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Abstract
Let D0(R+ ) denote the space of cadlag paths f : R+ → R with f(0) = 0. For f, g ∈ D0(R+ ),
define f ⊗ g ∈ D0(R+ ) and f � g ∈ D0(R+ ) by

(f ⊗ g)(t) = inf
0≤s≤t

[f(s) + g(t) − g(s)],

and
(f � g)(t) = sup

0≤s≤t
[f(s) + g(t) − g(s)].

Unless otherwise deleniated by parentheses, the default order of operations is from left to right;
for example, when we write f ⊗ g ⊗ h, we mean (f ⊗ g) ⊗ h. Define a sequence of mappings
Γk : D0(R+ )k → D0(R+ )k by

Γ2(f, g) = (f ⊗ g, g � f),

and, for k > 2,

Γk(f1, . . . , fk) = (f1 ⊗ f2 ⊗ · · · ⊗ fk,

Γk−1(f2 � f1, f3 � (f1 ⊗ f2), . . . , fk � (f1 ⊗ · · · ⊗ fk−1))).

Let N1, . . . , Nn be the counting functions of independent Poisson processes on R+ with respec-
tive intensities µ1 < µ2 < · · · < µn. Our main result is that the conditional law of N1, . . . , Nn,
given

N1(t) ≤ · · · ≤ Nn(t), for all t ≥ 0,

is the same as the unconditional law of Γn(N). From this, we deduce the corresponding results
for independent Poisson processes of equal rates and for independent Brownian motions (in
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both of these cases the conditioning is in the sense of Doob). This extends a recent observation,
independently due to Baryshnikov (2001) and Gravner, Tracy and Widom (2001), that if B is
a standard Brownian motion in R

n , then (B1 ⊗ · · · ⊗Bn)(1) has the same law as the smallest
eigenvalue of a n × n GUE random matrix.

1 Introduction and Summary

Let B = (B1, . . . , Bn) be a standard n-dimensional Brownian motion and set

Rn(t) = inf
0=t0<t1<···<tn−1<tn=t

n∑
k=1

[Bk(tk) − Bk(tk−1)]. (1)

The process Rn was introduced in [14]. It has recently been observed [3, 16] that:

Theorem 1 The random variable Rn(1) has the same law as the smallest eigenvalue of a
n × n GUE random matrix.

A n × n GUE random matrix A ∈ C n×n is constructed as follows: it is Hermitian, that is,
A = A∗(= (Ā)t); the entries {Aij , i ≤ j} are independent; on the diagonal Aii are standard
real normal random variables; below the diagonal, {Aij , i < j} are standard complex normal
random variables, that is, the real and imaginary parts of Aij are independent centered real
normal random variables, each with variance 1/2; above the diagonal we set Aji = Āij . Here,
z̄ = x − iy denotes the complex conjugate of z = x + iy. Hermitian Brownian motion is
constructed in the same way as a GUE random matrix, but with Brownian motions instead of
normal random variables. It is well-known (see, for example, [11, 15, 26]) that the eigenvalues
of Hermitian Brownian motion evolve like independent Brownian motions started from the
origin and conditioned (in the sense of Doob) never to collide. To make this more precise, the
function

h(x) =
∏
i<j

(xj − xi) (2)

is harmonic on Rn , and moreover, is a strictly positive harmonic function for Brownian motion
killed when it exits the Weyl chamber

W = {x ∈ R
n : x1 < x2 < · · · < xn}; (3)

the conditioned process we refer to is the corresponding Doob h-transform, started at the
entrance point (0, 0, . . . , 0). For related work on non-colliding diffusions and random matrices,
see [4, 9, 18, 22], and references therein. Thus, if B̂ is a realisation of this conditioned process,
then the smallest eigenvalue of a n × n GUE random matrix has the same law as B̂1(1), and
Theorem 1 states that Rn(1) and B̂1(1) have the same law.
Similar connections between directed percolation random variables, such as Rn(1), and random
matrix or discrete orthogonal polynomial ensembles have also been observed in [19, 20]. See
also [1, 13]. These are all related to the amazing fact, recently discovered and proved by Baik,
Deift and Johansson [2], that the asymptotic distribution of the longest increasing subsequence
in a random permutation is the same as the asymptotic distribution of the largest eigenvalue
in a GUE random matrix, which had earlier been identified by Tracy and Widom [33].
Before stating our main result we will introduce some notation. Let D0(R+ ) denote the space
of cadlag paths f : R+ → R with f(0) = 0. For f, g ∈ D0(R+ ), define f ⊗ g ∈ D0(R+ ) and
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f � g ∈ D0(R+ ) by
(f ⊗ g)(t) = inf

0≤s≤t
[f(s) + g(t) − g(s)], (4)

and
(f � g)(t) = sup

0≤s≤t
[f(s) + g(t) − g(s)]. (5)

Unless otherwise delineated by parentheses, the default order of operations is from left to right;
for example, when we write f ⊗ g⊗h, we mean (f ⊗ g)⊗ h. Define a mapping Γ : D0(R+ )2 →
D0(R+ )2 by

Γ(f, g) = (f ⊗ g, g � f). (6)

We now define a sequence of mappings Γk : D0(R+ )k → D0(R+ )k recursively, as follows. Set
Γ2 = Γ. For k > 2 and f = (f1, . . . , fk) ∈ D0(R+ )k, set

Γk(f1, . . . , fk) = (f1 ⊗ f2 ⊗ · · · ⊗ fk, (7)
Γk−1(f2 � f1, f3 � (f1 ⊗ f2), . . . , fk � (f1 ⊗ · · · ⊗ fk−1))). (8)

Let N (µ) = (N (µ1)
1 , . . . , N

(µn)
n ) be the counting functions of n independent Poisson processes

on R+ with respective intensities µ1 < µ2 < · · · < µn. That is, N
(µk)
k (t) is the measure induced

by the kth Poisson process on the interval (0, t], with the convention that N
(µk)
k (0) = 0.

Theorem 2 The conditional law of N (µ), given that

N
(µ1)
1 (t) ≤ · · · ≤ N (µn)

n (t), for all t ≥ 0,

is the same as the unconditional law of Γn(N (µ)).

The proof of Theorem 2, presented in the next section, is based on some natural independence
and reversibility properties of M/M/1 queues in series. At the heart of the proof is a generali-
sation of the celebrated theorem, due to Burke, which states that (in equilibrium) the output
of a stable M/M/1 queue is Poisson.
In Section 3, we recover the analogue of Theorem 2 for independent Poisson processes of equal
rates. (This is interesting in its own right: in [23] the conditioned process is shown to be
closely connected with the Charlier ensemble.) In Section 4, by carefully applying Dönsker’s
theorem, we deduce that the n-dimensional process Γn(B) has the same law as B̂. To see that
Theorem 1 follows, note that there is equality between the one-dimensional processes:

Rn = B1 ⊗ · · · ⊗ Bn = Γn(B)1, (9)

where Γn(B)1 denotes the first component of the n-dimensional process Γn(B).
In the case n = 2, the fact that Γn(B) has the same law as B̂ is essentially equivalent to
Pitman’s representation [29, 30] for the three-dimensional Bessel process; this connection is
discussed in [28]. Note that, for n = 2 in the Poisson case, Theorem 2 (see also Theorem 5)
yields the following discrete analogue of Pitman’s theorem if Xt is a simple random walk with
non-negative drift (in continuous or discrete time) and Mt = max0≤s≤t Xs, then 2M − X has
the same law as that of X conditioned to stay positive (in the case of a symmetric random walk,
this conditioning is in the sense of Doob). This result was obtained in [29] for the symmetric
random walk; Pitman’s original proof for Brownian motion used Dönsker’s theorem and this
simple random walk result.
Finally, we mention that Bougerol and Jeulin [5] have recently found a proof of Theorem 1 by
considering Brownian motion on symmetric spaces and applying a kind of Laplace method.
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2 Proof of Theorem 2

We will first state and prove a generalisation of Burke’s theorem [8], which states that the
output of a stationary M/M/1 queue is Poisson. As was observed by Reich [31], there is an
elementary proof of Burke’s theorem using reversibility. We will state a slightly stronger result
and prove it using essentially the same reversibility argument.
The stationary M/M/1 queue can be constructed as follows. Let A and S be independent
Poisson processes on R with respective intensities 0 < λ < µ. For intervals I, open, half-open
or closed, we will denote by A(I) the measure of I with respect to dA; for I = (0, t] we will
simply write A(t), with the convention that A(0) = 0. Similarly for S and any other point
process we introduce. For t ∈ R, set

Q(t) = sup
s≤t

[A(s, t] − S(s, t]]+, (10)

and for s < t,
D(s, t] = A(s, t] + Q(s) − Q(t). (11)

In the language of queueing theory, A is the arrivals process, S is the service process, Q is the
queue-length process, and D is the departure process. With this construction it is also natural
(and indeed very important for what follows) to define the unused service process by

U(s, t] = S(s, t] − D(s, t]. (12)

We will use the following notation for reversed processes. For a point process X , the reversed
process X̄ is defined by X̄(s, t) = X(−t,−s). The reversed queue-length process Q̄ is defined
to be the right-continuous modification of {Q(−t), t ∈ R}.
Burke’s theorem states that D is a homogeneous Poisson process with intensity λ. On a
historical note, this fact was anticipated by O’Brien [27] and Morse [24], and proved in 1956
by Burke [8]. In 1957, Reich [31] gave the following very elegant proof which uses reversibility.
The process Q is reversible (in fact, all birth and death processes are reversible). It follows
that the joint law of A and D is the same as the joint law of D̄ and Ā. In particular, D̄, and
hence D, is a Poisson process with intensity λ.
Burke also proved that, for each t, {D(s, t], s ≤ t} is independent of Q(t). This property is
now called quasi-reversibility. Note that it also follows from Reich’s reversibility argument.
Discussions on Burke’s theorem and related material can be found in the books of Brémaud [6,
7], Kelly [21] and Robert [32].
For s < t, set

T (s, t] = A(s, t] + U(s, t] = S(s, t] − Q(s) + Q(t). (13)

Theorem 3 The processes D and T are independent Poisson processes with respective inten-
sities λ and µ.

Proof. First note that, given Q, U is a homogeneous Poisson process with intensity µ on the
set I = {s ∈ R : Q(s) = 0}, and if we let V be another Poisson process with intensity µ on
the complement of I, which is conditionally independent of U given Q, then (unconditionally)
N = U + V is a homogeneous Poisson process with intensity µ on R which is independent
of Q. Now, (A, S) can be written as a simple function of (Q, N), (A, S) = ϕ(Q, N) say. By
construction, we have (D̄, T̄ ) = ϕ(Q̄, N̄). Now we use the reversibility of Q and N to deduce
that (D̄, T̄ ), and hence (D, T ), has the same law as (A, S), as required. 2
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Some Remarks. The analogue of Theorem 3 holds for Brownian motions with drift—several
proofs of this fact are given in [28]. (In fact, there is also a version given there which holds
for exponential functionals of Brownian motion. ) It is closely related to Pitman’s representa-
tion for the three-dimensional Bessel process [29] and Williams’ path-decomposition [35]. See
also [17, 25], for related work.
Note that

Q(t) = sup
u>t

[D(t, u) − T (t, u)]. (14)

We also have, on {Q(0) = 0},

{(D(t), T (t)), t ≥ 0} = {Γ(A, S)(t), t ≥ 0}. (15)

Theorem 3 has the following multi-dimensional extension, which relates to a sequence of
M/M/1 queues in tandem. Let A, S1, . . . , Sn be independent Poisson processes with respective
intensities λ, µ1, . . . , µn, and assume that λ < mini≤n µi. Set D0 = A and, for k ≥ 1, t ∈ R,
set

Qk(t) = sup
s≤t

[Dk−1(s, t] − Sk(s, t]]+, (16)

and for s < t,

Dk(s, t] = Dk−1(s, t] + Qk(s) − Qk(t), (17)

Tk(s, t] = Sk(s, t] − Qk(s) + Qk(t). (18)

Theorem 4 The processes Dn, T1, . . . , Tn are independent Poisson processes with respective
intensities λ, µ1, . . . , µn.

Proof. By Theorem 3, D1, T1 and S2 are independent Poisson processes with respective
intensities λ, µ1 and µ2. Applying Theorem 3 again we see that D2 and T2 are independent
Poisson processes with respective intensities λ and µ2, and since D2 and T2 are determined
by D1 and S2 they are independent of T1. Thus D2, T1, T2 and S3 are independent Poisson
processes with respective intensities λ, µ1, µ2 and µ3. And so on. The condition λ < mini≤n µi

ensures that this procedure is well-defined. 2

Remark. Again, the analogue of Theorem 4 can be shown to hold for Brownian motions with
drifts, by exactly the same argument.
By repeated iteration of (16) and (17), we obtain (almost surely)

Q1(0) + · · · + Qn(0) = sup
s≥0

[Ā(s) − (S̄n ⊗ · · · ⊗ S̄1)(s)]. (19)

To see this, first recall that Ā(s) = A(−s, 0), and

Q1(t−) = sup
s≤t

[A(s, t) − S1(s, t)]. (20)
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This yields (19) for n = 1. For n = 2, almost surely,

Q1(0) + Q2(0) = Q1(0−) + Q2(0−)
= Q1(0) + sup

s≤0
[D1(s, 0] − S2(s, 0]]

= sup
s≤0

[A(s, 0] + Q1(s) − S2(s, 0]]

= sup
s≤0

[A[s, 0] + Q1(s−) − S2[s, 0]]

= sup
s′≤s≤0

[A(s′, 0] − S1(s′, s) − S2[s, 0]]

= sup
s′≥0

[Ā(s′) − (S̄2 ⊗ S̄1)(s′)].

And so on. In particular, Q1(0) + · · ·+ Qn(0) depends only on the restriction of A, S1, . . . , Sn

to (−∞, 0].
Iterating (17) we obtain, for each k ≤ n,

Dk(t) + Q1(t) + · · · + Qk(t) = A(t) + Q1(0) + · · · + Qk(0). (21)

We also have, by (14),
Qk(t) = sup

u>t
[Dk(t, u) − Tk(t, u)]. (22)

Applying this repeatedly (as in the derivation of (19) above) we obtain

Q1(0) + · · · + Qn(0) = sup
t>0

[Dn(t) − (T1 ⊗ · · · ⊗ Tn)(t)]. (23)

Note that, on {Q1(0) + · · · + Qn(0) = 0},

Dn(t) = (A ⊗ S1 ⊗ · · · ⊗ Sn)(t), (24)

and
Tk(t) = (Sk � (A ⊗ S1 ⊗ · · · ⊗ Sk−1))(t), (25)

for t ≥ 0, k ≤ n.
We will prove Theorem 2 by induction on n.
We first prove it for n = 2: By Theorem 3 and the formula (14), the conditional law of
{(A(t), S(t)), t ≥ 0} given that A(t) ≤ S(t) for all t ≥ 0 is the same as the conditional law of
{(D(t), T (t)), t ≥ 0} given that Q(0) = 0. But when Q(0) = 0, (D(t), T (t)) = Γ(A, S)(t) for
t ≥ 0. Moreover, by (10) and the independence of increments of A and S, {Γ(A, S)(t), t ≥ 0}
is independent of Q(0). Therefore, the conditional law of {(A(t), S(t)), t ≥ 0} given that
A(t) ≤ S(t) for all t ≥ 0 is the same as the unconditional law of {Γ(A, S)(t), t ≥ 0}, as
required.
Now we will assume that Theorem 3 is true as stated for a particular value of n, and moreover
holds for any choice of µ1 < . . . < µn. In the above setting we have, by Theorem 4, that
Dn, T1, . . . , Tn are independent Poisson processes with respective intensities λ, µ1, . . . , µn. As-
sume that λ < µ1 < . . . < µn. By the induction hypothesis, the conditional law of

{(Dn(t), T1(t), . . . , Tn(t)), t ≥ 0}, (26)

given that T1(t) ≤ · · · ≤ Tn(t) for all t ≥ 0, is the same as the (unconditional) law of

{(Dn(t), Γn(T1, . . . , Tn)(t)), t ≥ 0}; (27)
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therefore, the conditional law of

{(Dn(t), T1(t), . . . , Tn(t)), t ≥ 0}, (28)

given that Dn(t) ≤ T1(t) ≤ · · · ≤ Tn(t) for all t ≥ 0, is the same as the conditional law of

{(Dn(t), Γn(T1, . . . , Tn)(t)), t ≥ 0}, (29)

given that Dn(t) ≤ (T1 ⊗ · · ·⊗Tn)(t) for all t ≥ 0. But, by (23), this is precisely the condition
that Q1(0) + · · · + Qn(0) = 0 or, equivalently, Q1(0) = · · · = Qn(0) = 0, and in this case we
have, by (24) and (25),

(Dn(t), Γn(T1, . . . , Tn)(t)) = Γn+1(A, S1, . . . , Sn)(t) (30)

for t ≥ 0; since this latter expression, by independence of increments, is independent of
Q1(0) + · · · + Qn(0), we are done.

2

3 The case of equal rates

Let N = (N1, . . . , Nn) be a collection of independent unit-rate Poisson processes, with N(0) =
(0, . . . , 0). The function h given by (2) is a strictly positive harmonic function for the restriction
of the transition kernel of N to the discrete Weyl chamber E = W ∩ Zn (this follows from
a more general result presented in [23]). Let N̂ be a realisation of the corresponding Doob
h-transform of N , started at x∗ = (0, 1, . . . , n − 1) ∈ E.
Apart from providing a convenient framework in which we can apply Dönsker’s theorem and
deduce the Brownian analogue of Theorem 2—this will be presented in the next section—the
process N̂ is interesting in its own right. In [23] it is shown (see the identity (40) below) that the
random vector N̂(1) is distributed according to the Charlier ensemble, a discrete orthogonal
polynomial ensemble. Thus, the next result, which follows from Theorem 2, yields a repre-
sentation for the Charlier ensemble. For more on discrete orthogonal polynomial ensembles,
see [20].

Theorem 5 The processes N̂ − x∗ and Γn(N) have the same law.

Proof. Let D(R+ ) denote the space of cadlag paths f : R+ → R, equipped with the Sko-
rohod topology. Let D(R+ )n be equipped with the corresponding product topology, and
M1(D(R+ )n), the space of probability measures on D(R+ )n, with the corresponding weak
topology. In this section, all weak convergence statements for processes will be with respect
to this topology.
Note that we can restate Theorem 2 as follows. Let x∗ = (0, 1, . . . , n − 1). Theorem 2 states
that the conditional law of x∗ + N (µ), given that x∗ + N (µ)(t) ∈ E, for all t ≥ 0, is the same
as the unconditional law of x∗ + Γn(N (µ)). It is easy to see that the operations ⊗ and � are
continuous (with respect to the Skorohod topology); it follows that Γn is continuous. The
statement of Theorem 5 therefore follows from Lemma 6 below. 2

Lemma 6 As W 3 µ → (1, . . . , 1),

N (µ) converges in distribution to N
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the conditional law of x∗ + N (µ), given that x∗ + N (µ)(t) ∈ E, for all t ≥ 0, converges to
that of N̂ .

Proof. The first claim is easy to check (see, for example, [12, Exercise 7.6.1]). To prove
the second claim, we need to introduce some notation. Denote by Π(µ) the restriction of the
transition kernel associated with N (µ) to E, and let T

(µ)
x denote the first time the process

x + N (µ) exits E. The conditional law of x∗ + N (µ), given that x∗ + N (µ)(t) ∈ E, for all
t ≥ 0, has transition kernel Π̂(µ) given by the Doob transform of Π(µ) with the strictly positive
harmonic function hµ(x) = P (T (µ)

x = +∞). In other words, for x, y ∈ E,

Π̂(µ)
t (x, y) =

hµ(y)
hµ(x)

Π(µ)
t (x, y). (31)

Now, if µn < δ and µ1 > 1/δ, for some fixed δ > 1, there exist strictly positive functions kδ

and lδ on E (independent of µ) such that

kδ(x) ≤ hµ(x)
hµ(x∗)

≤ lδ(x), (32)

for all x ∈ E. To see this, note that the probability hµ(x) is at least the probability of (the
embedded discrete chain in) N (µ) following a direct path in E to the point (xn−n+1, . . . , xn),
times the probability hµ(xn −n+1, . . . , xn). But this latter probability (by translation invari-
ance) equals hµ(x∗). Thus,

hµ(x) ≥
(

µn−1∑
i µi

)xn−xn−1−1

· · ·
(

µ1∑
i µi

)xn−x1−n+1

hµ(x∗)

≥
(

1
nδ2

)(n−1)xn−∑n−1
i=1 xi−n(n−1)/2

hµ(x∗)

=: kδ(x)hµ(x∗).

This yields the lower bound in (32); the upper bound is obtained similarly.
Denote by Π the restriction of the transition kernel associated with N to E, and let Tx denote
the first time the process x+N exits E. It follows from (32) that, for any sequence µ(m) in W
converging to (1, 1, . . . , 1), there exists a further subsequence µ(m)′ such that hµ(m)′/hµ(m)′(x∗)
converges pointwise to some strictly positive function g on E, with g(x∗) = 1. Since hµ(m)′

is harmonic for Π(µ(m)′) for all m, Π(µ(m)′) → Π pointwise and the processes have bounded
jumps, we deduce that g is harmonic for Π.
Now, since N (µ(m)′) converges in law to N there exists an almost-sure realisation of this
convergence, and since any fixed t is almost surely not a point of discontinuity of N , we will
also simultaneously realise the convergence of N (µ(m)′)(t) and {T (µ(m)′)

x∗ > t}. Using this,
the bound (32), and the easy fact that Elδ(N (µ(m)′)(t))2 is uniformly bounded in m, we see
that, for any bounded continuous function φ on D(R+ )n such that φ(f) only depends on
{f(s), s ≤ t}, we have, as m → ∞,

E

[
hµ(m)′(x∗ + N (µ(m)′)(t))

hµ(m)′(x∗)
1{T

(µ(m)′)
x∗ >t}φ(N (µ(m)′))

]
→ E

[
g(x∗ + N(t))

g(x∗)
1{Tx∗>t}φ(N)

]
.

(33)
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It follows that the conditional law of x∗ + N (µ(m)′), given that x∗ + N (µ(m)′)(t) ∈ E, for all
t ≥ 0, converges to the Doob transform of N by the strictly positive harmonic function g on
E, started at x∗; let Ng be a realisation of this Doob transform. Now we apply Theorem 2,
from which it follows that Γn(N) has the same law as Ng. In particular, the limiting function
g must be the same for any choice of sequence µ(m). It remains to show that g = h/h(x∗).
The Martin boundary associated with Π is analysed in [23]. If k(x, y) is the Martin kernel
associated with Π, and y → ∞ in such a way that y/

∑
i yi → (1/n, . . . , 1/n), then k(x, y) →

h(x)/h(x∗). Thus, by standard Doob-Hunt theory (see, for example, [10, 34]) if we can show
that, with probability one, Ng(t)/t → (1, . . . , 1) as t → ∞, we are done. Since Γn(N) has the
same law as Ng, we need only check that

Γn(N)(t)/t = Γn(N(·t)/t)(1) → (1, . . . , 1).

But this follows from the continuity of Γn and the fact that, as t → ∞, the function s 7→
N(st)/t converges almost surely in D(R+ )n to the function g(s) = (s, . . . , s), for which
Γn(g)(1) = (1, . . . , 1).

2

4 The corresponding result for Brownian motion

In this section we recover the analogous result for Brownian motion. For x ∈ R
n , let Px denote

the law of B started at x, and, for x ∈ W , let P̂x denote the law of the h-transform of B started
at x, where h is given by (2). The laws P̂x and Px are related as follows. If T denotes the first
exit time of B from W , and Ft the natural filtration of B, then for A ∈ Ft,

P̂x(A) = Px

(
h(Bt)
h(x)

1T>tA

)
. (34)

The point (0, . . . , 0) is an entrance point for P̂; we denote the corresponding law by P̂0+. The
law P̂0+ is defined, for A ∈ T t = σ(Bu, u ≥ t), t > 0, by

P̂0+(A) = P0

[
Cth(Bt)2P̂Bt(θtA)

]
, (35)

where θ is the shift operator (so that θtA ∈ T 0) and

Ct =


tn(n−1)/2

n−1∏
j=1

j!



−1

(36)

is a normalisation constant. To see that this makes sense, we recall the following well-known
connection between P̂ and the GUE ensemble, as remarked upon in the introduction:

lim
W3x→0

P̂x(Xt ∈ dy) = Cth(y)2P0(Xt ∈ dy). (37)

(See, for example, [22].) Let B̂ be a realisation of P̂0+.

Theorem 7 The processes B̂ and Γn(B) have the same law.
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Proof. We will use Dönsker’s theorem. It is convenient to switch topologies: we now equip
D(R+ ) with the topology of uniform convergence on compacts, D(R+ )n with the corresponding
product topology, and M1(D(R+ )n) with the corresponding weak topology. In this section,
all weak convergence statements for processes will be with respect to this topology. Note that
the mapping Γn is still continuous in this setting.
In the the context of the previous section, for m ∈ Z, set Xm(t) = [N(mt) − mt]/

√
m and

X̂m(t) = [N̂(mt) − mt]/
√

m. The theorem will be proved if we can show that Xm converges
in law to B̂. It is convenient to introduce general initial positions for the Markov processes
Xm and X̂m. Denote by P(m)

x (respectively P̂(m)
x ) the law of Xm (respectively X̂m) started at

x ∈ E/
√

m. Note that, by scaling properties of h, P̂(m)
x is the Doob h-transform of P(m)

x . In
this notation, all we need to show is that

P̂
(m)

x∗/
√

m
→ P̂0+. (38)

By an appropriate version of Dönsker’s theorem (see, for example, [12, Section 7.5]), if xm → x

in W , then P
(m)
xm → Px. Using the easy fact that Px∗/

√
mh(Xm(t))2 is uniformly bounded in

m, we deduce that for xm → x in W , we have

P̂
(m)
xm

→ P̂x. (39)

To deduce (38), we use the formula (see [23]):

P (N̂(t) = y) = Cth(y)2P (x∗ + N(t) = y), (40)

where Ct is the same normalisation constant as in the Brownian case, given by (36). Since
mn(n−1)/2Cmt = Ct, this translates as: for y ∈ E/

√
m,

P̂
(m)

x∗/
√

m
(Xm(t) = y) = Cth(y)2P(m)

x∗/
√

m
(Xm(t) = y), (41)

Thus, we need to show that, for any bounded continuous function φ : D(R+ )n → R,

P
(m)

x∗/
√

m

(
Cth(Xm(t))2P̂(m)

Xm(t)(φ(Xm))
)
→ P0

(
Cth(B(t))2P̂B(t)(φ(B))

)
. (42)

To do this, we simply take an almost-sure realisation of the convergence P(m)

x∗/
√

m
→ P0, appeal

to (39), and use the easy fact that Px∗/
√

mh(Xm(t))4 is uniformly bounded in m. 2
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[7] P. Brémaud. Markov Chains, Gibbs Fields, Monte-Carlo Simulation, and Queues. Texts
in App. Maths., vol. 31. Springer, 1999.

[8] P.J. Burke. The output of a queueing system. Operations Research 4 (1956), no. 6, 699–
704.
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