5) is always an
isomorphism. In the light of the proof of Theorem 10.14, this seems a bit
optimistic unless all primes factors of ind(A4) occur at most with exponent
2. In general, a computation of ¢?(SLq(A)) for all ¢ > 1 will yield higher
cohomological invariants for SKi(A). A still optimistic but more reasonable
conjecture is that these future invariants will detect all of SK;(A). Based on
this expectation, we propose

10.16. CONJECTURE. If K = F(SL1(A)), the group SK1(Ax)/SKi(A) is
cyclic, generated by the generic element.

10.17. Remark. The homomorphism
ca : Hom(SLy(A),SLi(A)) — H?(SLy(A), Z(3))

also behaves well with respect to composition: for f € Hom(SL;(A4),SL1(A)),
we have ca(f) € H3(SLy(A), Z(3)) if and only if f(1) = 1. If this is the case,
set ca(f) = n(f)ca. Then, clearly, n(go f) = n(g)n(f). Can one describe this
“degree” map in a more naive fashion?

11. SOME COMPUTATIONS

We now try and evaluate the groups SK;(Ak)/SKi(A), where K is the func-
tion field of SLy(A), and ZO(SLl(A), H%(3)): our main results in this direction
are Theorem 11.9 and Corollaries 11.10 and 11.12, the latter completing the
proof of Theorem E. Unfortunately we are not able to prove the nontriviality
of either of these groups when ind(A) is odd (not squarefree) by the present
methods.

We assume that n = deg(A) is of the form I™, | prime.

11.A. COMPARING SOME QUOTIENTS. First we have already noted:
11.1. LEMMA. |A°(SLy(A), H*(3))| < ind(A) /1.

Proof. This follows from Lemma 10.13 b) and the fact that SK;(Ak) has
exponent < ind(A)/I. O

See Corollary 11.12 for a refinement of this lemma when A is of exponent I.
Let G = SL;(A). We note the isomorphisms

A*(G,K3") = A*(G, Ks)
Ky(F) = AY(G, K>).
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The first one is trivial and the second one is [8, Cor. B.3]. By the second one,
the BGQ spectral sequence yields an injection

(11.1) K1 (G)*® — A%(G, K3).

11.2. PROPOSITION. If G is split, with r > 2, the maps H%(G, Z(3)) — Z and
AY(G,KM) — H®(G,Z(3)) from (10.1) are both bijective. The same is true of
the map (11.1).

Proof. Mixing the coniveau spectral sequence for Nisnevich motivic cohomol-
ogy with the slice spectral sequence (9.1) (also for Nisnevich motivic cohomol-
ogy) vields a diagram similar to (10.1) and mapping to it:

A2(G, KMy —=— H} (G, Z(3))

Zar

(11.2) |
Z

This proves the first two claims of Proposition 11.2 at once. For the last one, we
notice that if G is split then all its Chow groups are 0 by Lemma 9.2, hence all
differentials leaving from A%(G, K3) in the BGQ spectral sequence vanish. [

Note that the horizontal map in (11.2) is an isomorphism for any G, whether
split or not.

11.3. COROLLARY. In Diagram (10.1) for G = SLy(A), we have
(G, 3)(1) = t[4]

for some integer t, where [A] is the class of A in Br(F). In particular, (Z :
H’(G,Z(3))) divides the exponent of [A].

Proof. Let K be the function field of the Severi-Brauer variety of A. Then A
splits over K. The first statement now follows from Proposition 11.2 and Amit-
sur’s theorem [1] that Ker(Br(F) — Br(K)) = ([A]). The second statement is
obvious. |

11.4. COROLLARY. In general,

(Z: A%(G, K31) = (A%(Gs, K37) - A%(G, K31))
| (K1(G) P - Ky (G) ),

Proof. This follows immediately from Proposition 11.2. |
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The following diagram is a little more precise and may be helpful to the reader
(G = SLy (A)):

SKi(Ar) 5 s K1(G,)/3)
S CNGHE®) G
(11.3) ZT ontol
75
" %_’Z/A2(G’K%—>Z/tZ—>o

where ¢ is as in Corollary 11.3.

11.B. THE MAP Br(F) — HS(G,Z(3)). In order to better understand the
differential %’B(G, 3) in the future, we note:

11.5. PROPOSITION. Let G = SLq(A).
a) We have an exact sequence

0 — AY(G, H*(3)) — H%(G,Z(3))/CH?*(G) — A°(G, H>(3)).
b) The composition
Br(F) — H%(G, Z(3)) — H%(G,Z(3))/CH*(G) — A°(G, H*(3))

from Diagram (10.1) is 0, and so is the map H®(G,Z(3))/CH*(G) —
A%(G, H5(3)). Hence we have in fact an ezact sequence

0 — CH*(G) — H%(G,Z(3)) = A (G, H*(3)) — 0.

Proof. a) follows from the coniveau spectral sequence for the étale motivic
cohomology of G. b) The second vanishing follows from the first, since
Br(F) — H®(G,Z(3)) is surjective. For the first vanishing, given the defi-
nition of the homomorphism Br(F) — H%(G,Z(3)), it suffices to show that
the map a*¢;(V) — a*¢;(G) induces 0 on homology sheaves for ¢ = 1,2,3if V
is a suitable open subset V of G.

Let B be a Borel subgroup containing 7, C Gs. Consider the big cell Uy C
Gs/B: it is an affine space, hence all its Chow groups are 0. Observe that Uy is
defined over a finite extension of F', hence it has only a finite number of Galois
conjugates: then their intersection U is defined over F, and its geometric Chow
groups are still 0. Let U be the inverse image of U in Y;: then U is defined
over F' and all its geometric Chow groups are 0. Hence, for all p > 0, the étale
complex a*cp(U) is concentrated in degrees < 0.

We now take for V' the inverse image of U (viewed as an open subset of V) in
G. As in [14, Prop. 9.3], we have for all N > 0 a spectral sequence

EYY(Vy) = H(en—p(Us)) @ AP(T]) = H" (en (V3)
which maps to the corresponding spectral sequence EP'9(Gy) for G (that yields
the complexes (9.3)). For N > 0, we have EV'Y(Gs) = 0 for ¢ # 0 and
EPI(Vy) = 0 for ¢ = 0, hence all maps H(cy(Vy)) — H(en(Gs)) are 0.
This completes the proof of b). O
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11.C. A CHERN CLASS COMPUTATION. We use Gillet’s convention for higher
Chern classes [12].

11.6. LEMMA. For a smooth variety X, consider the higher Chern class
can Ki(X) = A%(X, K3).
Then 2dg’72 = 0 and the diagram
Ky(X)® 2 42X, Ky) «—2— AX(X, K3)/dS 2 A% (X, K>)

! |

K(X)@/3) > B3

commutes, where dg’_Q and E% =3 are relative to the BGQ spectral sequence for
X.

Proof. The BGQ spectral sequence for X may be considered as the coniveau
spectral sequence for X relative to algebraic K-theory. For a given i > 0,
consider the corresponding coniveau spectral sequence 'EP-? relative to U —
H*(U,K;) (for U running through open subsets of X). By [12, pp. 239-
240], the i-th Chern class C; defines a morphism of spectral sequences EP'9 —
'EP? (r > 1) converging to the higher Chern classes ¢; _p—q : K_p_q(X) —
HPHIT (X K.

The group 'EP? is 0 for ¢ # —i and 'EP™" = P.cxm Kip(F(z)). Hence
'EPY =0 for ¢ # —i and 'EYT" = HP(X,K;) = 'ER~'. By [12, Th. 3.9],
—1D)P(i=1)!
e
summand K;_,(F(x)). In particular, for i = 3, ¢1,1 is the identity for fields
and we get a commutative diagram

the map from EP~* to 'EP' ™ induced by C; equals Ci—p,i—p ON €ach

0,—2
0,—2 4y 2,-3
Ey — Ey

| g
0 —— "By =Ey"°

which proves the first claim of the lemma; the second one follows from the
morphism of spectral sequences. O

11.D. SOME COMPUTATIONS, CONTINUED. The group A'(G, H*(3)) of Propo-
sition 11.5 is mysterious and would require a further analysis: we shall refrain
from starting it in this paper and will concentrate on computing the index
(K1(G4)?/3) : K1(G)?/3), which can be done in some interesting cases.

For this, we may try and look at the map K;(G) — K1(Gs) and use the results
of Levine [25] and Suslin [48]. In particular, we have an isomorphism [25, Th.
4.3]

=1
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where 1 = tkG = deg A — 1. If G (equivalently A) is split, the summand
Ko(A®) ~ Z is generated by the class of A*(p,), where p, is the standard
representation of G = SL,y; into GL,;;. While Levine thinks of p, as a
representation, Suslin thinks of it as the generic matrix and denotes it by a.41:
the two viewpoints are of course equivalent.

If we pass to the separable closure, we get a commutative diagram

K\(G)®® 2 A%(G,Ks)

l l

K1 (G)®® 2 A%2(G,, K3) ~ Z.
11.7. LEMMA. Suppose G = SL,,, with n =1r + 1.
a) All [N (p,)] belong to K1(G)N) and the image of [A*(p,)] in AYG,Kq) =Z
is (17)-
b) For all i, [A(p,)] — ("-7)pr] € K1(G)P and its image in A*(G, K3) = Z
is (75)-
Proof. (It may not be the most direct, but it works.) For the first assertion of
a), we need to show that [Ai(pr)]‘F(SL")) = 0 or, which amounts to the same,
that A’(av,) is a product of commutators, where «, is the generic matrix with
determinant 1. For this, it suffices to see that det A’(av,) = 1. But, for any
matrix u, det A’(u) is a certain power of det(u), hence the claim.
For the second assertion of a) and for b), we first do a Chern class computation.
Let %; = v;([pr]) = vj([an]), where ; is the j-th gamma operation in K-theory.
Note the formula (¢f. [48, p. 65])

Z[Ai(an)]ui = Z%ui(l +u)" "
Also, from [46, 1.3.4 a) p. 277 and Remark p. 297] (see also [45, IV.6]), we find

0 for j > 2
c21(7j) = § —c2,1(ay) for j =2
ca1(ay)  forj=1
and
0 for j >3
_ 2¢3,1(am) for j =3
c ) =
31(%) —3c31(ay,) forj=2
c31(am) forj =1

from which we deduce
(11.4) Z co1 ([A (an)])u’ = ca1 () (u(l +u)" ™t —u?(1 +u)"~?)

= co1(an)u(l +u)"? = cay(an) Z (n a 2> u' =: o1 () p(u)

1—1
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and
3 s ([N an) )
= c3.1(an) (w1 4+ uw)" 7t = 3u?(1 +u)" % + 2u3(1 +u)"3)
= cg.1(an)u(l + u)"_3(1 + u)
hence

(11.5) Z 31 ([N (an)])u’ — c3.1(am)(u) = —2¢3.1 (o )u? (1 4 u)" 3

— 20y (7;‘ j)u

We now use the fact that, for i > 1, AY(SL,, K;11) is generated by ¢;11.1([avn])
[48, Th. 2.9]. By an analogue of Lemma 11.6, the edge homomorphism
Ki(X)M) — AY(X,K3) of the BGQ spectral sequence coincides with —cg
for any smooth variety X. With (11.4), this proves the second part of a) and
the first part of b). Then the second part of b) follows from Lemma 11.6 and
(11.5). O

Let G not be necessarily split anymore. Let e; be the positive generator of

the summand Ko(A%): e; + ind(A®)[A%(a,)]. Lemma 11.7 shows that
i;g?j&g{,)ei — (?:12)61 € Ki(G)? and that its image in A%(G,, K3) = Z is

ind(A)("~3).

i—2

11.8. LEMMA. vl((?:f)) =v(i). (Recall that n =1™.)

Proof. For an integer e, let s;(e) be the sum of the digits of e written in base
[. Tt is well-known that

" (a) s1(b) + si(a —b) — si(a)

b) I—1

Clearly, we have s;(I"™—2) = m(l—1)—1. Let t = v;(i) and write i—1 = Y a;I’,
with0 <a; <l-1,a;=1—1forj<tanda; <l—1. Then ™ —i—1= > b;l’
withb; =l—-1forj<t, by=01—-2—-arandbj=1—-1—aqa; fort <j<m.
Hence
sii—1) +s(IM—i—1)— (™ —-2)=
20 -+ m—-t)(-1)—1—-(m(l—-1)—-1)=t(1-1).

O

11.9. THEOREM. We have

inf(I21ind(A®Y))  ifl>2

(K1(G)®® : Ky (G)*) = {inf(lzt1ind(A®l‘)) ifl=2.
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Proof. Since the index (K;(G4)?/%) . K (G)?/3) a priori divides ind(A)
(transfer argument), to evaluate it we may tensor both groups with Z;,
as well as A?(G,K3) and A?(G,, K3). Note also that, since K;(G)(/?)
— AY(G, Ky) ~ Z is torsion-free, x € K1(G)") ® Z; and mz € K,(G)? @ Z,
for some m € Z; — {0} implies z € K;(G)? @ Z;. This will allow us to divide
freely by [-units below.

By Lemma 11.7, we have

n () ai-1)

ind(4=H) (D) T T a2

(11.6)

under the composite map K1(G)?/3@Z; — K1(G,)?)®Z; = A%(G,, K3)®
Z; = Z; (note that the coefficient of e; is an [-integer by Lemma 11.8).
Let z = Z)\iei € Kl(G)(Q) ® 2y (With Ai € Zy). In Qq, write
n
M ind(4%7) (77

i—1

i =
so that
n
11.7 T = i| —————ei—e1 | + ie
(117 2. <ind(A®’)(?_12) ) 2 pe
hence = € K1(G)? ® Z; if and only if 3~ y1; = 0. Note that

T Z#zns:;) = Z#zns:;) + n7_12 ZM = sz%

Since vy (i) > —u; <m>, we have

noy S 20(i) 4 v (ind (A®")) if1>2
B )+ (ind(A®)) —1 ifl =2

(see Lemma 11.8).

This proves the inequality > in Theorem 11.9. To get equality, let s = inf{¢ |
ZQtind(A(X’lt) is minimum}. Suppose first that [ > 2. Choose A\js = 1, pgs =
—us and A; = 0 otherwise, and we are done.

Suppose now that I = 2. We can then argue as above by taking ps.es = —pos
provided 3 -2° < n = 2™, 4e. s < m— 2; s = m is clearly impossible
and s = m — 1 may occur only when 22m=3ind(A®2" ") < 2™ ie. when
Qmind(A®2m71) < 4. This means m = 1 or m = 2, exp(4) = 2. In the first
case we clearly have equality. In the second one we may compute directly

2e9 — €1+ 2

e3—e—4

which shows that (K;(G)?/3) : K,(G)?/3) = 2. So equality still holds in this
case. O
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11.10. COROLLARY. a) If ind(A) = exp(A), then (K1(Gs)?/3) : K;(G)3/3)
= ind(A).

b) Suppose exp(A) =1. If 1 > 2 we have

I dfind(A) =1

12 ifind(A) > 1

while if | = 2 we always have (K1(G4)?/3) . K1(G)?/3)) = 2.

(G2 Ky (G)2) = {

Proof. a) is obvious, since in this case necessarily ind(A®lt) =[9"tforallt < g,
if ind(A) = 19. For b), we have (K;(G,)??3) : K,(G)?/?)) = inf(ind(A),1?)
(for I = 2) or inf(ind(A), 2) (for I = 2) and the result immediately follows. O

11.11. Remark. An easier computation gives (K;(Gs)1/? : Ki(G)(/2)) =
lem(i - ind(A®%)) = ind(A). Since AY(G, K3) — AY(Gs, Ks) [8, Cor. B.3],
this yields (AY(G, Ks) : K1(G)(1/?) = ind(A).

The first part of the following corollary was (embarrassingly) pointed out by
Wouters [60, 2.4 (c)]:

11.12. COROLLARY. If A is of exponent I, then A°(SLy(A), H*(3)) is cyclic
of order dividing 2 if Il = 2 and dividing 1?> if | > 2. If moreover | = 2 and
ind(A) > 2, then A°(SLy(A), H*(3)) ~ Z/2 and the invariants ca of Theorem
10.7 and 03 of §7.D coincide. In general

exp(A)? if | is odd
exp(A)?/2 ifl=2.
Proof. The first statement follows from Corollary 11.10, Diagram (11.3) and

Theorem 10.3. The second one then follows from Proposition 10.11. The last
one follows from taking " = exp(A) in Theorem 11.9. O

| A°(SLy(A), H(3))] < {

11.13. Question. Let [ be odd. Is it true that A9(SLy(A), H4(3)) ~ Z/1 if A is
of exponent [ and index > [7

APPENDIX A. A CANCELLATION THEOREM OVER IMPERFECT FIELDS

A.1l. THEOREM. Let F be a field and M,N € DMt (F) where N is a mized
Tate motive (see [14, Def. 4.1]). Then the map — ® Z(1) induces an isomor-
phism

I{OII?1D1\/[(]\47 N) ;> HOIIID1\/[(]\4(1)7 N(l))

Proof. Tt is enough to prove this for M = C,(X)[i], X a smooth variety and
i € Z,and N = Z(n), n > 0. By [54, Prop. 3.2.3] and [55], the left hand side is
functorially isomorphic to Bloch’s higher Chow group CH"(X, 2n+i). By [30,
Th. 15.12] (projective bundle formula in DAM), the right hand side is a direct
summand of CH" (X x P! 2n+2+1). By the projective bundle formula for
higher Chow groups ([3, Th. 7.1], [24, Cor. 5.4]), the latter decomposes as a
direct sum

CH"™MX x P 2n+2+14) ~ CH" ™ (X, 2n + 2 +i) ® CH"(X,2n +i).
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Moreover, the constructions of the projective bundle isomorphisms in [30] and
[3, 24] show that the latter two are compatible via the isomorphism between
motivic cohomology and higher Chow groups in [55]. This proves the theorem.

O

Theorem A.1 is sufficient to extend to imperfect fields the construction of the
slice spectral sequences in the form of (9.1), i.e. for motivic cohomology com-
puted in the Nisnevich topology (= Bloch’s higher Chow groups). It is not
sufficient, however, to obtain a version of the étale spectral sequences of (9.2)
which is interesting at p, since p is automatically inverted in DMEffét(F ) (see
Remark 2.6). In order to achieve this, one may presumably proceed by working
directly on Bloch’s cycle complexes, as follows:

By the work of Geisser-Levine [9], the étale hypercohomology of Bloch’s cycle
complexes provides an interesting theory modulo p. The first thing to do is to
find a version of the slice filtration directly on the cycle complexes of a given
smooth F-variety X: this can be achieved by using the “homotopy coniveau
filtration” (which is at the basis of the construction of the Bloch-Lichtenbaum
spectral sequence), see [28] and [22, §4].

This will give spectral sequences comparable to those of Theorem 2.5 and (9.2).
The issue is then to identify the FEo-terms. This can presumably be done by
a slightly tedious imitation of the computations in [14] and §9, where the te-
diousness comes from the fact that one is limited to work with smooth varieties
rather than general motives.

In the course of the computation, the following ingredients will certainly appear:
étale versions of the localisation theorem for higher Chow groups (see e.g. the
proof of [14, Prop. 4.11]) and of Bloch’s projective bundle theorem. They
should be obtained much as in [16, Th. 4.2 and Th. 5.1]. Hopefully a partial
purity statement similar to [16, Th. 4.2] will be sufficient for the applications.
We leave this programme to the interested reader.
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1. INTRODUCTION

Throughout this note (besides of §E and §E) F is a field of characteristic # 2.
The basic reference for the material related to involutions on central simple
algebras is [[J). The degree deg A of a (finite-dimensional) central simple F-
algebra A is the integer /dimp A; the index ind A of A is the degree of a central
division algebra Brauer-equivalent to A. An orthogonal involution o on A is
hyperbolic, if the hermitian form A x A — A, (a,b) — o(a) - b on the right
A-module A is so. This means that the variety X ((deg A)/2;(A,0)) of §f has
a rational point.

The main result of this paper is as follows (the proof is given in §ﬁ)

THEOREM 1.1 (Main theorem). A non-hyperbolic orthogonal involution o on
a central simple F-algebra A remains non-hyperbolic over the function field of
the Severi-Brauer variety of A.

1Partially supported by the Collaborative Research Centre 701 of the Bielefeld University
and by the Max-Planck-Institut fiir Mathematik in Bonn
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To explain the statement of Abstract, let us note that the function field L of
the Severi-Brauer variety of a central simple algebra A is a splitting field of A,
that is, the L-algebra Ay, is Brauer-trivial.
A stronger version of Theorem E, where the word “non-hyperbolic” (in each
of two appearances) is replaced by “anisotropic”, is, in general, an open con-
jecture, cf. , Conjecture 5.2].
Let us recall that the index of a central simple algebra possessing an orthogonal
involution is a power of 2. Here is the complete list of indices ind A and coindices
coind A = deg A/ind A of A for which Theorem @ is known (over arbitrary
fields of characteristic # 2), given in the chronological order:
e ind A =1 — trivial;
e coind A =1 (the stronger version) — , Theorem 5.3];
e ind A =2 — [f] and independently (the stronger version) [[Lf, Corollary
3.4];
e coind A odd — [ﬂ, appendix by Zainoulline] and independently @, Theorem
3.3];
e ind A=4 and coind A =2 — [E, Proposition 3];
e indA=4— [E, Theorem 1.2].

Let us note that Theorem D for any given (4, 0) with coind A = 2 implies
the stronger version of Theorem for this (A4,0): indeed, by [@, Theorem
3.3], if coind A = 2 and o becomes isotropic over the function field of the
Severi-Brauer variety, then o becomes hyperbolic over this function field and
the weaker version applies. Therefore we get

THEOREM 1.2. An anisotropic orthogonal involution on a central simple F-
algebra of coindex 2 remains anisotropic over the function field of the Severi-
Brauer variety of the algebra. O

Sivatski’s proof of the case with deg A = 8 and ind A = 4, mentioned above, is
based on the following theorem, due to Laghribi:

THEOREM 1.3 (, Théoreme 4]). Let ¢ be an anisotropic quadratic form of
dimension 8 and of trivial discriminant. Assume that the index of the Clifford
algebra C of ¢ is 4. Then ¢ remains anisotropic over the function field F(X7)
of the Severi-Brauer variety X1 of C.

The following alternate proof of Theorem B, given by Vishik, is a prototype of
our proof of Main theorem (Theorem m) Let Y be the projective quadric of
¢ and let X5 be the Albert quadric of a biquaternion division algebra Brauer-
equivalent to C. Assume that ¢p(x,) is isotropic. Then for any field extension
E/F, the Witt index of g is at least 2 if and only if Xo(E) # 0. By [1],
Theorem 4.15] and since the Chow motive M (X3) of X5 is indecomposable, it
follows that the motive M (X3)(1) is a summand of the motive of Y. The
complement summand of M (Y") is then given by a Rost projector on Y in the
sense of Definition @ Since dimY + 1 is not a power of 2, it follows that Y
is isotropic (cf. [f, Corollary 80.11]).
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After introducing some notation in §E and discussing some important general
principles concerning Chow motives in §E, we produce in §@ a replacement
of [RI, Theorem 4.15] (used right above to split off the summand M (X2)(1)
from the motive of Y') valid for more general (as projective quadrics) algebraic
varieties (see Proposition @) In §E we reproduce some recent results due to
Rost concerning the modulo 2 Rost correspondences and Rost projectors on
more general (as projective quadrics) varieties. In §E we apply some standard
motivic decompositions of projective homogeneous varieties to certain varieties
related to a central simple algebra with an isotropic orthogonal involution. We
also reproduce (see Theorem [p.1) some results of [[J] which contain the needed
generalization of indecomposability of the motive of an Albert quadric used in
the previous paragraph. Finally, in §ﬁ we prove Main theorem (Theorem D)
following the strategy of [E] and using results of [H] which were not available at
the time of [E]

ACKNOWLEDGEMENTS. Thanks to Anne Quéguiner for asking me the question
and to Alexander Vishik for telling me the alternate proof of Theorem I am
also grateful to the referee for finding several insufficiently explained points in
the manuscript.

2. NOTATION

We understand under a variety a separated scheme of finite type over a field.
Let D be a central simple F-algebra. The F-dimension of any right ideal in D
is divisible by deg D; the quotient is the reduced dimension of the ideal. For
any integer i, we write X (i; D) for the generalized Severi-Brauer variety of the
right ideals in D of reduced dimension ¢. In particular, X (0; D) = Spec F' =
X (deg D; D) and X (i, D) = ) for ¢ < 0 and for i > deg D.

More generally, let V' be a right D-module. The F-dimension of V is then
divisible by deg D and the quotient rdimV = dimp V/deg D is called the
reduced dimension of V. For any integer ¢, we write X (i; V') for the projective
homogeneous variety of the D-submodules in V' of reduced dimension ¢ (non-
empty iff 0 <4 < rdim V). For a finite sequence of integers i1, ..., ., we write
X(iy C -+ C 43 V) for the projective homogeneous variety of flags of the D-
submodules in V' of reduced dimensions i1, ..., i, (non-empty iff 0 < iy < .- <
ir <rdimV).

Now we additionally assume that D is endowed with an orthogonal involution
7. Then we write X (i; (D, 7)) for the variety of the totally isotropic right ideals
in D of reduced dimension i (non-empty iff 0 <i < deg D/2).

If moreover V is endowed with a hermitian (with respect to 7) form h, we
write X (i; (V, h)) for the variety of the totally isotropic D-submodules in V of
reduced dimension i.

We refer to [@] for a detailed construction and basic properties of the above va-
rieties. We only mention here that for the central simple algebra A := Endp V/
with the involution o adjoint to the hermitian form h, the varieties X (¢; (4, o))
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and X (i;(V,h)) (for any ¢ € Z) are canonically isomorphic. Besides, deg A =
rdim V| and the following four conditions are equivalent:

(1) o is hyperbolic;

(2) X((degA)/2; (A, 0))(F) # 0;

(3) X((xdim V')/2; (V, h))(F) # 0;

(4) h is hyperbolic.

3. KRULL-SCHMIDT PRINCIPLE

The characteristic of the base field F' is arbitrary in this section.

Our basic reference for Chow groups and Chow motives (including notation)
is [E] We fix an associative unital commutative ring A (we shall take A = Fy
in the application) and for a variety X we write CH(X; A) for its Chow group
with coefficients in A. Our category of motives is the category CM(F,A) of
graded Chow motives with coefficients in A, [E, definition of §64]. By a sum of
motives we always mean the direct sum.

We shall often assume that our coefficient ring A is finite. This simplifies
significantly the situation (and is sufficient for our application). For instance,
for a finite A, the endomorphism rings of finite sums of Tate motives are also
finite and the following easy statement applies:

LEMMA 3.1. An appropriate power of any element of any finite associative (not
necessarily commutative) ring is idempotent.

Proof. Since the ring is finite, any its element z satisfies % = x%* for some
a>1and b> 1. It follows that z is an idempotent. O

Let X be a smooth complete variety over F. We call X split, if its integral
motive M(X) € CM(F,Z) (and therefore its motive with any coefficients) is
a finite sum of Tate motives. We call X geometrically split, if it splits over a
field extension of F'. We say that X satisfies the nilpotence principle, if for any
field extension E/F and any coefficient ring A, the kernel of the change of field
homomorphism End(M (X)) — End(M (X)g) consists of nilpotents. Any pro-
jective homogeneous variety is geometrically split and satisfies the nilpotence
principle, [E, Theorem 8.2].

COROLLARY 3.2 ([E, Corollary 2.2]). Assume that the coefficient ring A is finite.
Let X be a geometrically split variety satisfying the nilpotence principle. Then
an appropriate power of any endomorphism of the motive of X is a projector.

We say that the Krull-Schmidt principle holds for a given pseudo-abelian cat-
egory, if every object of the category has one and unique decomposition in a
finite direct sum of indecomposable objects. In the sequel, we are constantly
using the following statement:

COROLLARY 3.3 ([@, Corollary 35], see also [E, Corollary 2.6]). Assume that the
coefficient ring A is finite. The Krull-Schmidt principle holds for the pseudo-
abelian Tate subcategory in CM(F,A) generated by the motives of the geomet-
rically split F-varieties satisfying the nilpotence principle. d
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REMARK 3.4. Replacing the Chow groups CH(—;A) by the reduced Chow
groups CH(—; A) (cf. [E, §72]) in the definition of the category CM(F,A), we
get a “simplified” motivic category CM(F, A) (which is still sufficient for the
main purpose of this paper). Working within this category, we do not need the
nilpotence principle any more. In particular, the Krull-Schmidt principle holds
(with a simpler proof) for the pseudo-abelian Tate subcategory in CM(F, A)
generated by the motives of the geometrically split F-varieties.

4. SPLITTING OFF A MOTIVIC SUMMAND

The characteristic of the base field F' is still arbitrary in this section.

In this section we assume that the coefficient ring A is connected. We shall
often assume that A is finite.

Before climbing to the main result of this section (which is Proposition @),
let us do some warm up.

The following definition of [E] extends some terminology of [@]

DEFINITION 4.1. Let M € CM(F, A) be a summand of the motive of a smooth
complete irreducible variety of dimension d. The summand M is called upper,

if CHY(M;A) # 0. The summand M is called lower, if CHy(M;A) # 0. The
summand M is called outer, if it is simultaneously upper and lower.

For instance, the whole motive of a smooth complete irreducible variety is an
outer summand of itself. Another example of an outer summand is the motive
given by a Rost projector (see Definition @)

Given a correspondence a € CHgim x (X xY'; A) between some smooth complete
irreducible varieties X and Y, we write mult« € A for the multiplicity of «,
[ﬂ, definition of §75]. Multiplicity of a composition of two correspondences is the
product of multiplicities of the composed correspondences (cf. [EI, Corollary
1.7]). In particular, multiplicity of a projector is idempotent and therefore
€ {0, 1} because the coefficient ring A is connected.

Characterizations of outer summands given in the two following Lemmas are
easily obtained:

LEMMA 4.2 (cf. [E, Lemmas 2.8 and 2.9]). Let X be a smooth complete irreducible
variety. The motive (X, p) given by a projector p € CHaim x (X x X; A) is upper
if and only if mult p = 1. The motive (X, p) is lower if and only if multp’ = 1,
where pt is the transpose of p.

LEMMA 4.3 (cf. [E, Lemma 2.12]). Assume that a summand M of the motive of
a smooth complete irreducible variety of dimension d decomposes into a sum of
Tate motives. Then M is upper if and only if the Tate motive A is present in
the decomposition; it is lower if and only if the Tate motive A(d) is present in
the decomposition.

The following statement generalizes (the finite coefficient version of) [21}, Corol-
lary 3.9]:
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LEMMA 4.4. Assume that the coefficient ring A is finite. Let X and Y be
smooth complete irreducible varieties such that there exist multiplicity 1 corre-
spondences

aECHdimx(XXY;A) and ﬁGCHdimy(YXX;A).

Assume that X is geometrically split and satisfies the nilpotence principle. Then
there is an upper summand of M(X) isomorphic to an upper summand of
M(Y). Moreover, for any upper summand Myx of M(X) and any upper sum-
mand My of M(Y'), there is an upper summand of Mx isomorphic to an upper
summand of My .

Proof. By Corollary @, the composition p := (8 o «)°" for some n > 1 is a
projector. Therefore q := (a0 3)°?" is also a projector and the summand (X, p)
of M (X) is isomorphic to the summand (Y, g) of M (Y). Indeed, the morphisms
a:M(X) = M) and B’ := o (aoB)°? 1 : M(Y) - M(X) satisfy the
relations 3 ca=p and ao ' =gq.
Since mult p = (mult 8 - mult «)” = 1 and similarly mult ¢ = 1, the summand
(X,p) of M(X) and the summand (Y, q) of M(Y) are upper by Lemma [L.2
We have proved the first statement of Lemma @ As to the second statement,
let

p' € CHaimx (X x X;A) and ¢’ € CHgimy (Y x Y3 A)
be projectors such that Mx = (X,p’) and My = (Y,q¢'). Replacing o and 3
by ¢ oaop’ and p’ o B o ¢, we get isomorphic upper motives (X, p) and (Y, q)
which are summands of Mx and My-. O

REMARK 4.5. Assume that the coefficient ring A is finite. Let X be a geo-
metrically split irreducible smooth complete variety satisfying the nilpotence
principle. Then the complete motivic decomposition of X contains precisely
one upper summand and it follows by Corollary @ (or by Lemma @) that an
upper indecomposable summands of M (X) is unique up to an isomorphism.
(Of course, the same is true for the lower summands.)

Here comes the needed replacement of [@, Theorem 4.15]:

PROPOSITION 4.6. Assume that the coefficient ring A is finite. Let X be a
geometrically split, geometrically irreducible variety satisfying the nilpotence

principle and let M be a motive. Assume that there exists a field extension
E/F such that

(1) the field extension E(X)/F(X) is purely transcendental;
(2) the upper indecomposable summand of M(X)g is also lower and is a
summand of Mg.

Then the upper indecomposable summand of M(X) is a summand of M.
Proof. We may assume that M = (Y, p,n) for some irreducible smooth com-
plete F-variety Y, a projector p € CHgimy (Y X Y;A), and an integer n.

By the assumption (2), we have morphisms of motives f : M(X)g — Mg
and g : Mg — M(X)g with mult(go f) = 1. By [, Lemma 2.14], in order to
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prove Proposition @, it suffices to construct morphisms f’: M(X) — M and
g : M — M(X) (over F) with mult(¢’ o ') = 1.

Let & : Spec F(X) — X be the generic point of the (irreducible) variety X.
For any F-scheme Z, we write £z for the morphism {7 = (§ xidz) : Zp(x) =
Specp(x) XZ — X x Z. Note that for any o € CH(X x Z), the image {7 (a) €
CH(Zp(x)) of a under the pull-back homomorphism &3 : CH(X x Z,A) —
CH(Zp(x),A) coincides with the composition of correspondences a o [¢], [ﬁ,
Proposition 62.4(2)], where [£] € CHo(Xp(x), A) is the class of the point &:

(*) §z(a) = aolg].

In the commutative square

s

3
CH(Xp x Yi; A) —2— CH(Yg(x); A)
reSE/FT reSE<x>/F<x>T

CH(X x Y;A) —2 s CH(Yp(x); A)

the change of field homomorphism resg(x),/r(x) is surjective%because of the
assumption (1) by the homotopy invariance of Chow groups [, Theorem 57.13]
and by the localization property of Chow groups [% Proposition 57.11]. Moreover,
the pull-back homomorphism &5 is surjective by [, Proposition 57.11]. It follows
that there exists an element f’ € CH(X x Y;A) such that & (f5) = &5, (f).
Recall that mult(g o f) = 1. On the other hand, mult(g o f5) = mult(g o
f). Indeed, mult(g o f) = degng (g o f) by [E, Lemma 75.1], where deg :
CH(Xpg(x)) — A is the degree homomorphism. Furthermore, £%, (g0 f) =
(9o f)e[§e] by (+). Finally, (go f)e[¢r] = go(fol¢r]) and fo[¢n] = &7, (f) =
&y, (f) by the construction of f'.

Replacing f’ be the composition p o f’, we get a morphism f': M(X) — M.
Since the composition g o f is not changed, we still have mult(g o f5) = 1.
Since mult(g o f;) = 1 and the indecomposable upper summand of M (X)g
is lower, we have mult((f})" o g') = 1. Therefore we may apply the above
procedure to the dual morphisms

¢ M(X)g — (YV,p,dim X —dimY —n)g
and (fg)': (YV,p,dimX —dimY —n)g — M(X)g.

E
This way we get a morphism ¢’ : M — M (X)) such that mult((f")! o (¢')!) = 1.
It follows that mult(g’ o f') = 1. O

REMARK 4.7. Replacing CM(F, A) by CM(F, A) in Proposition [.6, we get a
weaker version of Proposition @ which is still sufficient for our application.
The nilpotence principle is no more needed in the proof of the weaker version.
Because of that, there is no more need to assume that X satisfies the nilpotence
principle.

n fact, resp(x),/F(x) is even an isomorphism, but we do not need its injectivity (which
can be obtained with a help of a specialization).
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5. ROST CORRESPONDENCES

In this section, X stands for a smooth complete geometrically irreducible vari-
ety of a positive dimension d.

The coefficient ring A of the motivic category is Fo in this section. We write
Ch(—) for the Chow group CH(—;F2) with coefficients in F2. We write deg
for the degree homomorphism Chy(X) — Fs.

DEFINITION 5.1. An element p € Chy(X x X) is called a Rost correspondence
(on X), if pp(xy = X1 X [Xpx)] +[Xp(x)] X X2 for some 0-cycle classes x1, x2 €
Cho(Xp(x)) of degree 1. A Rost projector is a Rost correspondence which is a
projector.

REMARK 5.2. Our definition of a Rost correspondence differs from the defini-
tion of a special correspondence in [@] Our definition is weaker in the sense
that a special correspondence on X (which is an element of the integral Chow
group CHy(X x X)) considered modulo 2 is a Rost correspondence but not
any Rost correspondence is obtained this way. This difference gives a reason
to reproduce below some results of [@] Actually, some of the results below
are formally more general than the corresponding results of [@], their proofs,
however, are essentially the same.

REMARK 5.3. Clearly, the set of all Rost correspondences on X is stable un-
der transposition and composition. In particular, if p is a Rost correspon-
dence, then its both symmetrizations p’ o p and p o p' are (symmetric) Rost
correspondences. Writing pp(x) as in Definition @, we have (p' o p)p(x) =

X1 X [Xpox)) + [ Xpox)) x x1 (and (pop') pix) = x2 X [Xpoo)] + [Xroo] X x2)-
LEMMA 5.4. Assume that the variety X is projective homogeneous. Let p €
Chg(X x X) be a projector. If there exists a field extension E/F such that
pE = x1 X [XEg| + [XE] X x2 for some 0-cycle classes x1,x2 € Cho(Xg) of
degree 1, then p is a Rost projector.

Proof. According to [E, Theorem 7.5], there exist some integer n > 0 and for
1 =1,...,n some integers r; > 0 and some projective homogeneous varieties
X; satisfying dim X; 4+ r; < d such that for M = @:.;1 M(X;)(r;) the motive
M(X)p(x) decomposes as Fy & M @ Fa(d). Since there is no non-zero mor-
phism between different summands of this three terms decomposition, the ring
End M (X) decomposes in the product of rings

EndFy x End M x EndFa(d) = Fy x End M x Fs.
Let x € Cho(Xp(x)) be a 0-cycle class of degree 1. We set
P =x % [Xrx)) + [Xpx)] X x € Fy x Fy
CFy x End M x Fy = EndM(X)F(X) = Chd(XF(X) X XF(X))

and we show that pp(x) = p’. The difference € = pp(x)—p’ vanishes over E(X).
Therefore ¢ is a nilpotent element of End M. Choosing a positive integer m
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with €™ = 0, we get
PR(X) = PEx) = (P +e)" = ()" +e™ = ()" = /. O

LEMMA 5.5. Let p € Chy(X x X) be a projector. The motive (X, p) is isomor-
phic to Fo @ Fa(d) iff p = x1 X [X] + [X] X x2 for some some 0-cycle classes
X1, X2 € Cho(X) of degree 1.
Proof. A morphism Fy ® Fo(d) — (X, p) is given by some

f € Hom (F2, M (X)) = Cho(X) and f’ € Hom (F2(d), M (X)) = Chg(X).
A morphism in the inverse direction is given by some

g € Hom(M(X),Fy) = Ch®(X) and ¢’ € Hom(M(X),Fa(d)) = Ch*(X).
The two morphisms Fy & Fa(d) ++ (X, p) are mutually inverse isomorphisms iff
p=fxg+f'xg anddegx,p(fg) =1=degx,p(f'g’). The degree condition
means that f' = [X] = g and degx,r(f) =1 = degx,p (7). O

COROLLARY 5.6. If X is projective homogeneous and p is a projector on X
such that

(X, p)p = F2 ® Fa(d)
for some field extension E/F, then p is a Rost projector. g

A smooth complete variety is called anisotropic, if the degree of its any closed
point is even.

LEMMA 5.7 ([ﬂ, Lemma 9.2], cf. [E, proof of Lemma 6.2]). Assume that X
is anisotropic and possesses a Rost correspondence p. Then for any inte-
ger i # d and any elements o € Chy(X) and 8 € Ch'(Xp(x)), the im-
age of the product ap(xy - B € Cho(Xp(x)) under the degree homomorphism
degXF(X)/F(X) : ChO(XF(X)) — Iy is 0.
Proof. Let v € Chi(X x X) be a preimage of 8 under the surjection

€ : Ch'(X x X) — Ch'(Spec F(X) x X)
(where &% is as defined in the proof of Proposition @) We consider the 0-cycle
class

0=p-([X] xa) v e Chy(X x X).

Since X is anisotropic, so is X x X, and it follows that deg x, x)/rd = 0.
Therefore it suffices to show that deg x x)/rd = degXF(X)/F(X)(aF(X) - B).

‘We have deg(XXx)/F 0= deg(XXX)F(X)/F(X)((SF(X)) and
drx) = 0 X [Xreol + [Xrool x x2) - ((Xpoo)] X apx)) - vrexo =
(X [Xpx)]) - ([Xeoo) X arx)) - vex)

(because i # d) where x1,x2 € Cho(Xp(x)) are as in Definition .| For the
first projection pry : Xp(x) X Xp(x) = Xp(x) we have

deg(x x X) pox,/F(x) OF(x) = €8x, o /r(x) (PT1)+ (0p(x))

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 371-392



380 NikiTA A. KARPENKO

and by the projection formula

(pr1)«(Orcx)) = x1 - (pr1)« ([(Xrx)] X arc)) - vpx)-
Finally,

(pr 1)« ([Xpx)] X arcx) - vren) = mult (((Xpool X apx) - vex)) - [ Xpexo]
and

mult (([Xp(x)) X apx)) - vrx)) = mult (((X] x @) - 7).
Since mult x = degx, . /p(x)&x(X) for any element x € Chq(X x X) by Bl
Lemma 75.1], it follows that

mult (([X] x @) - 7) = deg(apx) - B). O

For anisotropic X, we consider the homomorphism deg/2 : Cho(X) — Fo
induced by the homomorphism CHy(X) — Z, a — deg(a)/2.

COROLLARY 5.8. Assume that X is anisotropic and possesses a Rost corre-
spondence. Then for any integer i # d and any elements a € Ch,;(X) and
p € Ch*(X) with Bpxy =0 one has (deg/2)(ca- §) = 0.

Proof. Let B € CHi(X) be an integral representative of 3. Since Bp(x) = 0,
we have 5}?(}() = 23" for some 3" € CHi(XF(X)). Therefore

(deg/2)(a : 5) = degXF(X)/F(X) (aF(X) : (5” mod 2)) =0
by Lemma m O

COROLLARY 5.9. Assume that X is anisotropic and possesses a Rost corre-
spondence p. For any integer i & {0,d} and any o € Ch;(X) and 8 € Ch'(X)
one has

(deg/2)((ex B) - p) = 0.

Proof. Let o/ € CH;(X) and 8’ € CH'(X) be integral representatives of o and
B. Let p’ € CHy(X x X) be an integral representative of p. It suffices to show
that the degree of the 0-cycle class (o x 8') - p’ € CHo(X x X) is divisible by
4.

Let y1 and Y2 be as in Definition b1 Let x}, x4 € CHo(Xp(x)) be integral
representatives of 1 and y2. Then p’F(X) = X1 X [Xpeo)) + [Xrxo] X x5 +2y
for some v € CHy(Xp(x) X Xp(x)). Therefore (since i ¢ {0,d})

(O/F(X) X 5%()()) 'P%(X) = 2(0/}?()() X 5%()()) -

Applying the projection pr; onto the first factor and the projection formula,
we get twice the element o/ ) - (pry)« ([Xrx)) x Brx)) +7y) whose degree is
even by Lemma @ (here we use once again the condition that i # d). g

LEMMA 5.10. Assume that X is anisotropic and possesses a Rost correspon-
dence p. Then (deg/2)(p?) = 1.
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Proof. Let x1 and x2 be as in Definition f.1. Let x}, x4 € CHo(Xg) be integral
representatives of y1 and y2. The degrees of x} and x5 are odd. Therefore,
the degree of the cycle class

(X1 X [Xrool + [Xroo) X x5)? = 2(x3 % x5) € CHo(Xp(x) X XF(x))
is not divisible by 4.
Let p' € CHy(X x X) be an integral representative of p. Since p'F(X) is x} X
Xkl + [Xeoo] x x5 modulo 2, (px))? is (X * [Xpeo)] + [Xroxo)] % x5)?
modulo 4. Therefore (deg/2)(p?) = 1. O

THEOREM 5.11 ([E, Theorem 9.1], see also @, proof of Lemma 6.2]). Let X be
an anisotropic smooth complete geometrically irreducible variety of a positive
dimension d over a field F' of characteristic # 2 possessing a Rost correspon-
dence. Then the degree of the highest Chern class cq(—Tx ), where Tx is the
tangent bundle on X, is not divisible by 4.

Proof. In this proof, we write co (—Tx) for the total Chern class € Ch(X) in the
Chow group with coefficient in Fo. It suffices to show that (deg/2)(cq(—Tx)) =
1.

Let Sq¥ : Ch(X) — Ch(X) be the modulo 2 homological Steenrod operation,
[E, §59]. We have a commutative diagram

Chg(X x X)
(prl)*/
Chd (X) Sqfxx
Sa¥ Cho(X x X)
(pzq)/ %)*
Chy (X) deg/2 Chg (X)
Iy

Since (pry)«(p) = [X] and Sqf ([X]) = ca(~Tx) [, formula (60.1)], it suffices to
show that

(deg/2) (Sa}* ¥ (p)) = 1.

We have Sqi ™~ = co(=Txxx)-Sq% x x» where Sq® is the cohomological Steen-
rod operation, [E, §61]. Therefore

d
Sag X (p) =D ca-i(~Txxx) - S xx (p)-
=0

The summand with i = d is Sq% x () = p* by [, Theorem 61.13]. By Lemma
.10, its image under deg/2 is 1.
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Since co(—Txxx) = Co(—Tx) X co(—Tx) and Sq° = id, the summand with
1=01is
d
> ei(=Tx) x cayj(=Tx) | - p-
3=0

Its image under deg/2 is 0 because
(deg/2) ((eo(~Tx) x ca(~Tx)) - p) = (deg/2)(ca(~Tx)) =
(deg/2)((ca(~Tx) x co(~Tx)) - p)

while for j & {0,d}, we have (deg/2)((cj(fTX) x ca—j(—Tx)) ~p> = 0 by
Corollary @
Finally, for any ¢ with 0 < ¢ < d the ith summand is the sum

d—i _

> (e (=Tx) % ca—i—j(=Tx)) - Sdxxx (p)-

j=0
We shall show that for any j the image of the jth summand under deg/2
is 0. Note that the image under deg/2 coincides with the image under the
composition (deg/2) o (pr;). and also under the composition (deg/2) o (prs).«
(look at the above commutative diagram). By the projection formula we have

()« ((e4(~Tx) X ca—iej(=Tx)) - Saly e x (0) ) =

¢ (=Tx) - () ((IX] X Cais (~T)) - S x(0))
and the image under deg/2 is 0 for positive j by Corollary @ applied to
a =c¢j(—Tx) and § = (prl)*(([X] X ca—i—j(—Tx)) 'ngfo(P))- Corollary
E can be indeed applied, because since pp(x) = X1 X [Xp(x)] + [Xpx)] X X2
and ¢ > 0, we have SqéXXX)F(X) (p)p(x) = 0 and therefore Bp(x) = 0.

For j = 0 we use the projection formula for pr, and Corollary @ with a =
ca—i(=Tx) and B = (pry)«(Sdly«x (0))- O

REMARK 5.12. The reason of the characteristic exclusion in Theorem p.1]] is
that its proof makes use of Steenrod operations on Chow groups with coeffi-
cients in Fo which (the operations) -are not available in characteristic 2.

We would like to mention

LEMMA 5.13 ([@7 Lemma 9.10]). Let X be an anisotropic smooth complete equidi-
mensional variety over a field of arbitrary characteristic. If dim X +1 is not a
power of 2, then the degree of the integral 0-cycle class caim x (—Tx) € CHo(X)
is divisible by 4.

COROLLARY 5.14 ([@7 Corollary 9.12]). In the situation of Theorem , the
integer dim X + 1 is a power of 2. O
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6. MOTIVIC DECOMPOSITIONS OF SOME ISOTROPIC VARIETIES

The coefficient ring A is Fy in this section. Throughout this section, D is a
central division F-algebra of degree 2" with some positive integer r.

We say that motives M and N are quasi-isomorphic and write M ~ N, if there
exist decompositions M ~ M, & ---® M,, and N ~ N1 & --- ® N, such that

Mi(i1) @ ® My (im) = N1(j1) @ -+ D N (jn)

for some (shift) integers iy, ..., i, and j1,..., jn.
We shall use the following

THEOREM 6.1 ([E, Theorems 3.8 and 4.1]). For any integer | = 0,1,...,7, the
upper indecomposable summand M; of the motive of the generalized Severi-
Brauer variety X (2!; D) is lower. Besides of this, the motive of any finite direct
product of any generalized Severi-Brauer varieties of D is quasi-isomorphic to
a finite sum of My (with various l).

For the rest of this section, we fix an orthogonal involution on the algebra D.

LEMMA 6.2. Let n be an positive integer. Let h be a hyperbolic hermitian form
on the right D-module D*" and let Y be the variety X (ndeg D; (D?",h)) (of the
maximal totally isotropic submodules). Then the motive M(Y') is isomorphic
to a finite sum of several shifted copies of the motives My, M1, ..., M,.

Proof. By , §15] the motive of the variety Y is quasi-isomorphic to the
motive of the “total” variety

2"n
X(x D" =[x D" =[] X(: D"
i€ i=0
of D-submodules in D™ (the range limit 2"n is the reduced dimension of the
D-module D™). (Note that in our specific situation we always have ¢ = j in the
flag varieties X (i C j; D™) which appear in the general formula of [L1(, Cnen-
creue 15.14].) Furthermore, M (X (x; D")) ~ M (X (x; D))®" by [0, Cnen-
creue 10.19]. Therefore the motive of YV is a direct sum of the motives of
products of generalized Severi-Brauer varieties of D. (One can also come to
this conclusion by [E] computing the semisimple anisotropic kernel of the con-
nected component of the algebraic group Aut(D?",h).) We finish by Theorem

b.1. O

As before, we write Ch(—) for the Chow group CH(—;Fs) with coefficients in
F5. We recall that a smooth complete variety is called anisotropic, if the degree
of its any closed point is even (the empty variety is anisotropic). The following
statement is a particular case of [E, Lemma 2.21].

LEMMA 6.3. Let Z be an anisotropic F-variety with a projector p € Chaim z(Z x
Z) such that the motive (Z,p)r, € CM(L,F3) for a field extension L/F is
isomorphic to a finite sum of Tate motives. Then the number of the Tate
summands is even. In particular, the motive in CM(F,Fs) of any anisotropic
F-variety does not contain a Tate summand.
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Proof. Mutually inverse isomorphisms between (Z,p);, and a sum of, say,
n Tate summands, are given by two sequences of homogeneous elements
ai,...,an and by,...,b, in Ch(Zy) with py, = a1 X by + -+ + ap, X b, and
such that for any i,j = 1,...,n the degree deg(a;b;) is 0 for 7 # j and 1 € Fy
for ¢ = j. The pull-back of p via the diagonal morphism of Z is therefore a
0-cycle class on Z of degree n (modulo 2). O

LEMMA 6.4. Let n be an integer > 0. Let h' be a hermitian form on the
right D-module D™ such that h'; is anisotropic for any finite odd degree field
extension L/F. Let h be the hermitian form on the right D-module D™*2 which
is the orthogonal sum of h' and a hyperbolic D-plane. Let Y' be the variety of
totally isotropic submodules of D"*? of reduced dimension 2" (=ind D). Then
the complete motivic decomposition of M(Y') € CM(F,Fs) (cf. Corollary [5.3)
contains one summand Fa, one summand Fo(dimY”), and does not contain
any other Tate motive.

Proof. Since Y'(F) # @, M(Y’) contains an exemplar of the Tate motive Fy
and an exemplar of the Tate motive Fo(dimY”).

According to L0, Carencrame 15.14] (see also [[l0, Crencreme 15.9]), M (Y”) is
quasi-isomorphic to the sum of the motives of the products

X(i Cj; D) x X(j —i; (D", 1))

where i, j run over all integers (the product is non-empty only if 0 <4 < j < 27).
The choices ¢ = j = 0 and ¢ = j = 2" give two exemplars of the Tate motive Fy
(up to a shift). The variety obtained by any other choice of ¢, j but ¢ = 0, j = 2"
is anisotropic because the algebra D is division. The variety with ¢ = 0,5 = 27
is anisotropic by the assumption involving the odd degree field extensions.
Lemma @ terminates the proof. g

7. PROOF OF MAIN THEOREM

We fix a central simple algebra A of index > 1 with a non-hyperbolic orthogonal
involution . Since the involution is an isomorphism of A with its dual, the
exponent of A is 2; therefore, the index of A is a power of 2, say, ind A = 2" for
a positive integer r. We assume that o becomes hyperbolic over the function
field of the Severi-Brauer variety of A and we are looking for a contradiction.

According to [@, Theorem 3.3], coind A = 2n for some integer n > 1. We assume
that Main theorem (Theorem [.1)) is already proven for all algebras (over all
fields) of index < 2" as well as for all algebras of index 2" and coindex < 2n.

Let D be a central division algebra Brauer-equivalent to A. Let Xy be the
Severi-Brauer variety of D. Let us fix an (arbitrary) orthogonal involution 7
on D and an isomorphism of F-algebras A ~ Endp(D?"). Let h be a hermitian
(with respect to 7) form on the right D-module D?" such that o is adjoint to
h. Then hp(x,) is hyperbolic. Since the anisotropic kernel of h also becomes
hyperbolic over F'(Xj), our induction hypothesis ensures that A is anisotropic.
Moreover, hy, is hyperbolic for any field extension L/F such that hy, is isotropic.
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It follows by [m, Proposition 1.2] that hy is anisotropic for any finite odd degree
field extension L/F.
Let Y be the variety of totally isotropic submodules in D?" of reduced di-
mension ndeg D. (The variety YV is a twisted form of the variety of maximal
totally isotropic subspaces of a quadratic form studied in [ﬂ, Chapter XVT].) It
is isomorphic to the variety of totally isotropic right ideals in A of reduced
dimension (deg A)/2 (=n2"). Since o is hyperbolic over F'(Xy) and the field
F is algebraically closed in F(Xp) (because the variety X is geometrically
integral), the discriminant of o is trivial. Therefore the variety Y has two con-
nected components Y} and Y_ corresponding to the components C'y and C_
(cf. [, Theorem 8.10]) of the Clifford algebra C(A, o). Note that the varieties
Y, and Y_ are projective homogeneous under the connected component of the
algebraic group Aut(D?" h) = Aut(A, o).
The central simple algebras C';. and C_ are related with A by the formula [,
(9.14)]:

[Cy]+[C-] = [A] € Br(F).
Since [Cy]p(x,) = [C-]r(x,) = 0 € Br(F(Xy)), we have [C,], [C_] € {0, [A]}
and it follows that [Cy] =0, [C_] = [A] up to exchange of the indices +, —.
By the index reduction formula for the varieties Y, and Y_ of [[LF, page 594], we
have: ind Dp(y,) =ind D, ind Dpy_y = 1.
Below we will work with the variety Y, and not with the variety Y_. One
reason of this choice is Lemma [.I] Another reason of the choice is that we
need Dp(y,) to be a division algebra when applying Proposition @ in the
proof of Lemma E

LEMMA 7.1. For any field extension L/F one has:
a) Y_(L) # 0 & Dy, is Brauer-trivial < Dy, is Brauer-trivial and oy, is
hyperbolic;
b) Yi(L) # 0 < oy, is hyperbolic.

Proof. Since op(x,) is hyperbolic, Y (F(Xo)) # 0. Since the varieties Y, and
Y_ become isomorphic over F'(Xj), each of them has an F'(Xj)-point. More-
over, Xy has an F(Y_)-point. O

For the sake of notation simplicity, we write Y for Y} (we will not meet the
old Y anymore).

The coefficient ring A is Fy in this section. We use the F-motives My, ..., M,
introduced in Theorem @ Note that for any field extension E/F such that
Dgp is still a division algebra, we also have the E-motives My, ..., M,.

LEMMA 7.2. The motive of Y decomposes as R1 ® Ro, where Ry is quasi-
isomorphic to a finite sum of several copies of the motives My, ..., M._1, and
where (Ry)p(yy is isomorphic to a finite sum of Tate motives including one
exemplar of Fso.

Proof. According to Lemma @, the motive M (Y') p(yy is isomorphic to a sum
of several shifted copies of the F(Y)-motives My, ..., M, (introduced in The-
orem @) Since Yp(y) # 0, a (non-shifted) copy of the Tate motive Fy shows
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up. If for some | = 0,...,r — 1 there is at least one copy of M; (with a shift
j € Z) in the decomposition, let us apply Proposition @ taking as X the
variety X; = X (2}; D), taking as M the motive M (Y)(—j), and taking as F
the function field F(Y').

Since D is a division algebra, condition (2) of Proposition [L.qis fulfilled. Since
ind Dp(x) < 27, the hermitian form hp(x) is hyperbolic by the induction hy-
pothesis; therefore the variety Yp(x is rational (see Remark @) and condition
(1) of Proposition [1.g is fulfilled as well.

It follows that the F-motive M; is a summand of M(Y)(—j). Let now M
be the comp