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Alon and Roichman (1994) proved that for everyε > 0 there is a finitec(ε) such that for any sufficiently large group
G, the expected value of the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of
the Cayley graph with respect toc(ε) log|G| random elements is less thanε. We reduce the number of elements
to c(ε) logD(G) (for the samec), whereD(G) is the sum of the dimensions of the irreducible representations of
G. In sufficiently non-abelian families of groups (as measured by these dimensions), logD(G) is asymptotically
(1/2) log|G|. As is well known, a small eigenvalue implies large graph expansion (and conversely); see Tanner
(1984) and Alon and Milman (1984, 1985). For any specified eigenvalue or expansion, therefore, random Cayley
graphs (of sufficiently non-abelian groups) require only half as many edges as was previously known.
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1 Introduction
All groups considered in this paper are finite.

Definition 1 Let G be a group, and S⊂G be a multiset. TheCayley graphX(G,S) is the multigraph on
vertex set G, with n undirected edges connecting g and tg if t appears n times in the multiset union StS−1,
where S−1 is the multiset{s−1 : s∈ S}. Thenormalized adjacency matrixA∗X(G,S) is 1/(2|S|) times the

adjacency matrix of X(G,S).

Definition 2 Let M be an n×n matrix with real eigenvalues x1, . . . , xn, where|x1| ≥ · · · ≥ |xn|. Define
λ(M) = |x1| and µ(M) = |x2|. Write µ(X(G,S)) for µ(A∗X(G,S)).

Definition 3 Let D(G) be the sum of the dimensions of the irreducible representations of G.

†Supported in part by the Marshall family, a Caltech Summer Undergraduate Research Fellowship, and an NSF REU supplement.
‡Supported in part by NSF CAREER grant 0049092 and by a grant from the Okawa Foundation.

1365–8050c© 2004 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/


524 Po-Shen Loh and Leonard J. Schulman

Observe that|G|1/2 < D(G) ≤ |G|. The upper bound is met only by abelian groups but is approached
also by other groups whose irreducible representations are mostly low-dimensional, such as dihedral
groups. The lower bound is approached, in the sense that logD(G) → (1/2) log|G|, by a variety of
families of groups possessing mostly high-dimensional irreducible representations.

Examples:

(a) The affine groupAp over the prime fieldGF(p). |Ap|= p(p−1), while D(Ap) = 2p−2.

(b) The symmetric groupSn. |Sn|= n!, hence log|Sn| ∈ nlogn−O(n), while D(Sn) ∈ eO(
√

n)
√

n!, hence
logD(Sn) ∈ (1/2)nlogn+O(

√
n).

(For the upper bound onD(Sn), take the number of irreducible representations ofSn times the maximum
of their dimensions. The first of these isp(n), the number of partitions ofn, which has the asymptotic

behaviorp(n)∼ 1
4n
√

3
eπ
√

2n/3. The second was shown by Vershik and Kerov (1985) to be bounded above

by e−k
√

n
√

n! for a positive constantk.)

Theorem 1 For any ε > 0 the following holds for every sufficiently large group G. Let S be a multiset
of c(ε) logD(G) uniformly and independently sampled elements of G, for c(ε) = 4e/ε2. Then we have
E[µ(X(G,S))] < (1+o(1))ε.

(Here and throughouto(1) allows for a quantity tending to 0 for large|G|.) Russell and Landau (2004)
have independently obtained a similar result.

As a detail note that in Alon and Roichman (1994),S is generated by sampling without repetition (i.e.,
S is a set), while we employ sampling with repetition. The principal benefit of this is to simplify the
argument, but it also leads to some sharpening: the value ofc(ε) obtained in Alon and Roichman (1994)
is slightly larger than given here, while substituting sampling with repetition into their argument leads to
the samec(ε).

2 Proof
The combinatorial outline of the proof follows that of Alon and Roichman; the heart of the improvement
lies in taking a certain union bound over the irreducible representations, rather than over the entire regular
representation, of the group.

2.1 Decomposition into irreducible representations

Fix a groupG, and letSbe a multiset ofN elements ofG. Let T = StS−1; let α be the element in the
group algebraC[G] defined by:

α = ∑
t∈T

1
|T|

t.

Let the operatorL be the left-action ofα onC[G]. Its matrix representation with respect to the standard
basis is the normalized adjacency matrix ofX(G,S). The Fourier TransformF is an algebra isomorphism
from C[G] to

LR
r=1 Mr , whereR is the number of irreducible representations ofG, andMr = Matdr×dr (C).

Hence the eigenvalues ofL are the same as the eigenvalues of the left-action ofF (α) on
L

Mr . Explicitly,
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F (α) =
RM

r=1

(
∑
t∈T

1
|T|

ρr(t)

)
,

whereρr : G→ Mr are the (unitary) irreducible representations, expressed with respect to fixed bases.
Focus on an arbitrary componentr of F (α): let Ψr = (1/|T|)∑t∈T ρr(t).

SinceΨr is an average of unitary matrices, its eigenvalues are bounded in absolute value by 1.
Let ρ1 be the one-dimensional trivial representationρ1 : G 7→ C. Then for anyS, Ψ1 = 1. Therefore,

µ(X(G,S)) = λ(A), whereA is the following block-diagonal matrix:

A =


Ψ2 0 . . . 0
0 Ψ3 . . . 0
. . . . . .
0 0 . . . ΨR

 .

2.2 From eigenvalues to random walks

Fact 1 Let M be a square matrix with real eigenvalues. Then for every positive integer m,

λ(M)≤
(
Tr(M2m)

)1/2m
.

Because of the symmetric construction ofT, A is Hermitian. By convexity,

E[µ(X(G,S))]≤
(
E[Tr(A2m)]

)1/2m
.

SinceA is block-diagonal,A2m shares the same block structure, with blocksΨ2m
i (2≤ i ≤ R).

Tr(A2m) =
R

∑
r=2

Tr(Ψ2m
r )

=
R

∑
r=2

(
∑

t1,...,t2m∈T

χr(t1 · · · t2m)
|T|2m

)

=
R

∑
r=2

∑
g∈G

χr(g)
Ng

|T|2m ,

whereχr is the character ofρr and Ng is the number of ways to produceg as a product of 2m (not
necessarily distinct) elements ofT.

Definition 4 LetRW denote the following random walk process.

(1) Choose a uniform random word of length2m from the free monoid on the N letters{a1,a2, . . . ,aN}
(e.g., a2a5a−1

5 a−1
1 a7a3).

(2) Reduce the word in the free group (e.g., a2a5a−1
5 a−1

1 a7a3 → a2a−1
1 a7a3).
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(3) Uniformly and independently assign (not necessarily distinct) group elements to the letters that ap-
pear in the remaining word, and evaluate the product in G.

Let RWg be the event that the result isg. Pr(RWg) = Ng/|T|2m, so

E[Tr(A2m)] = ∑
g∈G

Pr(RWg)
R

∑
r=2

Reχr(g).

2.3 Mixing in the random walk

Definition 5 Let ω be a reduced word as obtained via step (2) of processRW (definition 4). Say that
ω has asingleton if there is an i such that the number of occurrences of ai in ω plus the number of
occurrences of a−1

i in ω is exactly one.

Let Ω be the event that the reduced word has a singleton. Now:

∑
g∈G

Pr(RWg)
R

∑
r=2

Reχr(g)

= ∑
g∈G

Pr(Ω∧RWg)
R

∑
r=2

Reχr(g)+ ∑
g∈G

Pr(Ω∧RWg)
R

∑
r=2

Reχr(g)

≤ ∑
g∈G

Pr(Ω∧RWg)
R

∑
r=2

Reχr(g)+Pr(Ω)D(G). (1)

Lemma 1 Pr(RWg|Ω) = 1/|G|.

Proof: In step (3) ofRW (definition 4), assign the singleton element last; then, there will exist a unique
group element that makesω evaluate tog. 2

Comment: This lemma replaces an upper bound of 1/|G|+ O(m/G2) in Alon and Roichman (1994),
the additional term being the result of their requiring distinct assigments in step (3). This additional
term leads in turn to an extra summand ofe−b in the analogue, in their work, of the center expression in
Inequality (2).

By Lemma 1 and the orthogonality of characters, the first term of Bound (1) vanishes. Combining our
inequalities:

E[µ(X(G,S))]≤ (E[Tr(A2m)])1/2m≤ Pr(Ω)1/2mD(G)1/2m.

To bound Pr(Ω), we follow the spirit of Alon and Roichman (1994) and define the following two events
in terms of the quantityM = 2m(1− log log2m/ log2m):

(A) After step (2) ofRW (definition 4), the length of the reduced word is less thanM.

(B) After step (2) ofRW (definition 4), the length of the reduced word is at leastM, but there are no
singletons.
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Clearly, Pr(Ω)≤ Pr(A)+Pr(B). Alon and Roichman (1994) produced these bounds:

Pr(A) ≤ 22m(2/N)mlog log2m/ log2m

Pr(B) ≤ 2M(m/N)M/2.

SubstitutingN = c(ε) logD(G) and 2m= (1/b) logD(G), for any constantb, we obtain an expression
almost identical to one of Alon and Roichman (1994), except that|G|’s are replaced byD(G)’s:

Pr(Ω)1/2mD(G)1/2m≤ (1+o(1))eb

√
2

bc(ε)
≤ (1+o(1))ε (2)

where we use the choicesc(ε) = 4e/ε2 andb = 1/2. 2
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