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Efficient algorithms for temporal reasoning are essential in knowledge-based systems. This is central in many areas
of Artificial Intelligence including scheduling, planning, plan recognition, and natural language understanding. As
such, scalability is a crucial consideration in temporal reasoning. While reasoning in the interval algebra is NP-
complete, reasoning in the less expressive point algebra is tractable. In this paper, we explore an extension to the
work of Gerevini and Schubert which is based on the point algebra. In their seminal framework, temporal relations
are expressed as a directed acyclic graph partitioned into chains and supporte@tagephdata structure, where

time points or events are represented by vertices, and directed edges are labelledwith They are interested in

fast algorithms for determining the strongest relation between two events. They begin by developing fast algorithms
for the case where all points lie on a chain. In this paper, we are interested in a generalization of this, namely we
consider the problem of finding the maximum “distance” between two verticeshaig this problem arises in real

world applications such as in process control and crew scheduling. We describe an O(n) time preprocessing algorithm
for the maximum distance problem on chains. It allows queries for the maximum numkeedges between two
vertices to be answered in O(1) time. This matches the performance of the algorithm of Gerevini and Schubert for
determining the strongest relation holding between two vertices in a chain.

Keywords: graph theory, maximum distance problem, temporal reasoning, analysis of algorithms and data structures

1 Introduction

Temporal reasoning plays a vital role in many domains of Atrtificial Intelligence including planning, plan
recognition, natural language understanding, scheduling, and diagnosis of technical systems. However,
even when an algorithm for temporal reasoning has reasonable complexity such as linear or quadratic time,
it may still be inadequate for large databases. In addition, if all the temporal precedence information is
stored in a matrix having @f) space and requirin@(n?) preprocessing, both the storage and processing

are still excessive for large-scale applications. The reality that some temporal reasoning tasks need a large
amount of time and space is noted; for example, the best known algorithm for computing closure in the
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point algebra takes @f) space and @) time [GSY5]. Thus, research has focused on particular domains
for which extremely efficient algorithms might be developed.

This paper has, as a foundation, the development of the work of Gerevini and Schiibert [GS95], the
latest version of which is th&imeGraphllsystem. The starting point of their technique is on chains,

i.e. sets of linearly ordered time points. Afterr)preprocessing, queries on chains can be answered in
O(1) time. On the other hand, determining the strongest relation between vertices in different chains is
dependent on metagraplthat ideally should be much smaller than the original graph. In this method, an
arbitrary set of assertions regarding points in time is processed into a directed acyclic graph (DAG) where
time points or events are represented by vertices and directed edges are labelled with assertions among
time points. The DAG is then decomposed iestminsof such assertions which are separated from the
DAG. If the original graph is dominated by chains, the resulting reasoner will be efficient.

There are times in which it is not merely enough to know that an event precedes another but when it is
also useful to bound the number of events (or the amount of time) lying between particular events. We call
this the maximum time separation probleor in other words, theanaximum distance problerfrormally,
the problem is to find the longest weighted path between two vertices in a graph. This problem is the same
as the LONGEST PATH problenifG.J79] and is NP-complete for general graphs. With regard to directed
acyclic graphs or DAGs, the time complexity ig|®| + |E|) [CIERY0]. For our purposes, we restrict
ourselves to chains and edges with weights of 0 or 1. The parameters of this problem atethyts
have weight 0 andc edges have weight 1, where weights on edges are summed to get distances. Our
technique is based on partitioning the chain into discrete regions gatledr edge regionand checking
where the events being queried lie in relation to these regions. We show that afjgpr&grocessing
time, queries about the maximum distance between two vertices in a chain can be answered in O(1) time.
This is the same performance as the algorithm of Gerevini and Schubert for reasoning within a chain.

A simple real-world example of an application of the maximum distance problem on chains can be
found in the education domain. The vertices represent courses; duges represent the relation of
course prerequisites, and theedges represent the relation of course prerequisites/corequisites. Then, the
maximum distance between two vertices denotes the (maximum) number of courses in sequence required
before a specific course can be taken. This can be valuable in course planning (in realistic university
course requirements, the chains are often quite short though). As well, it is easy to imagine a similar
example in the realm of sports or game competitions. Crew scheduling is a further example of where
this can be useful. A group of workers is denoted by a vertex. The constraint that one group of workers
must start before another group is representee lggdges, and the constraint that one group of workers
must start before or at the same time as another group is conveyed kydtiges. Another widely
applicable example is that of the manufacturing or production of goods and other materials. Here, the
vertices represent processes, andcthexdges represent the constraint that a process must precede another
process. Thel edges signify the constraint that a process must precede or occur simultaneously to another
process. The information obtained from the maximum distance between two vertices can be used in the
optimization of resource allocation. While some of these applications may have short chains, it is quite
possible that further applications could be found, say from computational biology. As well, an extension
of our work may well he incorporated in the more general TimeGraphll framework.

Section[R on the following page describes related work, and Sefition 3 off page 327 introduces the for-
mal definitions and problem descriptions. The algorithm for the maximum distance problem is explained
in Section [# on page_3R9. The formal query algorithm is detailed in Setion 5 oripage 342 and Section
B on pagd 348 describes some extensions to this work. Sefjtion 7 o page 349 gives the conclusion and
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future directions.

2 Related Work

Since the results of this paper are largely based on the work of Gerevini and Schiibert [GS95], a summary
of their approach is given here. Beginning with arbitrary assertions ipdive algebra these assertions

are processed to yield a temporally labelled (TL) graph. The vertices of the TL graph represent time
points with each vertex having its own identifier. The directed edges are labelleevaitid <, and the
undirected edges are labelled withor =. Through the method described below, we can convert the TL
graph into a directed graph with only and< edges, none of which are redundant such that there are no
explicit < and< relations implied by a transitive path.

<
\ 7& W t # u
< <
'\
(a) (b)

Fig. 1: The two kinds of the implicik relation. Thin lines indicate paths, and thick lines represeatiges. In both
of the graphs, there is an implicit relation between v and w.

First, the “=" relations are eliminated by extracting the strongly connected components from the TL
graph through an algorithm adapted from depth first search. Each strongly connected component is col-
lapsed into a single vertex and all the identifiers of the vertices that make up the strongly connected
component are alternate identifiers for this new vertex. If an edge in a strongly connected component is
labelled with< or #, the graph is inconsistent and the process is halted.

A further concern is that afmplicit < relations. Animplicit < relation is present between a pair of
vertices when the strongest relation implied by the graph among the pair of verticeansd no path with
at least one< edge exists between the vertices. These relations occur in two forms, one #idtuge
as well as a path containing onty edges between the pair of vertices (see Fifure 1 (a)). The other form,

a # diamond, has two separate paths containing ghigdges between the pair of vertices through two
different intermediate vertices that are connected #yegige (see Figuié 1 (b)). The implicit relations are
efficiently identified and madexplicitby adding< edges between the pairs of vertices involved. As well,
the redundang relations from the implicik relations are removed. This step can be the most expensive
of the whole preprocessing, time-wise. However, the time taken is minimized by using the metagraph
structure (below) and for the second form of impligitrelations, by only looking for the smallest
diamonds. To state it differently, given-a edge involving a pair of vertices, a search is made for their
nearest common ancestor and nearest common descendant. The resyltifiggfaph is then further
processed into structures designed for efficient reasoning.
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In the latest form of the system of Gerevini and Schubert, the focus of temporal reasonirghesms
of events, where a chain is a path<ofdges with possible transitive edges linking pairs of vertices on the
< path. From the<, <)-graph, a timegraph is created, which is tke K)-graph partitioned into a set
of time chains such that each vertex is on precisely one chain. The timegraph has a unique source or start
time, and unique sink or end time. This allows each vevtex the timegraph to be givengseudotime
consisting of the length of the longest path from the source t@. the< rank ofv, multiplied by an
increment. The pseudotimes are computed by a slight adaptation of the DAG longest path algorithm.
Vertices within a chain can haverextgreaterlink, an edge connecting a vertex to the closest vertex
known to be strictly greater than the specified vertex based on the edge labels. It takes linear time to
compute pseudotimes, and to compute the nextgreater links within a chain.

The supporting metagraph is composedrmoks-edgethat join different chains, the endpoints of which
are callednetaverticesAs well, each metavertex has two extra edges associated with it, namelgxtire
edge that connects the metavertex to the closest vertex on the same chain with an incoming cross-edge,
and thenextoutedge that connects the metavertex to the closest vertex on the same chain with an outgoing
cross-edge. The metagraph, which includes the nextin, nextout and nextgreater edges, can be computed
in linear time. It expresses information represented in the original graph not related by the chains.

If it is assumed that the timegraph is dominated by chains of events, the metagraph is anticipated to
be much smaller than the original. This leads to efficient reasoning algorithms, given that reasoning
within a chain takes constant time. The five cases in which computing the strongest relation entailed by
the timegraph between two time points takes constant time are now described. If the identifiers of two
points are alternate names of the same vertex, the relationship between them is equalityeEtons
are identified by checking if the pseudotime of the head of the nextgreater link of the smaller vertex
(with respect to pseudotimes) is less than or equal to the pseudotime of the larger vertex. Otherwise, if
the pseudotime of one vertex is less than the pseudotime of anotkierelation exists between these
vertices. If two points having the same pseudotime are on different chains and theté élige between
them, the relation between them{s, <,>}. If there is a edge between the vertices, the relation
between the vertices ig, provided that all implicit relations have been maaglicit However, to reason
about points in different chains, a standard search of the metagraph that tekeém@®{$ needed, where
éis the number of edges in the metagraph. Gerevini and Schuiberfl[GS95] also discusses point algebra
disjunctions, which is independent of the timegraph and not of interest here. We will also not be further
concerned with the metagraph in this paper.

Other structures and methods for temporal reasoning have been tried as well. Notably, Ghallab and
Mounir Alaoui [MABY] use a lattice of time points undergirded by a maximum spanning tree to attain
an efficient indexing. The system is claimed to be both sound and complete in dealing with the SIA (a
restricted form of the interval algebra comparable to the point algebra) by Ghallab and Mounir Alaoui
[MABY]. However, it was later shown to be incomplete férrelations. Its performance for updating and
retrieving a set of temporal relations is linear with a small constant on average.

Dorn [Dor92] uses sequence graphs to reduce the time and space required by a variable but signifi-
cant amount for temporal reasoning in technical processes such as monitoring, diagnosis, planning and
scheduling in expert systems. A sequence graph is made up of at least one sequence chain and other in-
tervals that are only loosely attached to chains. Sequence chains are based on the observation that events
in technical domains frequently occur one after another. In addition, execution of the processes is often
uninterrupted for a long period of time. Only “intermediate” relations are stored, yet the techniques that
are used allow no loss of information. The approach of DbrnDor92] is interval based.
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Furthermore, Delgrande and Gupfa DG 96] give an O(n) preprocessing algorithm that permits arbitrary
< and< queries about events in the point algebra to be answered in O(1) time in the class of series parallel
graphs. Series parallel graphs have been used to model process execution in addition to varied planning
and scheduling applications. The work of Van Allen et al._[VADG98] is an extension of the technique
of Delgrande and Guptd [DG96] for series-parallel graphs embedded in general graphs. It achieves a
similar performance to the methods of Gerevini and Schubert in which chains are the main components
of consideration as opposed to series parallel graphs.

3 Preliminaries

A directed graph Gs a pair(V,E), whereV is a set of vertices anf is a set of edge€ CV x V. The
graphs that we use are all finite and simple, that is, there are no self loops. For a directed(edgg),
v; is the tail ofe andv; is the head o&. A path fromy; to v;j of lengthk in a graphG is a sequence of
vertices(vi, Vo,..., V), such that; = vy, v; = v and(v,_1,v;) € E for /=2 tok. The path contains the
vertices(vy, Vo,...,Vk) and the edgeévy, Vo), (V2,V3), ..., (Vk—1,V). A path fromy; to v; is a cycle ify,
=v;. A directed acyclic grapi{DAG) is a directed graph with no directed cycles. In a DAG, if there is
a path fromy; to vj, we say thaw; is an ancestor of; andv; is a descendant of. See Cormen et al.
[CI'RY0] for more details.

A timegraph that is based on a single chain is a DG& (7, £), where the vertex se¥’ represents a
set of time eventévi, v, ..., Vy) Occurring along a time line, and the edge Batenotes< and< relations
among time events DGO, GS95]. For a vengx| is referred to as the rank of andv; is identified and
referred to ag. The time that the event denoted Wyhappened is represented tfy;). There are edges
(vi, viy1) labelled with<, fori=1 ton— 1. The set of edges labelled withis calledE<; E< together with
9 corresponds to a chain within the timegraph. As well, there are two distinguished events, namely the
sourceyvi, and the sinkyy, such that(vy) <t(v;) < t(vy), for all v, € 7. All vertices except the source
and the sink have one outgoirgedge and one incoming edge. The set of edges that is labelled with
is referred to aE., such thatif ¢;, v;) € E<, theni < j. This is interpreted to mean that evenhappens
strictly before evenvj, i.e.t(vi) < t(vj). £ is the union ofE< andE..

We assume that there are aaredundant edges. As such, tmvering assumptiostates that a distinct
< edge(a,b) cannot exist when there isa edge(c,d) that subsumesa,b) such thaa<c<d<b
(refer to Figurg]2). From this, it can be seen that all vertices except the source and the sink have at most
one outgoing< edge and at most one incomirgedge. The reason for this is that if two different edges
terminate at the same vertex, they must start at different vertices and so one completely encloses the other,
and vice versa.

Formally, the central problem of interest is the following:

Name: MAX DIST

Instance: G = (V,E), a time graph based on a single chain, which is a DAG and satisfies the covering
assumption.

Problem: Find a representation aof that allows the length of the longest path (maximum distance)
between any two vertices b € 7/ (a < b) to be computed by a constant time procedure. Here,
maximum distance is measured by assigningdges weight O ang edges weight 1.
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Fig. 2: Edge(c,d) subsumesa, b) making(a,b) redundant.

The maximum distance between two verti@eandb, is interpreted to be the maximum number of
< edges in a path between the vertices and is referred ds@ace(b,a). The statement that a vertex
is of distancal from another vertek is interpreted to mean that time evdnbccurs at leadd time units
after time evena. If time is discretized, it can also be interpreted to mean that at éeagt time events
occur betweem andb. For every vertex € 7/, the maximum distance from the sourcevtis known as
sourceDistance(v). The expressiosourceDistance(b, a) is sourceDistance(b) — sourceDistance(a) and is
known as the difference distance betweeandb.

3.1 Definitions associated with the Actual Algorithm

Let G = (v, E) be a chain and let be a vertex in?’. Then, the closest vertex of that is known
to be strictly greater thawm is referred to asiextGreater(v) [GS95]. If such a vertex does not ex-
ist, nextGreater(v) is «. As well, the closest vertex oy that is known to be strictly less thanis
called previousLesser(Vv). If such a vertex does not exigtreviousLesser(V) is —co. The first< edge
in the nextGreater traversal from vertexa to vertexb is the <-edge that determines thextGreater
of vertex a which we will call (vi,viy1). The next< edge in the traversal which is denoted by
(Vi12,Vi+3) is the edge that determines thextGreater vertex ofviy1, i.e. nextGreater(Vi11) = Viy3.
The last< edge in the sequence ef edges is(vj_1,V;), the edge that determines tpeeviousLesser
of vertexb. Zero or more intervening< edges may lie in between the-edges, and as suchy
could bea andvj could beb. In Figure[B, thenextGreater traversal from vertex 2 to vertex 20 in-
cludes the< edges(3,6), (6,10), (11,14) and (17,19). Formally, thenextGreater traversal from
vertex a to vertexb, a < b, ngTraversal(a,b) is a path froma to b in G that contains the< edges
(Vi,Vit1), (Vig2,Vig3), - -, (Vj—1,Vj) wherevi 1 = nextGreater(a), Vi o1 = nextGreater(Vi;ok—1), 1 <
k< # andv;j_1 = previousLesser(b). Then, the number of edges in theiextGreater traversal from
ato b is denoted byl|ngTraversal(a,b)||. Observe that the difference distance betwaemdb can be
expressed afngTraversal(sourceb)|| — ||ngTraversal(sourcea)||. The path induced by the difference
distancecan be interpreted agzTraversal(sourceb) — ngTraversal(sourcea) in which “—" refers to the
set difference of sets of edges. The numbet@fdges in this path is equal tourceDistance(b, a).

A < edge(u,v) is aproper edgef (u,v) € ngTraversal(sourcesink). A < edge that is not a proper edge
is anon-proper edgeFor a< edge(vi,V;), the associatedegionis the subset” C 1’ connected with the
chaing where?” = {vi;1,Vi12,...,vj_1}. We can speak of the outgoirgedges or incoming: edges
of a region if their tail or head is one of the vertices of the region, respectively, and the other vertex is
outside the region. The region associated with a proper edge is knowpreysea edge regionThe chain
is divided intop disjoint proper edge regionBy, Ry, ..., R, in ascending order of vertex indices, where
is the number of proper edges.
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The proper edges are bold and have a label of [0,0]. Tteelges ofhonProperPatlia) are marked a€,,€,,€; whenais 2 or 3. The corresponding
proper edges arg , €;,e3. Now, the verticew that satisfyheadej) <v < heade’j) —1, for somej are marked with a “I". The verticesthat satisfy
head€|) <v < headej1) -1, for somej are marked with a “*". The vertex denoted tgrminal(a) is 14.

Fig. 3: The different cases for the query algorithm.

4 An O(1) Time Solution for the MAX DIST Problem

In this section, we present an O(1) time query algorithm and ahtdie preprocessing algorithm for the
MAX DIST Problem.

4.1  An Overview of the Algorithm

In this section, we describe the main ideas of our algorithm. Suppose we want to compute the maximum
distance between two verticasndb, a < b in a chaing without preprocessing. The maximum distance
fromatobin G is the number ok edges in theextGreater traversal fronatob, i.e. ||ngTraversal(a,b)||.
This follows from the covering assumption which implies tha¢dges cannot be contained in each other.
It can be seen that simplistically, it would takerp{ime to compute this distance.

The obvious way to preprocess the chain to allow for constant time queries would be to use the differ-
ence distance as the maximum distance. However, this only serves as an estifhat@iforersal(a, b)||,
since the maximum distance may be one less than the difference distance. An example of this can be seen
in Figure[B whera is 15 andb is 19. Difference distances can be easily computed using an adaptation
of the Gereveni and Schubert algorithm for chains. The fact that the maximum distance is either equal to
the difference distance or one less than the difference distance is proven in Cdfollary 2 in Bection 5 on

page342.
1. If ais outside a proper edge regipthe maximum distance is equal to the difference distance no

matter whereb is aftera. This is because the path induced by the difference distance is exactly
ngTraversal(a,b). For an illustration of this case, see Figlire 3 vdtas 8 and as 22.

2. If aand b are in the same proper edge regitile maximum distance betwearandb is zero by
the covering assumption. For an example of this case, consider [Fjgure 8 agthO and as 11.

3. If ais inside a proper edge region, and b is not in the proper edge region that atisein we must
consider two other cases:

(a) If there is no< edge e leaving the proper edge region that a is in such thi¥e) > a, the
maximum distance is equal to one less than the difference distance. This is because the proper
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edge of the proper edge region tlis in, i.e. the first< edge in the path induced by the
difference distance, is counted in the difference distance when it is not on a path fodm
Consider Figur€]3 witla as 15 and as 19, for an example of this case.

(b) If there is a< edge e leaving the proper edge region that a is in suchtiife) > a, a short
discussion follows before the actual subcases are described. The rest of this section is devoted
to characterizing the intricacies of this case.

A non-proper pathis a maximahextGreater traversal that begins with the tail okaedge that is inside
a proper edge region. It terminates witkcadge(u, v) such that the edge that determimestGreater(v),
nextGreaterEdge(V) is a proper edge afextGreater(v) = . The non-proper path starting immediately at
or afterais known as theonProperPath(a). The vertex where theonProperPath(a) terminates is known
asterminal(a). The pathnonProperPath(a) is equivalent taigTraversal(a, terminal(a)). Whenb is before
terminal(a), there are two possible cases. To see these cases, firstietthges of theonProperPath(a)
be€,€,,....€. Letey,e,...,e be proper edges such thail(e) < tail(€) < head(q), for i=1 to £.

Refer to Figurg]3 for a clear picture of this. The difference distance cewrds ..., e, but the maximum
distance must cours,€), . .., €. Now, if head(ej) < b < head(€) — 1 for somej, the maximum distance
corresponds to one less than the difference distance. This is begasiseunted in the difference distance
whené€ has not terminated yet. Otherwid®ad(€|) <b < head(ej1) — 1 for somej, and the maximum
distance is equal to the difference distance. This is becgusas been already counted in the difference
distance and now the correspond'e]gwas terminated as well.

To differentiate between these two cases, we introduce a labelling scheme on non-proper paths. In
particular, an (essentially) unique numeric label is assigned to each distinct non-proper path. One problem
with this is that non-proper paths can merge, i.e. the next non-proper edge of at least two distinct non-
proper paths is the same (in Figuig ¥3minal(6) = terminal(7) = 14). When this occurs, we assign all
the labels of the paths being merged to be the label of the merged path. In this way, we keep track of
where thenonProperPath(a) terminates. This will allow us to differentiate between Case 3(b)i and 3(b)ii
of this algorithm, i.e. to determine ifis less thanerminal(a). We assign the labels using integers so that
the merged non-proper paths are labelled with a contiguous range of numbers. For uniformity, we extend
this and write all the labels as a range of integers. The [ablgll includes all numbers in the range fran
tobinclusive. In practice, all the: edges of a non-proper path will be labelled with the label of the path.

While the actual algorithm is detailed in Sectidn 4.3 on pagé 334, some features of our labelling
algorithm are noted here. A very important attribute of the labelling scheme is that for each proper edge
region, the incoming and outgoing edges of the region are labelled in ascending order of heads and
tails, respectively. This is known as thedering condition To see a very basic example of this, consider
the proper edge regiof6, 7} in Figure[B. The tail of the edge (6, 10) with label [1, 1] which is 6 is less
than the tail of the edge (7,11) with label [2,2] which is 7. In addition, the proper edges themselves are all
labelled with [0,0]. Finally, labels of non-proper paths are sometimes reused when this creates no danger
(see Figuré) and thus are not entirely unique.

(continuing 3(b))
i. If b< terminal(a),
A. If the low endpoint of the label akxtGreaterEdge(a) is less than or equal to the high endpoint
of the label of the edge that determin@sviousLesser(b), previousLesserEdge(b), then the

+ Note that in the color diagrams, the right-hand side of the boxes should have arrows.
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maximum distance is equivalent to the difference distance. This is due to the fact that when this
condition holdshead(€]) < b < head(e;+1) — 1 for somej, by the ordering condition (and the
covering assumption). Observe Figlire 3 vatas 3 and as 10 to see an example of this.

B. If the low endpoint of the label ofextGreaterEdge(a) is more than the high endpoint of the
label of previousLesserEdge(b), then the maximum distance is equal to one less than the dif-
ference distance. This is because when this condition hbtds(e;) < b < head(€]) — 1 for
somej, again due to the ordering condition. Observe Fidure 3 witls 2 and as 8 to see an
instance of this.

ii. If b> terminal(a),
A. If the nonProperPath(a) terminates outside a proper edge regidghe maximum distance is

equal to the difference distance. This is similar to Case 1. Notice Figure 3awithl8 and
as 22 to see an example of this.

B. If the nonProperPath(a) terminates inside a proper edge regjon

e If terminal(a) and b are in the same proper edge regitire maximum distance corresponds
to the difference distance. This is similar to Case 2. Notice Figure 3andth3 and as 15
to see an instance of thiggminal(a) is 14.

¢ If bis notin the proper edge region th@iminal(a) is in, the maximum distance is equivalent
to one less than the difference distance. This is analogous to Case 3(a). Noticg]Figure 3 with
aas 2 and as 19 to see an instance of this.

For the formal description of the querying algorithm, see Secfjon 5 on[pape 342.

4.2 Some Simple Heuristics

Before we describe the actual algorithm that solves the MAX DIST problem in more detail, we will point
out the inaccuracies of one of the many simple heuristics which we have tried unsuccessfully. This will
provide a deeper appreciation of our more complex solution.

Suppose andb are vertices of a time chai@, a < b. Then, as previously noteshurceDistance(b, a)
can be eithedistance(b,a) or distance(b, a) + 1. We can defineinkDistance(b, a) in a similar way, noting
that it can also be at mosdtstance(b,a) + 1. Define theoutgoing intervabf a vertexv as the interval from
v to the tail of nextGreaterEdge(V) inclusive. Likewise, define themcoming intervalof v as the interval
from the head opreviousLesserEdge(v) tovinclusive. Now, itis less intuitive that if we take the minimum
of both the source and sink distances over the outgoing intenabofl the incoming interval df, the
result can still be off by one.

Consider Figurd]5 wheb is 27. This induces an incoming interval of [25, 27]. We consider two
possible instantiations faa for this example, namelyd’ which is 2 inducing an outgoing interval of
[2, 3] anda” which is 4 inducing an outgoing interval of [4, 4]. The incoming interval has a uniform
sourceDistance of 3 andsinkDistance of 1. The two outgoing intervals have a uniforurceDistance
of 0 andsinkDistance of 4. Based on the heuristic, the maximum distance betweenabatidb anda”
andb should be 3. However, this is only true of the maximum distance betaesmdb; the maximum
distance betweed’ andbis 2.

The problem is that we cannot tell whichiafad(€]) < b < head(€;+1) — 1 orhead(€j) < b < head(€) —
1 (assuming the same definitions from the previous section) holds. To put it differently, there is no way to
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know thatpreviousLesserEdge(b) is not onnonProperPath(a”) and it actually ends before the correspond-
ing non-proper edge afonProperPath(a’) ends. In additionerminal(a) must be taken into account in
the computation of maximum distances.

4.3 The Labelling Algorithm

4.3.1 General Description

Now is a good opportunity to define the following fields that the formal querying algorithm in Sefgtion 5
on pagd 342 uses in addition textGreater(V), previousLesser(v) andsourceDistance(Vv) for all vertices
vof G:

startProperEdge(v) is the tail of the proper edge of the proper edge region containiifg is inside a
proper edge region. ifis outside a proper edge regiomrtProperEdge(v) = .

labelNextGreater(v) is the label attached teextGreaterEdge(v) and it is computed by the labelling
algorithm described in this section.déxtGreater(v) = oo, it is undefined.

labelPreviousLesser((v) is the label attached tpreviousLesserEdge(v) and it is computed by the la-
belling algorithm described in this section.pifeviousLesser(v) = —oo, it is undefined.

terminal(v) is the last vertex imonProperPath(v). It is used to differentiate between the case when there
is no non-proper edge leaving the proper edge region thats in such thatail(e) > v and the
instance when there is such an edge. It is undefined in the former instance; an example of this in
Figure[B is thaterminal(15) is undefined. When is outside a proper edge region and before the
head of the last proper edge in the chain, theminal(v) will correspond to the head of the last
proper edge in the chain (in Figufe 8rminal(16) = 22). If vis at or after the head of the last
proper edge in the chairgrminal(v) is undefined (in Figurf 3erminal(22) is undefined).

Our preprocessing algorithm labels the proper edges and assigns the terminal fields that are associ-
ated with proper edges, while theartProperEdge and sourceDistance fields are being calculated. The
nextGreater field is computed by the mechanisms detailed’in [GS95] prior to this. Subsequently, the la-
belling algorithm assigns labels to all the non-proper edges in a chain. In addition, it also assigns the
terminal fields associated with all the non-proper paths. Care must be taken to ensure that the resulting
labels obey the ordering condition as it is a vital part of the correctness of the query algorithm. Note that
the labels are assigned in two passes through the chain. The purpose of the first pass of preprocessing
for the label assignment of the second pass is twofold: to calculate the count of distinct numbers used in
the entire labelling and to compute the size of the range of the label of each individual non-profer edge
The count of distinct labels needed is basically equivalent to the number of distinct non-proper paths in
the chain, since each non-proper edge must have its own label. However, when a non-proper path has
terminated, its label can be reused. When non-proper paths merge, the merged path is not included in the
count. In addition, the size of the range of a label is always one except where several non-proper paths
merge into one path. Then, the size of the range of the label is the sum of the sizes of the ranges of the
labels of the “last’< edges of the non-proper paths merging together.

The first pass considers each proper edge region one by one from the source to the sink (3ee Fig. 6).
Computing the number of distinct labels needed and calculating the size of the range of a label is done in

8 If we let a label assigned in this fashion [deh| and the size of its range Ise/ = h—s+ 1.
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the same way. To compute these values, the pattern of the heads of the ineosdags and the tails of
the outgoing< edges for each proper edge region is examined (refer to the following section for a more
complete description of this).

The second pass involves assigning labels that form a contiguous interval of the positive integers using
the information gathered in the first pass. In addition, it assigngetin@nal fields associated with non-
proper paths. This pass scans each proper edge region in turn frasimkhe the source, the reverse
of the first pass. The first proper edge region considered is the nearest proper edge region from the sink
having outgoing edges. It is interesting to observe that if the second pass would scan from source to sink,
fractional labels could be required and this would result in significant complications. Thus, to label the
outgoing edges in a proper edge regiynwe do the following:

1. If R4 has no outgoing edges B = R, (defined in Sectiofi 3.1 on pa@e B28, i.e. the last proper
edge region of the chain), the outgoing edges are processed in decreasing tail order. These edges are
then given labels, the high endpoint of which is the value of the next number to be used in a label.
The low endpoint of the labels is based on the size of the range of the label of the edge together
with the high endpoint of the labels . After each label is assigned, the next number to be used is
decremented by the size of the range of the label. Note that the next number to be used in a label
is initially set to be the number of labels needed, which was determined in the first pass. Some
examples of this case are the labelling of (28,35) and (25,33) in the first chain and <lkthges
of the last chain except (2, 9), (3, 10), and (4, 11) in Figure 7.

2. Otherwise, the outgoing edgesRfthat are part of a non-proper path for which at least one edge
has been labelled are identified (see next section for more details). This is important since the labels
of all the< edges of a particular non-proper path are the same up to a partition of a range (when the
path is considered in reverse). This is done by examining the pattern of the heads of the incoming
edges (outgoing edges Bf) and the tails of the outgoing edgesRyf 1.

(a) Ifthere is no such edge, Case 1 is applied. An instance of this case us the labelling of (18,23),
(19, 26) and (20,27) in the third chain in Figudie 7.

(b) If there is at least one such edge, each edge is labelled appropriately. Let the edges labelled
in this way bee/, €,..., €] in increasing tail order. Let the label ef be [¢(1,h;] and let the
label of €] be[¢y,hy]. Some illustrations of this case are the labelling of allthedges in the
second chain except (26, 34) and (27, 35) and<hexiges (2, 9), (3, 10), and (4, 11) in the
last chain in Figurg]7.

(c) Any remaining outgoing edges & with lower tails thane] are labelled in decreasing tail
order. The high endpoint of the first edge to be labelled this wéy4isl. After each label is
assigned in this fashion, the next number to be used is decremented by the size of the range of
the label. An example of this is the labelling of (2,7) in the first chain in Figure 7,

(d) As well, any remaining outgoing edges with higher tails tt(;lare labelled in increasing tail
order. The low endpoint of the first edge to be labelled this way; is 1. Two examples of
this are the labelling of (3,10) and (4, 11) in the third chain in Fidgure 7,

See Figuref|4 ard 7 for clarification.
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Fig. 6: Examples for the working of the first pass of the labelling algorithm.
As a guide, the marker of (3,9) in the first chain is 2(1) since it is the second outgoing edge encoutered, and the size of the range of the label is 1, as
there are no heads of incoming edges immediately before the tail of (3, 9). For (9, 18), the marker is (1), since it is part of the non-proper path of which
(3,9) is the first< edge. The marker of (20, 27) in the second chain is (2), since the sum of size of the range of the labels of (10, 19) and (11, 20) is 2.
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When theterminal of a non-proper path is encountered during this pass of the labelling algorithm, it is

indexed under all the numbers included in the range of the label of the ladge of the non-proper path.

Then, to fill theterminal fields of the vertices in a proper edge region immediately precedinga@ge of

a particular non-proper path, the information indexed under the lower endpoint of the label of the edge
is retrieved. This is a default; the upper endpoint of the label could be used instead for the same effect.
Naturally, this is done after the outgoing edges of the proper edge region have been assigned labels. As
an example, let us reflect on the second chain of Fifjure 4. We register 35tasithml under indices 2

and 3 and then 34 as theminal under index 1. Consider therminal field assignments iR, i.e. {25,

..., 28} (the rest are similar). Vertices 25 and 26 getimeinal field indexed under 1, i.e. 34, and vertex

27 gets thaerminal field indexed under 2, i.e. 35.

In other words, for any vertex, terminal(v) is determined by the value indexed under the lower end-
point of labelNextGreater(v), given thatnextGreaterEdge(v) is a non-proper edge. This is a default; the
upper endpoint of the label could be used instead for the same effect. This is because of some properties
of merging process; see Observatiphs 3[@nd 5 in Seftion 4.3.3 o page 339. In addition, observe that the
reuse of labels causes no problems, due to Obsenjation 4.

4.3.2 Some More Details

Here, we explain in further detail the way in which the number of distinct labels and the size of the range
of the label for each non-proper edge are computed in the first pass of the algorithm.

We will focus on a single proper edge regidt, We inspect the sequence of heads of incoming edges
and the tails of outgoing edgesffrom left to right. If there are no heads of incoming edges immediately
before the tail of a particular outgoing edgsx, the count of distinct labels required is incremented by
one. As well, the size of the range of the labekgf is one. This is due to the fact thedy is the first<
edge of a non-proper path. Otherwise when there is at least one head of an incoming edge immediately
before a particular outgoing edggx, the count of distinct labels needed is not incremented. The cause of
this is that under these conditioregy is part of a non-proper path which has been already encountered. In
other words, each incoming edgg immediately before the tail of a particular outgoing edggsatisfies
nextGreater(head(g j)) = head(gyk); this is referred to as theextGreater condition Thus, the size of the
range of the label ok, is the sum of the sizes of the ranges of the labels of each of the incoming
edges, the heads of which are immediately befgie For every successive head of an incoming edge
encountered, this sum is accumulated. As an example of this, consider the second chain ¢f Figure 6. The
size of the range of the labels of (10, 19) and (11,20) is 1, but the size of the range of the label of (20, 27)
is the sum of these ranges which is 2.

When there is no outgoing edge following a sequence of at least one incoming edge, we subtract the
accumulated sum from the number of distinct labels required, provided thatth@reater condition has
been satisfied at least once fr This is because in that situation, Case 2(d) applies for the second pass.
When we do the subtraction, the range of contiguous numbers used in the entire labelling will always have
a lower endpoint of 1. An example of this case is found in the third chain of Fjgure 6. Upon encountering
the heads of (3,10) and (4, 11)Ra, the count of distinct labels needed is decremented to 1 from 3. Then,
after we reach the tail of (19, 26) Rs, the count of distinct labels is 2. If the subtraction would not be
done, the label for (2,9) would be 3 and not 1.

For the second pass of the labelling algorithm, the process of identifying: t@ges belonging to
particular non-proper paths that have been previously encountered is similar to the above method. To
recognize the outgoing edgesRfthat are part of a non-proper path for which at least one edge has been



‘yred Jadoud-uou e Jo abpa > 1Se| 8y} 10U SI  UBYM paniwo sI 9 "p sI 8 Bulisunooua uo
|8ge| & 10} pasn aq 0] Jaquinu 1xau 8yl pue |age| e paubisse aq 01 aul| ul Y19, ayl si 8 Jo yred tadoid-uou ay 1eyl sueasw a abpa ue uo (p)d
9€ G€ vE€ €€ ¢€ TE€ 0 62 8 LZ 9C S ¥Z € ¢¢ T¢ 0c 61T 8T /LT 9T ST ¥I € ¢T T1 Ol 6 8 L 9 § v € 4 T

Gabrielle Assunta Gin

338

f (|t | 7 (ely _ ) |
e (D)s (0
(0)a (Q)

9¢ G€ ¥E€ €€ <¢€ T€ 0€ 6 8 L¢ 9¢ G¢ V¥¢ € ¢ 1T¢ O0c 6T 8T LT 9T ST ¥I €1 ¢t 1T OT 6 8 L 9 § v € 4 T

EN
&
B ®

—~
S
N—
m
o~
(=]

~
g
A==
~
(@
A=

€)1 )14

9€ G ¥E €€ <€ T€ 0€ 62 8 LZ 9¢ S¢ Vv¢ €C < Tc 0c 61T 8T T 9T ST ¥T € ¢ TI1 0T 6 8 L 9 § v € I T

L (M1 () ! (b ©)
(0)z
(o) ©) (©)

9¢ G€ ¥E €€ <€ T€ 0€ 62 8 LZ 9¢ S¢ v¢ € <¢¢ 1¢ O0c 6T 8T LT 9T ST T € ¢ 11 ol 6 8 L 9 § v € Z T

My ()

10|

—~

-
L~

(21 (1)
\\*7a g V7

(1) (1)

ssed puooas

Fig. 7: Examples for the working of the second pass of the labelling algorithm.
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labelled, we examine the sequence of heads of incoming edges and the tails of outgoing &iges of

from left to right. Once the outgoing edge following a sequence of incoming edges (we keep track of the
first and last edges of this sequence) is reached, we go back and label the incoming edges according to the
label of the outgoing edge and the size of the ranges of the labels of the incoming edges. To assign labels
to the incoming edges & ; (outgoing edges dR,) for which thenextGreater condition can be met, the
following rules are applied:

First, assume that for an intervak= [¢,h], first(l) = ¢, last(l) = h. Let the size of the range
of the label of a non-proper edgde|label(e)|, label(e) being the label oé.

Now, if nextGreater(head(s; j)) = head(ey), for j = gto f[] in ascending head order,

label(e g) = [first(label(eo)), first(label(ey k) ) + | label(& g)| — 1] .

Forj=g+1tof,

label(e j) = [last(label(e; j_1)) + 1,last(label(e; j_1)) + |label(a ) ] .

Note that we must keep track of the first incoming edg®&qf; for which thenextGreater condition
cannot be met, so as to carry out Case 2(d) of the second pass when it is necessary.

As an example, let us consider the labelling of the outgoing edg@saffthe second chain of Figufe 4.
Itis determined thatextGreater(head((9,18))) = head((18,25)), solabel((9,18)) = [1,1+1-1] =[1,1].
Next, it is determined thatextGreater(head((10,19))) = nextGreater(head((11,20))) = head((20,27)),
solabel((10,19)) = [2,2+ 1— 1] = [2,2] andlabel((11,20)) = [24+ 1,2+ 1] = [3,3].

4.3.3 Properties of the Labelling Algorithm

Rational numbers present problems in terms of storage and access. This is especially significant in terms of
computing and assigning therminal fields, and rational number labels would cause undue complications
in the labelling scheme. Consequently, the following three observations are important.

Lemma 1 All the outgoing edges of a proper edge region for whichreGreater condition can be met
are labelled.

Proof: Suppose that there is a gap between the outgoing edges of a proper edge region for which the
nextGreater condition can be met that are labelled. Then, there has to be at least one unlabellegd edge
between two edges ande;, labelled arbitrarily with[¢x, hy] and[¢;, h;] respectively, among the outgoing
edges of the proper edge regign This case must hold after all the outgoing edges of a proper edge region
for which thenextGreater condition can be met have been identified and assigned labels. In addition,
assume thagy, e, ande; are in ascending tail order. For this to be true, outgoing edges labelled with
[¢x, hy] and[¢z, h;] respectively must be consecutiveRn 1. There are two possible ways that there is no
edge with a label that correspondssjain Ri.1. One way is when the head gf is outside a proper edge
region and betweeR; andR; ;. However, to obey the covering assumption, the heas} afust also be
outside a proper edge region betwégandR; ;1. Thus, the premise that edges labellédhy] and[¢,, hy)
respectively are consecutiveRy.; ande, has no label is violated. This is because tegwould not get

9 The variablest andg are merely used for “indexing”.
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its label from an edge labelldéy, h,] in Ri11 (see Figurg]8(a)). The other way is that the headsof,
ande, are inR ;1 and are all in ascending order. Again, a contradiction is reached sinceyraivould
get its label from the edge iR, that is part of the same non-proper path whigls a part of,e, ande,
merge into one path (refer to Figuge 8(b)). The statement of the lemma follows fronthis.

Lemma 2 The labelling algorithm labels every non-proper edge.

Proof: For the proper edge regions in which Case 1 of the second pass of the labelling algorithm applies,
it is fairly obvious that all the outgoing edges are labelled since the labelling proceeds through all the
outgoing edges one by one in decreasing tail order.

For the proper edge regions in which Case 2 of the second pass of the labelling algorithm applies, it
suffices to know that the edges labelled in Case 2(b) form a contiguous “block” of labelled edges. By
Lemma[l and the property akxtGreater fields that all the vertices immediately beforeceedge have
the head of the edge as thaixtGreater field value, this holds. As an aside, it is interesting to note that
the outgoing edges with lower tails than those in the block (when they exist) all end outside a proper edge
region. All the outgoing edges with tails lower than those of the block are labelled in descending tail order
in Case 2(c). In addition, all the outgoing edges with tails higher than those of the block are labelled in
ascending tail order in Case 2(d). Since every non-proper edge is a outgoing edge of some proper edge
region by the covering assumption, the lemma follows from this.

Claim 1 Fractional labels are not needed when using the labelling scheme described.

Proof: This follows from Lemmag]1 and 2]
The following claim expresses an essential attribute for the labelling scheme to enable the query algo-
rithm to function correctly.

Claim 2 The ordering condition holds.

Proof: The proof is by construction of the labels.

It is important that the labels of non-proper paths form a contiguous interval of the positive integers
so that when non-proper paths merge, the label ranges are consistent amhiind fields are retrieved
properly.

Claim 3 The numbers used in the labels of non-proper paths form a contiguous interval of the positive
integers.

Proof: The proof is by construction of the labels.
A couple more characteristics of the labelling algorithm follow.

Claim 4 The label of a non-proper path can be reused after the path has terminated or before the path
has started, and this is the only time that labels are reused by the labelling method.

Proof: As long as there is & edge of a particular non-proper path in a proper edge region, the label of
that non-proper path is in a sense “reserved”. This is because the label of alktthges of a particular
non-proper path is the same up to a partition of a range (when the path is considered in the sink to source
direction). Since a label of a non-proper path only needed for the span of the path, it can be safely reused
in proper edge regions outside this span. The only situation when labels may be reused is in Case 2(d) of
the labelling algorithm. Observe Figufie 4 which shows the label assignment for the same chains shown
in the first pass and second pass illustrations of Figres g and 7 for examples of label reuse; for example,
the < edges (3, 10) and (19, 26) as well as (4, 11) and (20, 27) in the third chain have the samé&labels.
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Claim 5 Distinct label ranges associated with a particular proper edge region are not overlapping, i.e.
if a < edge ewith a label of[c,d] and a< edge ¢ with a label offe, f] are both entering or leaving the
same proper edge region, eithexde or f < c.

Proof: The proof is by construction of the labels. Once several different non-proper paths merge into one
path, they cannot become separate again.

4.4 The Complexity Results
Theorem 1 The running time of the labelling algorithm is O(n), where:n¥/| for a chainG = (v, ).

Proof: The first pass scans each proper edge region from the source to the sink. The sequence of heads of
incoming edges and the tails of outgoing edges of each proper edge region is examined from left to right.
Carrying out the first pass means passing over each non-proper edge twice. Thus, the work done in the
first pass takes @ time. This is because the maximum numbekoédges possible in a chainns- 1

due to the covering assumption.

The second pass scans each proper edge region from the sink to the source. The sequence of heads of
incoming edges and the tails of outgoing edges of each proper edge region (after the first to be considered
for the labelling and except where the previously considered proper edge region has no outgoing edges)
is inspected from left to right. Carrying out the second pass means passing over each non-proper edge at
most 3 times. Thus, the work done to assign the labels tak@stioe.

As well, the time needed to assign tleeminal fields associated with non-proper edges ig)@6s the
terminal of each non-proper path is discovered once and the number of non-proper paths is bounded above
by n—1. Also, the size of the indexed storage that keeps track atthenal fields associated with edges
having certain labels is— 1. Thus, the time taken by the second pass is in the orderdie fact that the
maximum number ok edges possible in a chainns- 1 under the covering assumption really underlies
this bound. Therefore, the total time taken by the labelling algorithm m3. O{

5 The Formal Querying Algorithm

5.1 Preliminaries

Theorem 2 distance(b,a) = ||ngTraversal(a,b)
(V,E).

Proof: First, once the number of edges of a path froma to b is known, we know thatlistance(b, a)

can be no less. Thuslistance(b,a) must be at leasfngTraversal(a,b)||. Now, we must prove that
distance(b,a) can be no more thajgTraversal(a,b)||. If we imagine adding another distinet edge,

the head and tail of which are both outside the region ofamdge contained ingTraversal(a,b), the
added edge would be<aedge ofngTraversal(a, b) and||ngTraversal(a, b)|| would be increased by 1. This
does not makelistance(b,a) more than||ngTraversal(a,b)| (i), and if the added edge is inside a proper
edge region, the covering assumption is violated as well. The only wayithatce(b,a) could be more
than||ngTraversal(a,b)|| would be to have at least twa edges contained (and at least one edge must be
completely enclosed) in the sameedge that is a part afgTraversal(a,b) (iia) and (iib). However, this

is a contradiction by the covering assumption. Thiigance(b,a) = ||ngTraversal(a,b)||. See Fig[]90

, where a and ke 7 and a< b for some chaing =

Corollary 1 distance(b,a) = distance(l/,a) + distance(b, '), provided that bis outside the region of any
< edge contained ingTraversal(a,b).
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(iia) (iib)

source oMMA sink

Fig. 9: Proof of Theorenf]2.

Proof: From the definition of th@extGreater traversal, we havgngTraversal(a, b)|| = ||ngTraversal(a,b')|| +
||IngTraversal(b/,b)||. From this and Theorefi 2, the corollary follows.

Now, the way in which the path induced kyurceDistance(b,a) consisting of only proper edges among
the < edges compares g Traversal(a, b) will be analyzed.

Henceforth, assume thais inside a proper edge region anlds not in the proper edge region ttis
in. In addition, there is a non-proper edgleaving the proper edge region ttes in such thatail(e) > a.

Theorem 3

Under these assumptions, litad(€,) < b/ < head(ej1) — 1ﬂ] and U < terminal(a), distance(b/,a) =
sourceDistance(b/,a) = j (). In addition, if head(€|) = b’ = terminal(a), startProperEdge(b') = oo,
distance(b',a) = sourceDistance(t/,a) = j (ii).

Proof: We proceed by induction ojp

Basis Case:For j=1, there is one non-proper edge betwaemdb’, namely,e;. As well,a < head(e1) <
b’ and the head of a proper edge is the only place where the distance from the source increases.
Thus, distance(b/, a) = sourceDistance(b’,a) = 1 (see Fig[ 70 and Fig[ 111 for cases (i) and (ii),
respectively). The basis case is established.

Inductive Case: Assume the inductive hypothesis holds wher: j, for somej. Now, we prove
that it holds forj. Assume thathead(€]) < bf < head(ej+1) —1 and b/ < terminal(a) or
head(€|) = b’ = terminal(a), startProperEdge(b) = . Since the inductive hypothesis holds when

i < j, If head(€|_;) < b" < head(ej) — 1, distance(b",a) = sourceDistance(b”,a) = j —1. Now,
there is an addltlonal non-proper edggin ngTraversal(a,b/) compared tongTraversal(a,b”).
Thus, distance(t, @) = distance(head(€]_;),a) + 1= j — 1+ 1= j and sourceDistance(tf,a) =

sourceDistance(head(€]_,),a) +1=j—1+1= j by Corollary[] (see Fig. 12 and Fig|13 for cases
() and (ii), respectively). Again, the fact that the head of a proper edge is the only place where the
distance from the source increases has been used. The inductive case is established.

We maintain our assumption thats inside a proper edge region alids not in the proper edge region
thatais in. As well, there is a non-proper edgdeaving the proper edge region thats in such that
tail(e) > a.

Theorem 4 Under these assumptionshifad(ej) < b < head(€|) — 1 and b< terminal(a), distance(l/,a) =
sourceDistance(b/,a) —1=j — 1.

Proof: The proof is by induction o and is similar to the proof of Theorem 3.

Il We assume the same notation for the proper edges and ¢ages. of the non-proper path as in Sec@ 4.10on ﬂ 329.
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source oﬂﬂgm& sink
a..

maximum distance froma 0 1 1

source distance k k+1 k+2
Fig. 10: Basis Case of proof of Theorem 3(i).

source O—NAA—D&& sink

maximum distance frora

source distance k k+1

Fig. 11: Basis Case of proof of Theorem 3(ii).

source *—**

maximum distance frora

source distance -1 j j+1

source ***

maximum distance frora

i—1 i j+1

source distance
Fig. 13: Inductive Case of proof of Theorem 3(ii).
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5.2 The Actual Query Algorithm and its Proof
Again, note that for an intervadl = [¢,h], first(l) = ¢,last(l) = h. As such, the query algorithm is as

follows:

1. If startProperEdge(a) = o, thendistance(b,a) = sourceDistance(b, a).

2. If startProperEdge(a) # o« andb < nextGreater(startProperEdge(a)), thendistance(b,a)= 0.

3. If startProperEdge(a) # o andb > nextGreater(startProperEdge(a))

(a) If terminal(a) = “undefined”, therdistance(b,a) = sourceDistance(b,a) — 1.
(b) If terminal(a) # “undefined”
i. If b< terminal(a)

A.

B.

If first(labelNextGreater(a)) < last(labelPreviousLesser(b)), then distance(b,a) =
sourceDistance(b, a).

If first(labelNextGreater(a)) > last(labelPreviousLesser(b)), then distance(b,a) =
sourceDistance(b,a) — 1.

ii. If b> terminal(a),

A.
B.

If startProperEdge(terminal(a)) = oo, distance(b,a) = sourceDistance(b,a).

If startProperEdge(terminal(a)) # oo,

o If b < nextGreater(startProperEdge(terminal(a))),  then distance(b,a) =
sourceDistance(b, a).

e If b > nextGreater(startProperEdge(terminal(a))),  then distance(b,a) =
sourceDistance(b,a) — 1.

Figure[I# on the next page gives an example for each case of the query algorithm. According to the
illustrated chain we have:

1. distancé15,5) = sourceDistancgl5,5) = 2.

2. distancé¢10,8) = 0.

3. (a) distanc€15,10) = sourceDistancgl5,10) —1=1.

®) i A

B
i. A
B

distancé9,3) = sourceDistancg,3) = 1.

. distancé8,4) = sourceDistanc,4) — 1 =0.

distancé15,3) = sourceDistancgl5,3) = 3.

. o distancél14,4) = sourceDistancgl4,4) = 2.

o distancél5 4) = sourceDistancgl5,4) — 1= 2.

Theorem 5 The query algorithm is correct with respect to computing the maximum distance between any
two vertices a and & 7V such that a< b.

Proof: The cases in the following proof correspond exactly to those in the query algorithm.
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1
1
source ¢—-»e —>e —»e —»e sink
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5|6 | 7| 8] 9]10|11|12| 13| 14| 15 vertex

0 0 0 0 1 1 1 1 1 1 2 2 2 2 3 sourceDistance
[ 1 1 1 |0 |0 |0 |7 |7 |7 |o]|o]|1212] o startProperEdge

5 8 8 9 |11|11]11(12|13|15| 15| 15| o | o | nextGreater
—0 | -0 | —00| —c0| 1|11 |3 |4|4|7|8|9]|9]12 previousLesser

0 1 1 2 0| 0|0 1120|010 - - - labelNextGreater

- - - - oOojO0|O0O|1]|2|2]|]0|1| 2| 2] 0| labelPreviousLesse
15|12 | 12 | 13 |15|15(15|12| 13| - | 15| 15| - - - terminal

(a) Fields of Example Time Chain

Fig. 14: Example Time Chain. The proper edges are bold.

1. By Theorem[]2, distance(b,a) = ||ngTraversal(a,b)||. Since a is outside a proper edge region,
ngTraversal(a,b) is exactly the path induced byurceDistance(b,a). This is because the source is also
outside a proper edge region and so there is a discrete number of proper edges between the source and
a. So in this case the number ef edges inngTraversal(a,b) is equal tosourceDistance(b,a). Thus,
distance(b, a)= sourceDistance(b,a).

2. If b < nextGreater(startProperEdge(a)), there can be no<edge (u,v) such that a <
u<v<b by the covering assumption; otherwiséu,v) would subsume the< edge
(startProperEdge(a), nextGreater(startProperEdge(a))). So,distance(b,a) =0.

3. (@) By Theorem []2, distance(b,a) = | ngTraversal(a,b)||. In addition, the path in-
duced by sourceDistance(b,a) has one < edge that is not present imgTraversal(a,b)
(the other <edges are all in common between the two paths), namely <hedge
(startProperEdge(a), nextGreater(startProperEdge(a))). This is because this edge is on
ngTraversal(sourceb) and it is not onngTraversal(sourcea) nor is it on any path beginning at
a. Thus,distance(b,a) = sourceDistance(b,a)—1.

(b) i. A. Assume the antecedent holds, Theorem 3 (i) applies.
Let first(IabelNextGreater(a)) = {5 and letlast(labelPreviousLesser(b)) = ¢,. Essentially
what must be shown is thatéf, < ¢p, thenhead(e/j) < b < head(ej;1) — 1 for somej, and
from this, distance(b,a) = sourceDistance(b,a)=j. Assume that, < /.
bis inside a proper edge region: Assume thab is outside a proper edge region. Ndw,
cannot be directly after the head of a proper edge. This is becdueeit directly after
the head of a proper edge, thgnwould be 0; so only whe#; is 0, is it possible that
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la < fy. Butly #£ 0 as there is a non-proper edgkeaving the same proper edge region
thatais in such thatail(e) > a. As well, if we assume thdtis directly after the head of
a non-proper edge such tiat< ¢, and(u, V) is a< edge where = previousLesser(b),
then head(€]) < v < b [7]. This is because the outgoing edges of each proper edge
region are labelled in ascending tail order by Claim (Lempha) 2. But dinseutside
a proper edge regiorhead(e’j) is also outside a proper edge region by the covering
assumptionil(€,) is in the proper edge region ef so tail(€]) < head(€j) <b). So
b > terminal(a) contradicting our assumption thak terminal(a). Thereforebis inside
a proper edge region, i.@il(ej;1) + 1 < b < head(ej;1) — 1 for somej.

head(g]) < bfor somej: Assume thabis inside a proper edge region ahehd(€) > b.
However, the incoming edges of each proper edge region are labelled in ascending head
order by Claim (Lemma[] 2. For this to be the case anditati(€]) > b, la > {p * but
this contradicts the assumption ttfat< (p. Thereforehead(€]) < b.

Thus,head(€]) < b < head(ej+1) — 1 anddistance(b,a)= sourceDistance(b,a) = .

B. Given the antecedent, Theordin 4 applies. Essentially what must be shown is that if
la > lp, thenhead(ej) < b < head(€}) — 1 for somej and from thisdistance(b,a) =
sourceDistance(b,a)—1=j — 1. Sincehead(€,) < b < head(ej;1) — 1 andhead(ej) < b <
head(e/j) — 1 for somej completely define the places tHatan be under the assumptions
of the antecedent of this case, it suffices to prove théf if ¢y, it is not the case that
head(€]) < b < head(ej+1) — 1. Suppose thaliead(€|) < b < head(ej+1) — 1. But then
taking (u,v) to be a< edge wherel = previousLesser(b), we havehead(€) > V¥ through
the assumption that, > ¢, and the sorted ascending order of incoming edges expressed
in Claim (Lemma) . Note that we must also hawad(€]) > b through the definition of
previousLesser; otherwisehead(€]) would bev. So, there is a contradiction of the assump-
tion thathead(€}) < b < head(€j+1) — 1. Thus,head(€j) < b < head(€]) — 1 for somej

anddistance(b,a)= sourceDistance(b,a) — 1= j — 1.
ii. A. Assume the antecedent holds. Also, to compuilstance(terminal(a),a),
terminal(a) is used asb'. Thus, Theorem 3 (ii) applies. As a result,

distance(terminal(a),a) = sourceDistance(terminal(a),a). Since terminal(a) is out-
side a proper edge region startProperEdge(terminal(a)) = oo, distance(b, terminal(a))=
sourceDistance(b, terminal(a)) by Case 1 of this theorem. Sincerminal(a) is
not in a region of a< edge contained imngTraversal(a,b) by the definition of
terminal(a) (terminal(a) is a head of the lask edge in the nonProperPath(a)),
Corollary [1 applies. Thus, the distances are summed to dighnce(b,a)=
distance(terminal(a),a)+ distance(b, terminal(a)) = sourceDistance(terminal(a),a) +
sourceDistance(b, terminal(a)) = sourceDistance(b, a).
B. ¢ Assume the antecedent holds. As before, Theorem 3(ii) applies and
distance(terminal(a),a) = sourceDistance(terminal(a),a). Since terminal(a)
is in the same proper edge region that is in through the fact that
startProperEdge(terminal(a)) # o andb < nextGreater(startProperEdge(terminal(a))),
distance(b, terminal(a)) = sourceDistance(b, terminal(a)) = 0 by Case 2 of this
theorem. Again, Corollary]1 holds. As such, the distances are summed to

** The label ofe} includest, and unlesg] = (u,v), the label of(u,v) does not includé, by Claim|[p.
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get distance(b,a) = distance(terminal(a),a) = sourceDistance(terminal(a),a) =
sourceDistance(b, a).

e Assume the antecedent holds. As before, Theorem 3(ii) applies and
distance(terminal(a),a)= sourceDistance(terminal(a),a). b is not in the proper edge
region thatterminal(a) is in and there is no non-proper edgkaving the proper edge
region thatterminal(a) is in such thatail(e) > terminal(a). This is due to the fact that
startProperEdge(terminal(a))+# c andb > nextGreater(startProperEdge(terminal(a))).
Thus, distance(b, terminal(a)) = sourceDistance(b, terminal(a))—1 by Case 3(a) of
this theorem. Again, Corollarjj 1 applies. Hence, the distances are summed to get
distance(b,a) = distance(terminal(a) ,a)+distance(b, terminal(a)) = sourceDistance(
terminal(a) ,a)+sourceDistance(b, terminal(a))— 1= sourceDistance(b, a)—1. O

Note that the cases in the formal version of the query algorithm correspond exactly to those
cases described in the overview. We are aware that Case 1 is actually a special case of Case
3(b)()A and 3(b)(ii)A when the opening condition of Case 3(b) thairtProperEdge(a) # c and
b > nextGreater(startProperEdge(a)) is omitted. This is true because proper edges have a la-
bel of [0,0]. Since the numbers in the labels are all positive, it is always the case that
first(labelNextGreater(a)) < last(labelPreviousLesser(b)), if a is outside a proper edge region. Thus,
distance(b,a) = sourceDistance(b,a) no matter whereb is beforeterminal(a). Sincea is outside a
proper edge region so grminal(a), and consequentlytartProperEdge(terminal(a)) = co. If b is at
or after the head of the last proper edge whicheisinal(a) in this instance, it is still the case that
distance(b,a) = sourceDistance(b,a). However, it serves an illustrative purpose to keep these cases sep-
arate.

Observe that it is not essential thdirst(labelNextGreater(a)) is used as opposed to some
other number in the range dhbelNextGreater(a) as long aslast(labelPreviousLesser(b)) is uti-
lized. Label ranges of different non-proper paths present in the same proper edge region are non-
overlapping by Claim[]5 and sincb < terminal(a), a non-proper edge of theonProperPath(a)
is present in the proper edge region thatis in. In addition, the sizes of ranges ef edges
of the nonProperPath(a) may increase but not decrease in the direction from the source to the
sink. As a result, iffirst(labelNextGreater(a)) < last(labelPreviousLesser(b)), then we also have
last(labelNextGreater(a)) < last(labelPreviousLesser(b)). However, first(labelNextGreater(a)) is used
for consistency reasons.

Corollary 2 Either distance(b,a) = sourceDistance(b,a) or distance(b,a)= sourceDistance(b,a) — 1.
Proof: This is a direct consequence of Theorgmib.
Theorem 6 The querying algorithm expressed in Theofém 5 runs in O(1) time.

Proof: Each of the three steps of the query algorithm involves the look up and comparison of a constant
number of fields, and thus the query algorithm also takes constantdime.

6 Extensions to the MAX DIST Problem

Two basic extensions to the MAX DIST problem have been considered, namely the 2-value MAX DIST
problem and the ramifications of updates to the chain on the structures of the problem solved in the
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previous section. It is interesting to note that the solution of the MAX DIST problem applies to the
variant of the problem where edges have a weight of a positive numbegr Naturally, every occurrence

of “1” in the query algorithm must be changedwg. This is called the 1-value MAX DIST problem.
Extending further to the 2-value MAX DIST problem, we allow two possible weightsf@adgesw;

andw,. We have developed an O(1) query algorithm given am) @{eprocessing step for some restricted
cases of the 2-value MAX DIST problem. Updates to the chain that include adding a vertex, along with
the insertion and deletion of certain restricted edges have been provided for with a cost in terms of time
of O(Ig n) per operation. Then, querying is also degraded g @Ytime. Seel[Gn99] for details of this

and an elaboration of the allowed updates.

7 Conclusion and Open Problems

In this paper, we have seen how an O(1) time solution to the MAX DIST problem can be achieved
after Of) preprocessing. The query algorithm has been explained in detail. In addition, the necessary
preprocessing that includes the labelling algorithm has also been explicated in some depth. These findings
are significant, since the MAX DIST problem may be relevant to important applications ranging from crew
scheduling to production optimization in manufacturing and product synthesis.

Here is a list of some areas of future research concerning matters mentioned in this paper:

What other real world applications of the MAX DIST problem exist?
Can the labelling scheme characterized in this paper be applied to other problems?

Is there also a way to solve the 2-value MAX DIST problem for every case and with no error bound in
O(1) time after Of) preprocessing time? Can this be done forkha&lue MAX DIST problem as well?

Is it possible to increase the scope of allowed updates while maintainlgghit{me complexity?

Is it possible to answer queries about the maximum distance or to put it differently, the longest weighted
path between two vertices, in a series-parallel graph or even a local graph in O(1) time aftprep(o-
cessing time?
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