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Abstract

The spatial structure of a class of superprocesses which arise as limits in distribution of a class
of interacting particle systems with location dependent branching is investigated. The criterion
of their state classification is obtained. Their effective state space is contained in the set of
purely-atomic measures or the set of absolutely continuous measures according as one diffusive
coefficient c(x) ≡ 0 or |c(x)| ≥ ε > 0 while another diffusive coefficient h ∈ C2

b (R).

1 Introduction and main result

In Dawson-Li-Wang [3], a class of interacting branching particle systems with location depen-
dent branching, which generalizes the model introduced in Wang [14], is introduced and the
limiting superprocesses, which will be called superprocesses with dependent spatial motion and
branching (SDSBs), are constructed and characterized. In Theorem 6.1 of [3], it is proved that
when the motion coefficient satisfies uniformly elliptic condition (which means |c(x)| ≥ ε > 0
in the following model), the effective state space of the SDSBs is contained in the space of
all measures which are absolutely continuous with respect to the Lebesgue measure on R. It
leaves an open problem whether the effective state space of the SDSBs is contained in the space
of purely-atomic measures when the motion coefficient is degenerate (which means c(x) ≡ 0
in the following model). In our model, the motions of the particles are not independent. This
can be seen from their non-zero quadratic variation processes. This is one essential difference
from the Super-Brownian motion. Another essential difference is that the branching coefficient
in our model depends on the spatial location. Therefore, motion of the particles affects the
branching. This is a new class of interaction. To compare with other existing models, reader
is referred to [1], [2], [4], [7], [8], [9], [10], to name only a few.

In the present paper, the spatial structure of the SDSBs is investigated. We will give solution
to above mentioned open problem left in [3]. Combining with the result proved in [3], we
will give a criterion of state classification for SDSBs. Before introducing our model, let us
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give some notations. Let R = (−∞,∞), R̄ = R ∪ {∂}, the one-point compactification of R,
N = {1, 2, 3, · · · }, N̄ = {0} ∪ N, C(R) be the space of all continuous functions on R, Cb(R)
be the space of all bounded continuous functions on R, C0(R) be the space of all continuous
functions vanishing at infinity, CL(R) be the space of all Lipschitz continuous functions on
R, and Cn

b (R) be the space of all the functions which has bounded, continuous derivatives up
until and including order n. Now, let us introduce our model.
Suppose that {W (x, t) : x ∈ R, t ≥ 0} is a Brownian sheet (see [12]) and {Bi(t) : t ≥ 0},i ∈ N,
is a family of independent standard Brownian motions which are independent of {W (x, t) :
x ∈ R, t ≥ 0}. For each natural number n which serves as a control parameter for our finite
branching particle systems, we consider a system of particles (initially, there are mn

0 particles)
which move, die and produce offspring in a random medium on R.
The diffusive part of such a branching particle system has the form

dxni (t) = c(xni (t)) dB
i(t) +

∫

R
h(y − xni (t))W (dy, dt), t ≥ 0, (1.1)

where c ∈ CL(R) and h ∈ C2
b (R) is a square-integrable function. By Lemma 3.1 of [3], for

any initial conditions xni (0) = xi, the stochastic equations (1.1) have unique strong solution
{xni (t) : t ≥ 0} and, for each integer m ≥ 1, {(xn1 (t), · · · , x

n
m(t)) : t ≥ 0} is an m-dimensional

diffusion process which is generated by the differential operator

Gm :=
1

2

m
∑

i=1

a(xi)
∂2

∂x2
i

+
1

2

m
∑

i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
. (1.2)

In particular, {xni (t) : t ≥ 0} is a one-dimensional diffusion process with generator G :=
(a(x)/2)∆, where ∆ is the Laplacian operator,

ρ(x) :=

∫

R
h(y − x)h(y) dy, (1.3)

and a(x) := c2(x) + ρ(0) for x ∈ R. The function ρ is twice continuously differentiable with
ρ′ and ρ′′ bounded since h is integrable and twice continuously differentiable with h′ and h′′

bounded. The quadratic variational process for the system given by (1.1) is

〈

xni (t), x
n
j (t)

〉

=

∫ t

0

ρ(xni (s)− xnj (s)) ds+ δ{i=j}

∫ t

0

c2(xi(s)) ds, (1.4)

where we set δ{i=j} = 1 or 0 according as i = j or i 6= j, where i, j ∈ N. Here xni (t) is the

location of the ith particle. We assume that each particle has mass 1/θn and branches at rate
γθn, where γ ≥ 0 and θ ≥ 2 are fixed constants. We assume that when a particle 1

θn δx, which
has location at x, dies, it produces k particles with probability pk(x);x ∈ R, k ∈ N̄. This means
that the branching mechanism depends on the spatial location. The offspring distribution is
assumed to satisfy:

p1(x) = 0,

∞
∑

k=0

kpk(x) = 1, and m2(x) :=

∞
∑

k=0

k2pk(x) <∞ for all x ∈ R. (1.5)

The second condition indicates that we are solely interested in the critical case. After branch-
ing, the resulting set of particles evolve in the same way as their parent and they start off from
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the parent particle’s branching site. Let mn
t denote the total number of particles at time t .

Denote the empirical measure process by

µnt (·) :=
1

θn

mn
t

∑

i=1

δxni (t)(·). (1.6)

In order to obtain measure-valued processes by use of an appropriate rescaling, we assume
that there is a positive constant ξ > 0 such that mn

0/θ
n ≤ ξ for all n ≥ 0 and that weak

convergence of the initial laws µn0 ⇒ µ̃ holds, for some finite measure µ̃. As for the convergence
from branching particle systems to a SDSB, reader is referred to [14] and [3].

Let E := M(R) be the Polish space of all bounded Radon measures on R with the weak
topology defined by

µn ⇒ µ if and only if 〈f, µn〉 → 〈f, µ〉 for all f ∈ Cb(R) .

By Ito’s formula and the conditional independence of motions and branching, we can obtain
the following formal generators (usually called pregenerators) for the limiting measure-valued
processes:

Lc,σF (µ) := AcF (µ) + BσF (µ), (1.7)

where

BσF (µ) := 1
2

∫

R
σ(x)

δ2F (µ)

δµ(x)2
µ(dx), (1.8)

and

AcF (µ) :=
1

2

∫

R
a(x)

(

d2

dx2

)

δF (µ)

δµ(x)
µ(dx)

+
1

2

∫

R

∫

R
ρ(x− y)

(

d

dx

)(

d

dy

)

δ2F (µ)

δµ(x)δµ(y)
µ(dx)µ(dy)

(1.9)

for F (µ) ∈ D(Lc,σ) ⊂ C(E), where σ(x) := γ(m2(x) − 1) for any x ∈ R, the variational
derivative is defined by

δF (µ)

δµ(x)
:= lim

h↓0

F (µ+ hδx)− F (µ)

h
, (1.10)

D(Lc,σ) is the domain of the pregenerator Lc,σ. Especially, we denote L0,σ = A0 + Bσ for
Lc,σ = Ac + Bσ with c(x) ≡ 0. Let B(R)+ be the space of all non-negative, bounded,
measurable functions on R. We cite two theorems proved in [3].

Theorem 1.1 Let c ∈ CL(R), h ∈ C2
b (R) be a square-integrable function on R, and σ(x) ∈

B(R)+. Then, for any µ ∈ E, (Lc,σ, δµ)-martingale problem (MP) has a unique solution which
is a diffusion process.

Proof: For the proof of this theorem, reader is referred to the section 5 of [3]. ¤
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Theorem 1.2 Let c ∈ CL(R), h ∈ C2
b (R) be a square-integrable function on R, and σ(x) ∈

B(R)+. Suppose that there exists a constant ε > 0 such that |c(x)| ≥ ε > 0. For any µ ∈ E,
let {µt : t ≥ 0} be the unique solution to the (Lc,σ, δµ)-MP with sample paths in C([0,∞), E).
Then,

P{ µt << L on R for t > 0 |µ0 = µ} = 1,

where L is the Lebesgue measure on R and µt << L means that µt is absolutely continuous
with respect to Lebesgue measure L on R.

Proof: For the proof of this theorem, reader is referred to the Theorem 6.1 of [3]. ¤

We have following main result:

Theorem 1.3 Let h ∈ C2
b (R) be a square-integrable function on R, c(x) ≡ 0, and σ(x) ∈

B(R)+. Suppose that there exist constants 0 < ε < B such that 0 < ε ≤ infx σ(x) ≤
supx σ(x) ≤ B <∞. For any µ0 ∈ E, let {µσt : t ≥ 0} be the unique solution to the (L0,σ, δµ0

)-
MP with sample paths in C([0,∞), E). Then, for any t > 0, µσt is a purely-atomic mea-
sure. Furthermore, for any given t0 > 0 and conditioned on µσt0 =

∑

i∈I(t0)
ai(t0)δxi(t0) with

xi(t0) 6= xj(t0) if i 6= j and i, j ∈ I(t0), for any t ∈ [t0,∞), µσt has following representation:

µσt =
∑

i∈I(t)

ai(t)δxi(t),

where xi(t) 6= xj(t) if i 6= j and i, j ∈ I(t) and ai(t) satisfies

ai(t)− ai(t0) =

∫ t

t0

√

σ(xi(u))ai(u) dB
i(u), (1.11)

and xi(t) satisfies

xi(t)− xi(t0) =

∫ t

t0

∫

R
h(y − xi(u))W (dy, du), (1.12)

where W (y, u) is a Brownian sheet and {Bi(t) : i ≥ 1} are a sequence of independent one-
dimensional Brownian motions which are independent of W (y, u), {I(t) ⊂ N : t > t0} is
no-increasing random subsets in t in terms of set inclusion order.

2 Proof of the main result

The strategies to prove our main result can be described as follows:

(1) Generator Decomposition Technique : We decompose the branching generator as
follows:

BσF (µ) = BdF (µ) + Bε/2F (µ),

where the operators are define by (1.8), (2.14), and (2.21), respectively. By virtue of Bε/2
and existing results of [13], this decomposition technique helps us to prove and explain that
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our concerned interacting superprocesses with a variable coefficient branching generator im-
mediately enters into the purely-atomic measure valued state even if the initial state is an
absolutely continuous measure.

(2) Branching Mechanism Reconstruction: By reconstruction of the branching mech-
anism, the variable coefficient σ(x) of the branching generator is transformed as a location
dependent branching rate with location independent, equal probability binary branching in
the branching particle model. If infx∈R σ(x) ≥ ε > 0, then the mean life time of the particles
with variable branching coefficient σ(x) is shorter than that of the particles with constant
branching coefficient ε.

(3) Trotter’s Product Formula: Based on the branching mechanism reconstruction, we
will use Trotter’s product formula and a dominating method, which shows that the number of
particles of a purely-atomic measure-valued superprocess with a variable branching coefficient
σ(x) is dominated by the number of particles of a purely-atomic measure-valued superprocess
with a constant branching coefficient ε if σ(x) ≥ ε > 0, to reach our conclusion.

To prove our main result, we need two lemmas.

Lemma 2.1 Let h ∈ C2
b (R) be a square-integrable function on R, c(x) ≡ 0, and σ(x) ∈

B(R)+. Suppose that there exist constants 0 < ε < B such that 0 < ε ≤ infx σ(x) ≤
supx σ(x) ≤ B <∞. Let

L0,dF (µ) := A0F (µ) + BdF (µ), (2.13)

where F (µ) ∈ D(L0,d), A0F (µ) is defined by (1.9) with c(x) ≡ 0, and

BdF (µ) :=
1

2

∫

R
(σ(x)−

ε

2
)
δ2F (µ)

δµ(x)2
µ(dx). (2.14)

Then, for any t0 ≥ 0 and for any µt0 ∈ E, (L0,d, δµt0 )-MP has a unique solution {µt :
t ≥ t0 ≥ 0} which has sample paths in C([t0,∞), E). If the initial state is given by µt0 =
∑

i∈I(t0)
ai(t0)δxi(t0) which is a purely-atomic measure with xi(t0) 6= xj(t0) if i 6= j and

i, j ∈ I(t0), where I(t0) is at most a countable set, then for any t ∈ [t0,∞), µt has following
representation:

µt =
∑

i∈I(t)

ai(t)δxi(t),

where xi(t) 6= xj(t) if i 6= j and i, j ∈ I(t), I(t) is the random subset of I(t0) such that
ai(t) > 0 if i ∈ I(t), and ai(t) satisfies

ai(t)− ai(t0) =

∫ t

t0

√

(σ(xi(u))−
ε

2
)ai(u) dB

i(u), (2.15)

and xi(t) satisfies

xi(t)− xi(t0) =

∫ t

t0

∫

R
h(y − xi(u))W (dy, du), (2.16)

where W (y, u) is a Brownian sheet and {Bi(t) : i ∈ N} are a sequence of independent one-
dimensional Brownian motions which are independent of W (y, u).
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Proof: In order to simplify the notation, without loss of generality in the following we
simply assume that t0 = 0. The existence, uniqueness of the (L0,d, δµ0

)-MP, and its solution
being a diffusion process follow from Theorem 1.1 with c(x) ≡ 0. We will use Itô’s formula
to prove the remaining parts of the lemma. Suppose that W (y, u) is a Brownian sheet and
{Bi(t) : i ∈ N, t ≥ 0} are a sequence of independent one-dimensional Brownian motions which
are independent of W (y, u). Let {ai(t)} be the unique solution of (2.15) and {xi(t)} be the
unique solution of (2.16) with t0 = 0. Define µt =

∑

i∈I(t) ai(t)δxi(t). Since h ∈ C2
b (R) is a

square-integrable function on R and c ≡ 0, according to the behavior of the generator A0, the
location processes {xi(t) : t ≥ 0, i ∈ I(0)} have following coalescence property (See section 1.2
and the proof of Lemma 1.2 in [13]).

Coalescence Property: A branching particle system is said to have coalescence property
if the particle location processes are diffusion processes and for any two particles either they
never separate or they never meet according as they start off from same initial location or not.

According to this coalescence property, µt =
∑

i∈I(t) ai(t)δxi(t) is a purely-atomic measure

valued process and xi(t) 6= xj(t) for all t ≥ 0 if i 6= j and i, j ∈ I(t). Now consider the
following function in the general form:

F (µ) = f(〈φ1, µ〉, · · · , 〈φn, µ〉), (2.17)

where f ∈ C2(Rn) and {φi ∈ S(R), i = 1, · · · , n} are test functions. According to Itô’s
formula, we have

f(〈φ1, µt〉, · · · , 〈φn, µt〉)− f(〈φ1, µ0〉, · · · , 〈φn, µ0〉)

=
n
∑

l=1

∫ t

0

f
′

l (〈φ1, µs〉, · · · , 〈φn, µs〉)×
∑

i∈I(0)

[

φ
′

l(xi(s))ai(s)

∫

R
h(y − xi(s))W (dy, ds)

+φl(xi(s))

√

(σ(xi(s))−
ε

2
)ai(s) dB

i(s)

]

+
1

2

n
∑

l=1

∫ t

0

f
′

l (〈φ1, µs〉, · · · , 〈φn, µs〉)





∑

i∈I(0)

φ
′′

l (xi(s))ai(s)ρ(0)



 ds

+
1

2

n
∑

l,m=1

∫ t

0

f
′′

l,m(〈φ1, µs〉, · · · , 〈φn, µs〉)×





∑

k∈I(0)

φl(xk(s))φm(xk(s))(σ(xk(s))−
ε

2
)ak(s)

+
∑

i,j∈I(0)

φ′l(xi(s))φ
′
m(xj(s))ai(s)aj(s)ρ(xi(s)− xj(s))



 ds

=

∫ t

0

∫

R

〈

d

dx

δF (µs)

δµ(x)
h(y − x), µs(dx)

〉

W (dy, ds) +

∫ t

0

A0F (µs) ds+

∫ t

0

BdF (µs) ds

+

n
∑

l=1

∫ t

0

f
′

l (〈φ1, µs〉, · · · , 〈φn, µs〉)×
∑

i∈I(0)

φl(xi(s))

√

(σ(xi(s))−
ε

2
)ai(s) dB

i(s).

(2.18)

Since W (y, s) is a Brownian sheet and {Bi(t)} are independent one-dimensional Brownian
motions, µt is the unique solution to the (L0,d, δµ0

)-MP and the lemma is proved. ¤
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Lemma 2.2 Let h ∈ C2
b (R) be a square-integrable function on R, c(x) ≡ 0, and σ(x) ∈

B(R)+. Suppose that there exist constants 0 < ε < B such that 0 < ε ≤ infx σ(x) ≤
supx σ(x) ≤ B <∞. Let

L0,dF (µ) := A0F (µ) + BdF (µ), (2.19)

L0,ε/2F (µ) := A0F (µ) + Bε/2F (µ), (2.20)

where F (µ) ∈ D(L0,d), A0F (µ) is defined by (1.9) with c(x) ≡ 0, and BdF (µ) is defined by
(2.14) and

Bε/2F (µ) :=
ε

4

∫

R

δ2F (µ)

δµ(x)2
µ(dx). (2.21)

Then, for any µ0, ν0 ∈ E, (L0,d, δµ0
)-MP ((L0,ε/2, δν0)-MP ) has a unique solution {µt : t ≥ 0}

({νt : t ≥ 0}) which has sample paths in C([0,∞), E). If the initial state is given by µ0 =
a(0)δx(0) = ν0 which is a single atom measure with a(0) > 0 and x(0) ∈ R, then for any
t ∈ [0,∞), µt and νt have following representations:

µt = a(t)δx(t), νt = b(t)δx(t),

where a(t) satisfies

a(t)− a(0) =

∫ t

0

√

(σ(x(u))−
ε

2
)a(u) dB(u), (2.22)

b(t) satisfies

b(t)− a(0) =

∫ t

0

√

ε

2
b(u) dB(u), (2.23)

and x(t) satisfies

x(t)− x(0) =

∫ t

0

∫

R
h(y − x(u))W (dy, du), (2.24)

where W (y, u) is a Brownian sheet and {B(t) : t ≥ 0} is an one-dimensional Brownian motion
which is independent of W (y, u) on a probability space (Ω,F ,P). Define τa := inf{t : a(t) = 0}
and τb := inf{t : b(t) = 0}. Then P(τa ≤ τb) = 1.

Proof: The conclusion that for any µ0, ν0 ∈ E, (L0,d, δµ0
)-MP ((L0,ε/2, δν0)-MP) has a unique

solution {µt : t ≥ 0} ({νt : t ≥ 0}) which has sample paths in C([0,∞), E) is proved in [3].
The purely-atomic representation is proved by above lemma 2.1. To complete the proof, it
only needs to prove that P(τa ≤ τb) = 1. In order to prove this result, we will compare two
operators L0,d and L0,ε/2. We will use different point of view to explain the behaviors of Bd and
Bε/2. At the beginning of this paper, we have introduced our model of interacting branching
particle systems, where σ(x) = γ(m2(x)− 1), γ is a constant branching rate and the offspring
distribution depends on spatial location. Now we remodel the interacting branching particle
systems. For both the operator L0,d and the operator L0,ε/2, their corresponding interacting
branching systems can be alternatively described as follows:



164 Electronic Communications in Probability

For each n which serves as a control parameter for a finite branching particle system, we
consider a system of particles (initially, there are mn

0 particles) which move, die and produce
offspring in a random medium on R. The diffusive part of such a branching particle system
has the form

dxni (t) =

∫

R
h(y − xni (t))W (dy, dt), t ≥ 0, (2.25)

where W (y, t) is a Brownian sheet and h ∈ C2
b (R) is a square-integrable function. Here xni (t)

is the location of the ith particle. The branching mechanisms for the operator L0,d and the
operator L0,ε/2 are different.
(1) For the operator L0,d, we assume that each particle has mass 1/θn and branches at rate
γ̃(x)θn if the particle’s current location is x, where θ ≥ 2 is a fixed constant and γ̃(x) :=
σ(x) − ε/2 ≥ ε/2 > 0. We assume that all particles undergo binary branching with equal
probability 1

2 or more precisely after a particle dies, it is replaced by 0 or 2 particles of
same kind with equal probability 1

2 . Thus, the offspring distribution is independent of spatial
location. Therefore, in other words, this says that particles undergo binary branching with
equal probability 1

2 and each particle’s lifetime is measured by a clock whose speed changes as
this particle’s location changes. By Itô’s formula, it is not difficult to find that the pregenerator
of the limiting superprocess of the interacting branching particle systems is L0,d. In [3], it is
proved that the martingale problem for L0,d is well-posed.
(2) For the operator L0,ε/2, we assume that each particle has mass 1/θn and branches at rate
(ε/2)θn which is independent of the particle’s current location x, where θ ≥ 2 and ε are two
fixed constants. We assume that all particles undergo binary branching with equal probability
1
2 . Thus, the offspring distribution is independent of spatial location. Therefore, this means
that a particle’s lifetime is measured by a clock whose speed is fixed. After this particle dies,
it is replaced by 0 or 2 particles with equal probability 1

2 . By Itô’s formula, it is not difficult
to find that the pregenerator of the limiting superprocess of the interacting branching particle
systems is L0,ε/2. In [14] or [3] it is already proved that the martingale problem for L0,ε/2 is
well-posed.
Based on above reconstruction of the models of the interacting branching particle systems, we
have following comparison for a(t)δx(t) and b(t)δx(t), the unique solutions of (L0,d, δ(a(0)δx(0)))-
MP and (L0,ε/2, δ(a(0)δx(0)))-MP, respectively. First, they have same location trajectory x(t).
Second, they have same binary branching mechanism. Third, the only difference is their mass
processes. This difference is produced by their different branching rates. Since infx∈R(σ(x)−
ε/2) ≥ ε/2, the continuous branching process a(t)’s clock speed is uniformly quicker than or
equal to that of the continuous branching process b(t). Thus, P(τa ≤ τb) = 1 holds. ¤

Proof of Theorem 1.3: For any measure µ0 ∈ E, let {γ(t) : t ≥ 0} be the unique solution
to the (Bε/2, δµ0

)-MP with sample paths in C([0,∞), E) on a probability space (Ω,F ,P).
Then, by Theorem 1.1 of [13], for any t > 0, γ(t) is a purely-atomic-measure (This is just the
mutation-free Fleming-Viot process, see [6] [5]). For any natural integer k, we assume that at
t/k, γ(t/k) can be represented as follows:

γ(t/k) =
∑

i∈I(t/k)

ci(t/k)δxi(0),

where I(t/k) is at most a countable set such that xi(0) 6= xj(0) if i 6= j and i, j ∈ I(t/k), and

ci(t/k) > 0 for all i ∈ I(t/k). Let {T
ε/2
t } be the Feller semigroup generated by Bε/2, {U

d
t } be
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the Feller semigroup generated by L0,d, and {U
σ
t } be the Feller semigroup generated by L0,σ.

By Trotter’s product formula (See [11]), for any F ∈ C0(E), we have

lim
k→∞

[Ud
t/k · T

ε/2
t/k ]

kF = Uσ
t F (2.26)

for all t ≥ 0, uniformly on bounded intervals. Define

L0,εF (µ) := A0F (µ) + BεF (µ), (2.27)

Let {V
ε/2
t } be the Feller semigroup generated by L0,ε/2, and {V

ε
t } be the Feller semigroup

generated by L0,ε. By Trotter’s product formula (See [11]), for any F ∈ C0(E), we have

lim
k→∞

[V
ε/2
t/k · T

ε/2
t/k ]

kF = V ε
t F (2.28)

for all t ≥ 0, uniformly on bounded intervals. Let {µσt : t ≥ 0} be the unique solution to the
(L0,σ, δµ0

)-MP with µ0 ∈ E and Let {νεt : t ≥ 0} be the unique solution to the (L0,ε, δµ0
)-MP

with same µ0 ∈ E. We already proved in [13] that {νεt : t > 0} is a purely-atomic measure
valued process. Now we want to prove that for any t > 0, µσt is also a purely-atomic measure
and the number of atoms of µσt is at most equal to that of νεt . To this end, we will construct

the stochastic representations for both [U d
t/k ·T

ε/2
t/k ]

k and [V
ε/2
t/k ·T

ε/2
t/k ]

k conditionally on γ(t/k).

On the same probability space (Ω,F ,P), let W (x, t) be a Brownian sheet and {Bi(t) : i ∈ N}
be a sequence of independent one-dimensional Brownian motions which are independent of
W (x, t). Conditioned on γ(t/k), for each i ∈ I(t/k) we construct following sequences: For the
location processes, define

xi(t) := xi(0) +

∫ t

0

h(y − xi(s))W (dy, ds) t ≥ 0, (2.29)

and for 1 ≤ m ≤ 2k define

x̃i(mt/k) :=







xi(jt/k) if m = 2j,

xi(jt/k) if m = 2j + 1.
(2.30)

For the mass processes, define c̃i(t/k) := ci(t/k) and

c̃i(2jt/k) := c̃i((2j − 1)t/k)

+

∫ 2jt/k

(2j−1)t/k

√

(σ(xi(s− jt/k))−
ε

2
)c̃i(s) dB

i(s) 1 ≤ j ≤ k;

(2.31)

c̃i((2j + 1)t/k) := c̃i(2jt/k) +

∫ (2j+1)t/k

2jt/k

√

ε

2
c̃i(s) dB

i(s) 1 ≤ j < k. (2.32)

Based on above definitions, for any 1 ≤ m ≤ 2k we can define

µσ,kmt/k :=
∑

i∈I(mt/k)

c̃i(mt/k)δx̃i(mt/k), (2.33)
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where I(mt/k) is a random subset of I(t/k) such that c̃i(mt/k) > 0 if i ∈ I(mt/k). For any
function F ∈ C(E) and any natural integer l satisfying 1 ≤ l ≤ k , by (2.29),(2.31), and
Lemma 2.1, we can get

Ud
t/kF (µσ,k(2l−1)t/k) = Eµσ,k

(2l−1)t/k
F (µσ,k(2l)t/k) (2.34)

and by (2.30)and (2.32), we can get

T
ε/2
t/k F (µσ,k(2l−2)t/k) = Eµσ,k

(2l−2)t/k
F (µσ,k(2l−1)t/k). (2.35)

Thus, we have

Eµ0
F (µσ,k(2k)t/k)

= Eµ0
{Eµσ,k

t/k
{Eµσ,k

2t/k
· · · {Eµσ,k

(2k−1)t/k
F (µσ,k(2k)t/k)} · · · }

= [Ud
t/k · T

ε/2
t/k ]

kF (µ0).

(2.36)

Similarly if we define b̃i(t/k) := ci(t/k) and

b̃i(jt/k) := b̃i((j − 1)t/k) +

∫ jt/k

(j−1)t/k

√

ε

2
b̃i(s) dB

i(s) 2 ≤ j ≤ 2k. (2.37)

and for any 1 ≤ m ≤ 2k we define

νε,kmt/k :=
∑

i∈I′(mt/k)

b̃i(mt/k)δx̃i(mt/k), (2.38)

where I ′(mt/k) is a random subset of I(t/k) such that b̃i(mt/k) > 0 if i ∈ I ′(mt/k). By
(2.29),(2.37), and Lemma 2.1 with σ(x) ≡ ε, for any 1 ≤ l ≤ k we can get

V ε,k
t/kF (νε,k(2l−1)t/k) = Eνε,k

(2l−1)t/k
F (νε,k(2l)t/k) (2.39)

Thus, we have

Eµ0
F (νε,k(2k)t/k)

= Eµ0
{Eνε,k

t/k
{Eνε,k

2t/k
· · · {Eνε,k

(2k−1)t/k
F (νε,k(2k)t/k)} · · · }

= [V
ε/2,k
t/k · T

ε/2
t/k ]

kF (µ0).

(2.40)

By Lemma 2.2, we know that for any natural integer k and for any 1 ≤ m ≤ 2k, I(mt/k) ⊆
I ′(mt/k) holds almost surely with respect to P. Thus, this is true in distribution for the
limiting processes {µσt : t ≥ 0} and {νεt : t ≥ 0} and we conclude that for any t > 0, µσt is a
purely-atomic-measure. The remaining conclusion follows from Itô’s formula. ¤
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