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Abstract
Equivalent upper and lower bounds for the L1 norm of Hilbert space valued infinitely
divisible random variables are obtained and used to find bounds for different types of
stochastic integrals.

1 L1–norm of infinitely divisible random vectors

Let X be an infinitely divisible random vector in a separable Hilbert space H . (See
e.g. [3], [7].) Assume that E‖X‖ <∞, EX = 0 and that X does not have a Gaussian
component. The characteristic function of X can be written in the form

E exp i〈y,X〉 = exp
[∫

H

(ei〈y,x〉 − 1 − i〈y, x〉)Q(dx)
]

(1)

where Q is a unique σ–finite Borel measure on H with Q({0}) = 0 and∫
H

min{‖x‖2, ‖x‖}Q(dx) <∞. (2)

Q is called the Lévy measure of X . It is one of the principle entities used to describe
the distribution of X .
We obtain bounds for E‖X‖ in terms of a functional of Q. Assume that Q(H) > 0
and let l = l(Q) > 0 be a solution of the equation

ξ(l)
def
=
∫

H

min{l−2‖x‖2, l−1‖x‖}Q(dx) = 1. (3)
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It follows from (2) that l(Q) is uniquely defined.
Note that (3) only depends on the projection of Q on R+, which we denote by Qr,
i.e.

Qr([t,∞))
def
= Q({x ∈ H : ‖x‖ ≥ t}), t > 0. (4)

Thus we can also write (3) in the form

ξ(l) =
∫ ∞

0

min{l−2x2, l−1x}Qr(dx) (5)

and define l(Qr) to be the value of l for which the integral in (5) is equal to one.
Clearly l(Q) = l(Qr).
The following theorem is the main result of this paper.

Theorem 1.1 Under the above assumptions we have

(0.25)l(Qr) ≤ E‖X‖ ≤ (2.125)l(Qr). (6)

If Q is symmetric, the constant in the upper bound of (6) can be decreased to 1.25.

In preparation for the proof of this theorem we consider a decomposition of X . We
write X = Y + Z, where Y and Z are independent mean zero random vectors with
characteristic functions given by

(7)

E exp i〈u, Y 〉 = exp
( ∫

‖x‖<l

(ei〈u,x〉 − 1 − i〈u, x〉)Q(dx)
)

E exp i〈u, Z〉 = exp
( ∫

‖x‖≥l

(ei〈u,x〉 − 1 − i〈u, x〉)Q(dx)
)
.

where l = l(Q).
The next lemma considers some moments of Y and Z. It is well known when H = R.

Lemma 1.1 Let λ = Q({x : ‖x‖ ≥ l}). Then

E‖Y ‖2 =
∫
‖x‖<l

‖x‖2Q(dx) (8)

E‖Y ‖4 =
∫
‖x‖<l

‖x‖4Q(dx) +
(∫

‖x‖<l

‖x‖2Q(dx)
)2

(9)

+ 2
∫
‖x‖<l

∫
‖y‖<l

〈x, y〉2Q(dx)Q(dy)

and
1 − e−2λ

2λ

∫
‖x‖≥l

‖x‖Q(dx) ≤ E‖Z‖ ≤ 2
∫
‖x‖≥l

‖x‖Q(dx). (10)

When Q is symmetric, each number 2 in (10) can be replaced by 1.
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Proof Let {ej} be an orthonormal basis in H . Let Q̄l denote Q restricted to
{‖x‖ < l}, the Lévy measure of Y . Since 〈ej , Y 〉 is a mean–zero real infinitely divisible
random variable

E‖Y ‖2 =
∑

j

E〈ej , Y 〉2

=
∑

j

∫
H

〈ej , x〉2 Q̄l(dx)

=
∫

H

‖x‖2 Q̄l(dx)

which proves (8).
To prove (9) we consider an infinitely divisible random vector in R2 given by (〈ej , Y 〉, 〈ek, Y 〉).
This random vector has characteristic function

Eeis〈ej ,Y 〉+it〈ek,Y 〉 = exp
(∫

H

[eis〈ej ,x〉+it〈ek,x〉 − 1 − i(s〈ej , x〉 + t〈ek, x〉)] Q̄l(dx)
)
.

Differentiating it twice with respect to s and t and then setting s and t equal to zero
gives

E〈ej , Y 〉2〈ek, Y 〉2 =
∫

H

〈ej , x〉2〈ek, x〉2 Q̄l(dx) +
∫

H

〈ej , x〉2 Q̄l(dx)
∫

H

〈ek, x〉2 Q̄l(dx)

+2
(∫

H

〈ej , x〉〈ek, x〉 Q̄l(dx)
)2

.

Therefore

E‖Y ‖4 =
∑
j,k

E〈ej , Y 〉2〈ek, Y 〉2

=
∫

H

‖x‖4 Q̄l(dx) +
(∫

H

‖x‖2 Q̄l(dx)
)2

+2
∑
j,k

( ∫
H

〈ej , x〉〈ek, x〉 Q̄l(dx)
)2

.

Since the last term of this equation can be written as∑
j,k

(∫
H

〈ej, x〉〈ek, x〉 Q̄l(dx)
)2

=
∑
j,k

∫
H

〈ej , x〉〈ek, x〉 Q̄l(dx)
∫

H

〈ej , y〉〈ek, y〉 Q̄l(dy)

=
∫

H

∫
H

(∑
j

〈ej , x〉〈ej , y〉
)2

Q̄l(dx)Q̄l(dy)

=
∫

H

∫
H

〈x, y〉2 Q̄l(dx)Q̄l(dy)

the proof of (9) is complete.
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Let {Wi} be independent identically distributed random vectors in H such that
P (Wi ∈ A) = λ−1Q(A ∩ {‖x‖ ≥ l}) for all A ∈ B(H). Let N be a Poisson ran-
dom variable with mean λ and independent of {Wi}. Then

Z
D=

N∑
i=1

Wi − λEW1. (11)

Consequently

E‖Z‖ ≤ E
N∑

i=1

‖Wi‖ + λE‖W1‖ = 2
∫
‖x‖≥l

‖x‖Q(dx)

which proves the upper bound in (10). (When Q is symmetric, EW1 = 0 which gives
the factor 1 instead of 2 in (10).)
To obtain the lower bound in (10) we first assume that Q is symmetric. Consequently
the Wi’s are symmetric and we get

E‖Z‖ =
∞∑

k=1

(
E‖

k∑
i=1

Wi‖
)
P (N = k)

≥
∞∑

k=1

(E‖W1‖)P (N = k)

=
1 − e−λ

λ

∫
‖x‖≥l

‖x‖Q(dx). (12)

If Q is not symmetric, then we consider Z̃ = Z − Z ′, where Z ′ is an independent
copy of Z. Z̃ has symmetric Lévy measure Q̃(A) = Q(A)+Q(−A) for A ∈ B(H) and
Q̃({‖x‖ ≥ l}) = 2λ. Applying (12) we get

2E‖Z‖ ≥ E‖Z̃‖ ≥ 1 − e−2λ

2λ

∫
‖x‖≥l

‖x‖ Q̃(dx)

=
1 − e−2λ

λ

∫
‖x‖≥l

‖x‖Q(dx).

This completes the proof of Lemma 1.1.

Proof of Theorem 1.1 We first obtain the upper bound in (6). Using (8) and (10)
we see that

E‖X‖ ≤ (E‖Y ‖2)1/2 + E‖Z‖ (13)

≤
(∫

‖x‖<l

‖x‖2Q(dx)

)1/2

+ 2
∫
‖x‖≥l

‖x‖Q(dx)

≤ (2.125)l.

The last bound follows from the definition of l(Q) by elementary calculus. Since the
factor 2 can be dropped in (10) when Q is symmetric, the number 2.125 in (13) can
be replaced by 1.25 in this case.
We now obtain the lower bound. It follows from (3) that either
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(a)
∫
‖x‖<l

‖x‖2Q(dx) ≥ (0.5)l2 or

(b)
∫
‖x‖≥l ‖x‖Q(dx) ≥ (0.5)l.

Suppose that (a) holds. By Hölder’s inequality we have

E‖Y ‖2 = E(‖Y ‖2/3‖Y ‖4/3)

≤ (E‖Y ‖)2/3 (
E‖Y ‖4

)1/3
(14)

and by (8) and (9)

E‖Y ‖4 ≤
∫
‖x‖<l

‖x‖4Q(dx) + 3
(∫

‖x‖<l

‖x‖2Q(dx)
)2

≤ l2E‖Y ‖2 + 3
(
E‖Y ‖2

)2
. (15)

Combining (14) and (15) we get

E‖Y ‖ ≥
(
E‖Y ‖2

)3/2

(
l2E‖Y ‖2 + 3

(
E‖Y ‖2

)2)1/2

=
E‖Y ‖2(

l2 + 3E‖Y ‖2
)1/2

.

Using assumption (a) and (8) we see that

E‖Y ‖ ≥ (0.5)l2

(l2 + 3(0.5)l2)1/2

because the function y = t/(l2 + 3t)1/2 is increasing for t > 0. Therefore

E‖X‖ ≥ E‖Y ‖ > (0.25)l.

This gives the lower bound in (6) when (a) holds.
Suppose now that (b) holds. Then∫

‖x‖≥l

(
‖x‖ + (‖x‖ − l)

)
Q(dx)

≥
∫
‖x‖≥l

‖x‖Q(dx) ≥ (0.5)l.

Consequently ∫
‖x‖≥l

‖x‖Q(dx) ≥ (0.25)(1 + 2λ)l.

Using this in (10) we get

E‖X‖ ≥ E‖Z‖ ≥ (0.25)
(1 + 2λ)(1 − e−2λ)

2λ
l

> (0.25)l.

This completes the proof of Theorem 1.1.
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Corollary 1.1 Let ξ(l) be as in (3). Then

(0.25)min{ξ(1),
√
ξ(1)} ≤ E‖X‖ ≤ (2.125)max{ξ(1),

√
ξ(1)}. (16)

Proof Observe that if l(Qr) < 1, then ξ(1) ≤ l(Qr) ≤
√
ξ(1) and if l(Qr) ≥ 1, then√

ξ(1) ≤ l(Qr) ≤ ξ(1). Combining this observation with Theorem 1.1 gives (16).

Remark 1.1 Note that (6) is homogeneous in X , i.e. if X is replaced by cX , for
some constant c > 0 then the bounds also change by a factor of c. Corollary 1.1 is
often useful but (16) is not homogeneous in X .

Remark 1.2 There is no reason to believe that the constants in (6) of Theorem 1.1
are best possible. However, they provide good estimates for the absolute moment of
an infinitely divisible random variable. To illustrate this point, consider X = N − λ,
where N is a Poisson random variable with parameter λ. Since Q = λδ1, we obtain
l(Q) = λ when λ ∈ (0, 1) and l(Q) = λ1/2 when λ > 1. A direct computation for
λ ∈ (0, 1) gives E|X | = 2λe−λ = 2e−λl(Q). Hence the smallest possible constant on
the right hand side of (6) must be at least 2. (In Theorem 1.1 we get 2.125). If λ
is a positive integer, then E|X | = 2λλ+1e−λ/λ! ∼ (2/π)1/2l(Q). Hence the largest
possible constant on the left hand side of (6) must smaller than 0.8. One can lower
this bound further by considering the first moment of the symmetrization of X .

Remark 1.3 Let X =
∑N

i=1 Yi − λEY1 be a centered compound Poisson random
vector; here {Yi} are independent identically distributed random vectors in H with
E‖Y1‖ < ∞ and N is a Poisson random variable with parameter λ independent of
the {Yi}. In this case Q = λL(Y1) and l = l(Q) is the unique solution of the equation

λEmin{‖Y1‖2, l‖Y1‖} = l2. (17)

One sees from this that l(Q) = KY1(λ), where KY1 is the K–function of M. Klass, [4].
The proof of Theorem 1.1 parallels, to a certain extent, the estimates given in Section
1.4.3, [1] for the absolute moment of sums of independent identically distributed
random variables in terms of the K–function. However our results seem to be easier
to use when dealing with infinitely divisible random vectors. For example let EY1 = 0
and H = R. A straightforward application of Proposition 1.4.10, [1] gives the bounds
for E|X | in terms of EKY1(N). But l(Q) = KY1(EN). Since KY1 is nonlinear, the
passage from EKY1(N) to KY1(EN) is far from obvious. By working with infinitely
divisible random vectors directly we avoid this difficulty.

We give another set of bounds for E‖X‖ which, in certain circumstances, may be
easier to compute. Let

ψr(u)
def
=
∫ ∞

0

(1 − cosuv)Qr(dv), u ≥ 0. (18)

(ψr is the Lévy exponent of a real valued symmetric infinitely divisible random vari-
able. Indeed, when X itself is real valued and symmetric, ψr is the Lévy exponent of
X ). Let

ζ(t)
def
=

1
t

∫ 1/t

0

ψr(u)
u2

du. (19)
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Theorem 1.2 Let X, Q and Qr be as in Theorem 1.1 and let ψr be as given in (18).
Let t∗ = t∗(ψr) be such that ζ(t∗) ≤ 1/4 and t∗ = t∗(ψr) be such that ζ(t∗) ≥ 5/2.
Then

(0.25)t∗(ψr) ≤ E‖X‖ ≤ (2.125)t∗(ψr). (20)

If Q is symmetric the constant in upper bound in (20) can be replaced by 1.25.

The proof of this theorem follows easily from the following lemma.

Lemma 1.2
1
4
ξ(l) ≤ ζ(l) ≤ 5

2
ξ(l) (21)

where ξ(l) is given in (3).

Proof We have

ζ(l) = (1/l)
∫

x<l

∫ 1/l

0

1 − cosux
u2

duQr(dx)

+(1/l)
∫

x≥l

∫ 1/x

0

1 − cosux
u2

duQr(dx) (22)

+(1/l)
∫

x≥l

∫ 1/l

1/x

1 − cosux
u2

duQr(dx)

def
= I + II + III.

Note that when |θ| ≤ 1, θ2/4 ≤ 1 − cos θ ≤ θ2/2. Consequently,

x

4
≤
∫ 1/x

0

1 − cosux
u2

du ≤ x

2
(23)

and when x < l
x2

4l
≤
∫ 1/l

0

1 − cosux
u2

du ≤ x2

2l
. (24)

Using (24) and (23) in (22) we see that

1
4
ξ(l) ≤ I + II ≤ 1

2
ξ(l) (25)

which gives the lower bound in (21). Also

III ≤ (2/l)
∫

x≥l

∫ 1/l

1/x

du

u2
Qr(dx) (26)

≤ (2/l)
∫

x≥l

|x|Qr(dx).

Combining (25) and (26), gives the upper bound in (21).

Proof of Theorem 1.2 It follows from (21) that

2
5
ζ(l) ≤ ξ(l) ≤ 4ζ(l). (27)
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This implies that if ζ(t∗) ≥ 5/2 then ξ(t∗) ≥ 1 and consequently t∗ ≤ l(Qr). Thus
the lower bound in (20) follows from the lower bound in (6). The proof of the upper
bound in (20) follows similarly.

It is particularly useful to know that the first moment of an infinitely divisible random
variable is finite. Then we can obtain bounds for random variables with mean zero
by first obtaining bounds for their symmetrized version. We use this technique in [6]
to study the continuity of a wide class of infinitely divisible processes. Of course it
would also be interesting to obtain bounds for other moments. The proof we give
here does not readily extend to higher moments.

In the next section we consider stochastic integrals. In Section 3 we give some simple
examples of how to use Theorems 1.1 and 1.2 to estimate the expected value of
the norm of Hilbert space valued infinitely divisible random variables and certain
stochastic integrals.

2 Stochastic integrals with respect to infinitely di-

visible random measures

Consider the infinitely divisible H-valued random variable X defined in (1). Given X
there are two natural objects to consider, < f,X > where f ∈ H and FX where F is
an operator from H to another Hilbert space K. In Theorem 1.1 we obtain bounds
for E‖X‖. As an extension of this result and as a corollary of this theorem we can
obtain bounds for E| < f,X > | and E‖FX‖. However, it is natural to consider this
extension in greater generality.
The “products” < f,X > and FX constitute natural bilinear forms taking values
in L1(Ω;R) and L1(Ω;K), respectively. Therefore, for any measure M , defined on
a measurable space S, and taking values in L1(Ω;H), integrals of the form

∫
S
<

f(s),M(ds) > and
∫

S
F (s)M(ds) are well defined as Bartle type integrals. It is

known that bounded deterministic functions are integrable in this setting. ( See e.g.
[2]).
Suppose that M , in addition, is an independently scattered infinitely divisible random
measure. In this section we use Theorem 1.1 to obtain nice two-sided estimates for
E| ∫

S
〈f(s),M(ds)〉| and E‖ ∫

S
F (s)M(ds)‖ in terms of an Orlicz norm of f and F .

Such bounds are relevant to our previous work [6] and can also be useful in modeling
based on time–space infinitely divisible random noise. Furthermore, Theorem 1.1
gives a complete characterization of the class of L1–integrable deterministic functions
with respect to independently scattered infinitely divisible random measures.
The L1 bounds obtained in Theorem 1.1 can be generalized further to the case of
of stochastic integrals of random predictable integrands. This step is possible by
applying decoupling inequalities along the lines of [5]. Such a generalization is not
immediate, especially if one requires specific constants in the bounds. We will not
consider it here. However, the L1 bounds obtained in this section constitute a base
for such a generalization.

The infinitely divisible random measures, that we integrate with respect to, are defined
as follows: Let S be a Borel space equipped with a σ–finite Borel measure m. Let
{θ(·, s)}s∈S be a measurable family of Lévy measures on H with the property that
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there exists a sequence {Sn} of Borel sets increasing to S such that for every n,
m(Sn) <∞ and ∫

Sn

∫
H

min{‖x‖2, ‖x‖} θ(dx, s)m(ds) <∞.

Let S = {A ∈ B(S) : A ⊂ Sn for some n}. It follows from Kolmogorov’s Consistency
Theorem that there exists an H–valued independently scattered random measure
M = {M(A) : A ∈ S} such that, for every A ∈ S

E exp(i〈y,M(A)〉) = exp
(∫

A

∫
H

(
ei〈y,x〉 − 1 − i〈y, x〉) θ(dx, s)m(ds)

)
(28)

with E‖M(A)‖ <∞ and EM(A) = 0.
Let f : S → H be a simple function with support in S, i.e. f =

∑n
j=1 ajIAj , Aj ∈ S.

Consider the stochastic integral∫
S

〈f, dM〉 def
=

n∑
j=1

〈aj ,M(Aj)〉. (29)

Clearly, E
∫

S
〈f, dM〉 = 0.

To define the Orlicz space pseudo–norm we consider the function

φ(y, s)
def
=
∫

H

φ0(|〈y, x〉|) θ(dx, s), y ∈ H, s ∈ S (30)

where
φ0(u) = u2I(u < 1) + (2u− 1)I(u ≥ 1), u ≥ 0. (31)

Since φ0(u) = 2
∫ u

0
min{v, 1} dv, φ0 is a convex increasing function starting from

0 such that φ0(2u) ≤ 4φ0(u). Thus φ(·, s) is a convex symmetric function with
φ(0, s) = 0 satisfying the ∆2–condition, i.e.

φ(2y, s) ≤ 4φ(y, s), y ∈ H.

Let g : S → H be a measurable function. We define an Orlicz space pseudo–norm of
g by

‖g‖φ
def
= inf{c > 0 :

∫
S

φ(c−1g(s), s)m(ds) ≤ 1}. (32)

Theorem 2.1 Let f̃ : S → H be a measurable function satisfying∫
S

∫
H

min{|〈f̃(s), x〉|2, |〈f̃(s), x〉|} θ(dx, s)m(ds) <∞. (33)

The definition of the stochastic integral in (29) can be extended to∫
S

〈f̃ , dM〉 (34)

where E
∫

S〈f̃ , dM〉 = 0 and

(0.125)‖f̃‖φ ≤ E|
∫

S

〈f̃ , dM〉| ≤ (2.125)‖f̃‖φ. (35)
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Proof Consider (29) and note that

E exp
(
iu

∫
S

〈f, dM〉
)

= exp
(∫

S

∫
H

[eiu〈f(s),x〉 − 1 − iu〈f(s), x〉] θ(dx, s)m(ds)
)
.

Hence X =
∫

S
〈f, dM〉 has the same form as (1) where Q is the image of the measure

θ(dx, s)m(ds) under the map (s, x) → 〈f(s), x〉. ξ(l) computed for this Q (or Qr ) in
(3) also can be written as

ξ(l) =
∫

S

∫
H

min{〈l−1f(s), x〉2, |〈l−1f(s), x〉|} θ(dx, s)m(ds). (36)

Comparing (36) and (30) we see that

ξ(l) ≤
∫

S

φ(l−1f(s), s)m(ds) ≤ ξ(l/2).

Consequently
l(Qr) ≤ ‖f‖φ ≤ 2l(Qr).

This bound combined with Theorem 1.1 yields

(0.125)‖f‖φ ≤ E|
∫

S

〈f, dM〉| ≤ (2.125)‖f‖φ. (37)

Since φ satisfies the ∆2–condition the results for f can be extended to hold for f̃ .

If H = R the integral (34) is the usual stochastic integral and ‖ · ‖φ is a norm.

The integral in (34) is a real valued random variable. We now consider a Hilbert
space valued stochastic integral. Let F : S → L(H,K), where L(H,K) is the space of
bounded linear operators from H into another separable Hilbert space K. We assume
that for each x ∈ H and y ∈ K, the function s→ 〈y, F (s)x〉 is measurable and that∫

S

∫
H

min{‖F (s)x‖2, ‖F (s)x‖} θ(dx, s)m(ds) <∞. (38)

We consider the stochastic integral∫
S

F dM
def
=
∑

j

∫
S

〈F ∗ej, dM〉ej (39)

where F ∗ : S → L(K,H), is the transpose of the operator F (s), and {ej} is an
orthonormal basis for K. (This integral could be defined via simple functions as
outlined in the introduction to this section, however, since we have already established
the existence of the inner product integrals, it is easier to use (39) ).
The integral in (39) is well defined. To see this we show that the series in (39)
converges and the limit does not depend on the choice of {ej}. To begin note that

|〈F ∗(s)ej , x〉| = |〈ej , F (s)x〉| ≤ ‖F (s)x‖ (40)
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implying that (33) holds and
∫

S
〈F ∗ej , dM〉 is well–defined.

Next consider the random vector

Sk,n =
n∑

j=k

∫
S

〈F ∗ej, dM〉ej .

Let Pk,ny =
∑n

j=k〈y, ej〉ej and

ξk,n(1)
def
=
∫

S

∫
H

min{‖Pk,nF (s)x‖2, ‖Pk,nF (s)x‖} θ(dx, s)m(ds).

It follows from Corollary 1.1 that

E‖Sk,n‖ ≤ (2.125)max{ξk,n(1),
√
ξk,n(1)}.

By (38) and the Dominated Convergence Theorem we see that the series in (39)
converges in L1

H .
To show that the right hand side of (39) does not depend on the choice of basis we
perform the following formal computation which can be justified in the same way as
the above proof of convergence. Let {gj} be another orthonormal basis in K. Then∑

k

∫
S

〈F ∗gk, dM〉gk

=
∑
i,j

∑
k

〈gk, ei〉〈gk, ej〉
∫

S

〈F ∗ei, dM〉ej

=
∑
i,j

〈ei, ej〉
∫

S

〈F ∗ei, dM〉ej

=
∑

j

∫
S

〈F ∗ej, dM〉ej .

We proceed to develop bounds for the L1 norm of the stochastic integral. Let

Φ(U, s)
def
=
∫

H

φ0(‖Ux‖) θ(dx, s), U ∈ L(H,K), s ∈ S (41)

where φ0 is given by (31), and define a pseudo–norm

‖F‖Φ
def
= inf{c > 0 :

∫
S

Φ(c−1F (s), s)m(ds) ≤ 1}. (42)

It is easy to see that X =
∫

S
FdM can be described by (1) in which Q is the image

of the measure θ(dx, s)m(ds) under the map (s, x) → F (s)x. By the same argument
used in the proof of (37) we get

(0.125)‖F‖Φ ≤ E‖
∫

S

F dM‖ ≤ (2.125)‖F‖Φ. (43)

for every F satisfying (38).

Remark 2.1 Stochastic integrals in which the integrand is real valued and the ran-
dom measure is Hilbert space valued and vice versa are special cases of (39), so that
(43) holds for them also.
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3 Examples

Let X , Q and Qr be as given in Section 1. In particular let

Qr(dx) = C

(
1

xp+1
I[0<x<1] +

1
xq+1

I[1≤x<∞]

)
dx (44)

p, q ∈ (1, 2). It is elementary to verify that the value of l for which (3) and (5) is
satisfied is given by the solution of one of the following equations

1
l2

(
p− q

(2 − p)(2 − q)

)
+

1
lq

(
1

(q − 1)(2 − q)

)
=

1
C

(45)

or
1
l

(
p− q

(p− 1)(q − 1)

)
+

1
lp

(
1

(p− 1)(2 − p)

)
=

1
C
. (46)

(The value of l is unique. If it turns out that l > 1, then this value satisfies (45) and
(46) has no solution. If l < 1 the opposite occurs. When l = 1, both equations are
the same.)
In particular, if p = q andX a Hilbert space valued infinitely divisible random variable
with Qr(dx) given by (44), then by Theorem 1.1

(0.25)
(

C

(2 − p)(p− 1)

)1/p

≤ E‖X‖ ≤ (2.125)
(

C

(2 − p)(p− 1)

)1/p

. (47)

If X is symmetric, the constant 2.125 in the upper bound of (47) can be decreased to
1.25.

There is a well known canonical way to define a mean zero, strictly p–stable, H–valued
random vector X so that it has a nice characteristic function. For 1 < p < 2 we set

E exp i〈y,X〉 = exp
(
−
∫

∂U

|〈y, θ〉|p
(
1 − i tan

πp

2
sgn〈y, θ〉

)
σ(dθ)

)
(48)

where σ is a finite measure on the unit sphere ∂U of H , called spectral measure of
X . This equation comes from (1) with the Lévy measure Q of X written in spherical
coordinates as

Q(dr, dθ) = cpr
−p−1drσ(dθ) r > 0 θ ∈ ∂U. (49)

Using (1), (49) and the identities∫ ∞

0

(eir − 1 − ir)r−1−p dr = Γ(−p)e−iπp/2 (50)

and ∫ ∞

0

(e−ir − 1 + ir)r−1−p dr = Γ(−p)eiπp/2 (51)

one can easily derive (48) and see that

cp = − 1
cos(πp/2)Γ(−p) . (52)
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It follows from (47) that

(0.25)kp[σ(∂U)]1/p ≤ E‖X‖ ≤ (2.125)kp[σ(∂U)]1/p (53)

where

kp =
(

cp
(2 − p)(p− 1)

)1/p

=

(
p

(2 − p)Γ(2 − p) sin π(p−1)
2

)1/p

. (54)

Note that kp is a continuous function of p ∈ (1, 2); kp ∼ (2/π)(p− 1)−1 as p decreases
to 1 and kp → √

2 as p increases to 2.

We now use Theorem 1.2 to obtain a lower bound for E‖X‖ which holds under fairly
general assumptions.

Lemma 3.1 Let X and ψr be associated as in (18). Assume that ψr(u)/u2 is de-
creasing as u increases and that ψ(u) is increasing as u increases. Then

E‖X‖ ≥ 1
4ψ−1

r (5/2)
. (55)

Proof Under the hypotheses on ψr we see that ζ(t) ≥ ψr(1/t). Therefore, if
ψr(1/t∗) = 5/2, the result follows from Theorem 1.2.

Suppose that ψr is regularly varying at zero with index 1 < p < 2. Then

lim
t→∞

ζ(t)(p − 1)
ψr(1/t)

= 1. (56)

Therefore, heuristicly, when ψ−1
r (5(p− 1)/2) is very small

E‖X‖ ≥ 1 − ε

4ψ−1
r (5(p− 1)/2)

(57)

for all ε > 0. A similar statement can be made when ψr is regularly varying at infinity
with index 1 < p < 2. In this case

lim
t→0

ζ(t)(p− 1)
ψr(1/t)

= 1. (58)

Therefore, heuristicly, when ψ−1
r (5(p− 1)/2) is very large

E‖X‖ ≥ 1 − ε

4ψ−1
r (5(p− 1)/2)

(59)

for all ε > 0. Both these statement can be made precise with specific examples.

Consider the stochastic integral in (34). Define

φ1(u) = u2I(u < 1) + uI(u ≥ 1), u ≥ 0. (60)
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Clearly
φ1(u) ≤ φ0(u) ≤ 2φ1(u) (61)

where φ0 is given in (31). Set

φ̃(y, s)
def
=
∫

H

φ1(|〈y, x〉|) θ(dx, s), y ∈ H, s ∈ S. (62)

It follows from Theorem 2.1 that

(0.125)‖f̃‖φ̃ ≤ E|
∫

S

〈f̃ , dM〉| ≤ (4.25)‖f̃‖φ̃ (63)

where ‖f̃‖φ̃ is defined as in (32).

We proceed to evaluate ‖f̃‖φ̃ for M in (28) with θ(dx, s)m(ds) = θ(dr, dθ, s)m(ds) =
Cr−p−1drσ(dθ)m(ds), similar to (49). A simple calculation shows that

‖f̃‖φ̃ = inf{v > 0 : Dp

∫
S

∫
∂U

|〈 f̃(s)
v
, θ〉|p dσ(θ)m(ds) ≤ 1} (64)

where Dp = C/((2 − p)(p− 1)). Consequently

‖f̃‖φ̃ =
(
Dp

∫
S

∫
∂U

|〈f(s), θ〉|p dσ(θ)m(ds)
)1/p

(65)

or, equivalently

‖f̃‖φ̃ =
(
Dp

∫
S

‖f(s)‖p

(∫
∂U

|〈 f(s)
‖f(s)‖ , θ〉|

p dσ(θ)
)
m(ds)

)1/p

. (66)

We give two specific examples. Let fk(s) be the k–th coordinate of f(s) and ek =
(0, . . . , 1, . . .) be the unit vector in the k–th coordinate. Suppose that the measure σ
assigns mass pk/2 to both ek and −ek. Then it follows from (65) that

‖f̃‖φ̃ =

(
Dp

∞∑
k=1

(∫
S

|fk(s)|pm(ds)
)
pk

)1/p

. (67)

For the second example let σ be uniform measure of mass one on the unit sphere in
Rn. It follows from (66) that

‖f̃‖φ̃ =
(

DpE|g|p
E|g|n+p−1E|g|n−1

∫
S

‖f(s)‖pm(ds)
)1/p

(68)

where g is a normal random variable with mean zero and variance one.
To derive (68) we calculate

∫
∂U |〈 f(s)

‖f(s)‖ , θ〉|p dσ(θ). Clearly this integral remains the
same if we rotate the unit sphere in Rn. Thus it remains the same for any unit vector
f(s)/‖f(s)‖ in Rn. We take e1 for this vector.
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Let ξ = (ξ1, . . . , ξn) where {ξi}n
i=1 are independent normal random variables with

mean zero and variance one. Note that

E|ξ1|p = (2π)−n/2

∫ ∞

∞
. . .

∫ ∞

∞
|〈e1, ξ〉|pe−‖ξ‖2/2 dξ

= (2π)−n/2

∫ ∞

∞
. . .

∫ ∞

∞
‖ξ‖p|〈e1, ξ

‖ξ‖〉|
pe−‖ξ‖2/2 dξ. (69)

Writing this in polar coordinates we get

E|ξ1|p = (2π)−n/2

∫ ∞

0

rp+n−1e−r2/2 dr

∫
∂U

|〈e1, θ〉|p dθ

= 2−(n+1)/2π−(n−1)/2E|ξ1|n+p−1

∫
∂U

|〈e1, θ〉|p dθ. (70)

Consequently ∫
∂U

|〈e1, θ〉|p dθ =
2(n+1)/2π(n−1)/2E|ξ1|p

E|ξ1|n+p−1
. (71)

Taking p = 0 in (71) gives the surface area of the unit sphere in Rn. Dividing (71)
by this number gives

∫
∂U |〈 f(s)

‖f(s)‖ , θ〉|p dσ(θ) and hence (68).
It is not hard to obtain such definite results for integrals with respect to other infinitely
divisible random measures than stable ones. It only requires a good estimate for φ̃
in (62), which is not hard to obtain when the Lévy measure θ associated with M in
(28) has nice properties, such as being regularly varying at zero and infinity.
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