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Abstract

We give upper bounds for the probability P(|f(X)—Ef(X)| > z), where X is a stable random
variable with index close to 2 and f is a Lipschitz function. While the optimal upper bound
is known to be of order 1/ for large z, we establish, for smaller x, an upper bound of order
exp(—x®/2), which relates the result to the gaussian concentration.

1 Statement of the result
Let X be an a-stable random variable on R?, 0 < o < 2, with Lévy measure v given by

+oo r
vB) = [ Mo [ 1o (1)

for any Borel set B € B(R?). Here \, which is called the spherical component of v, is a finite
positive measure on S¢~1, the unit sphere of R? (see [5]). The following concentration result
is established in [3]:

Theorem 1 ([3]) Let X be an a-stable random variable, o > 3/2, with Lévy measure given
by (1). Set L =\(S% ') and M =1/(2—a). Then if f : R? — R is a Lipschitz function such
that || fllLip <1,

(1+8e?)L

xa

P(f(X) - Ef(X)z2) < ; (2)

for every x satisfying
x® > 4LM log M log(1 + 2M log M).

For « close to 2, this roughly tells us that the natural (and optimal, up to a multiplicative
constant) upper bound L/z® holds for 2% of order LM (logM)?. On the other hand, suppose
that X is a 1-dimensional, stable random variable and let Y1) be the infinitely divisible
vector whose Lévy measure is the Lévy measure of X truncated at 1. Then it is easy to check
that var(Y(l)) = LM. This clearly indicates that one cannot hope to obtain any interesting
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inequality if 22 is much smaller than LM. In fact, when z® is of order LM, another result in
[3] gives an upper bound of order cLM /x®. However, comparing this with the bound ¢L/x®
of Theorem 1, we see that there is an important discrepancy when M is large, and so it is
natural to investigate the case when z® lies in the range [LM, LM (log M)?] for large M. Here
is our result:

Theorem 2 Using the same notations as in Theorem 1, we have:
(i) Let a < 1 and a’,e > 0. Then if M is sufficiently large, for every x of the form x® = bLM
with a’ < b < alogM,

P(f(X) - Ef(X)>z) < (1+e)e 2 (3)

(i) Let a > 2, € > 0. Then if M is sufficiently large, for every x such that x® > aLM log M,

ze

o 2
P(f(X) = Ef(X) > 1) < [; (24 e)exp <1  Ur LM og ) )} L

As a consequence of (i), let X(®) be the stable law whose Lévy measure v is the uniform
measure on S%~! with total mass 1/M. Then since LM = 1, (3) can be rewritten as

P(f(X) = Ef(X¥) z2) < (1 +e)e ™"/ (4)

for  smaller than (log M)'/*. When a — 2, X(® converges in distribution to a standard
gaussian variable X', for which we have the following classical bound [1, 6], valid for all > 0:

P(f(X') = BEf(X') 2 2) <™/
So we see that (4) recovers the result for the gaussian concentration.
Remark that (ii) slightly improves Theorem 1 when the index « is close to 2 and z® is of order
LM (log M)?.
To some extent, the existence of two regimes (i) and (ii), depending on the order of magnitude
of x with regard to (LM log M )1/ @ is reminiscent of the famous Talagrand inequality:

P(f(U) = Ef(U) > x) < exp(— inf(z/a, 2° /b))
where U is an infinitely divisible random variable with Lévy measure given by

) = 9k Uzt tlri)

v(dey ... dxy dxy...dxy,

and f is a Lipschitz function, a and b being related to the L' and L? norm of f, respectively
(see [7] for a precise statement). We now proceed to the proof of Theorem 2.

2 Proof of the result

The proof essentially follows the lines of the proof to be found in [3], where the case % <
LM (log M)? had been overlooked. We write X = Y () 4+ Z(B) where Y Z(B) are two
independent, infinitely divisible random variables whose Lévy measures are the Lévy measure
of X truncated, above and below respectively, at R > 0. We have

P(f(X)— Ef(X)>z) < P(f(Y®)) - Ef(X) > z) + P(Z") +£0). (5)
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Since Z(®) is a compound Poisson process, it is easy to check that

JIVASE) < .
( #0) < “Re

On the other hand,
P(f(Y") - Ef(X) > 2) < P(f(Y®) - Ef(Y") > &)
with
i =z~ |[Ef(X) - Bf(Y)]

Thus we have to compare Ef(X) and Ef(Y®). For large R, these two quantities are very
close, since

LR~

a—1"

|Ef(X) - Ef(YW)| < (7)

Given z, we choose R so that
LRl—a

R=u—
S

(8)
which entails that 2’ < R. Therefore we can write
P(f(Y®) — Ef(X) > 2) < P(f(Y ) - Ef (v ) > R),

Let b be the real such that 2% = bLM. Let I’ be such that R* = ' LM, which, according to
(8), entails

L
() LMY = (bL M)/ — —1(b/LM)(1—o¢)/a
o _
or, equivalently,
1 «@
V{l+ ———— | =0
( T la- 1)be> (9)

When M is large, b’ can be made arbitrarily close to b. To estimate quantities of the type
P(f(Y®) — Ef(Y) > ), we use Theorem 1 in [2], which states that

Y
PUD) = V) ) < oo (= [ (o)s) (10)
0
where h;l is the inverse of the function

s) = ul| (e — Dy (du).
i (s) /uu|gR Jull( 1)v(du)

Using the fact that for s € (0, R),

est—1—-sR

esy -1 S Sy+ R2 y2)

we get the following upper bound for hg(s):

hn(s) < <M> s+ (LRM) (e’ 1). (11)
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See [3] for details of computations. The idea is to compare the two terms in the right-hand
side of (11). Typically, for small s, the first term is dominant while for large s, the second
term is dominant.

Let us first prove (i). Fix e,a’ > 0 and a < 1. If §,s, R > 0 are three reals satisfying the
inequality

sR
-1
68R <M, (12)
then . )

LR~ @ R OLMR*—*

sR_qy < (222220

(555 ) em-v= (B2 )

and so

hr(s) < (m(S;L_—JZRQ—Q) s

As a consequence, if y is such that the real s = s(y) defined by

_ . B-oy
W)= 5 sy parree

satisfies (12), then

_ B-a)y
(14 0)LMR?>~’
It is clear that if s(y) satisfies (12), then for every 0 <y’ < y, s(y’) also satisfies (12) with the
same reals ¢ and R. Therefore one can integrate (13) and one has:

Y — 2
/0 I ()t > 2(14(—36)L]\)4yR2—a (14)

h'(y) > (13)

whenever s(y) satisfies (12). If y has the form y* = ALM/(3 — o) with A/(3 —a) < alog M
and if we take R =y, Condition (12) becomes

(14 0)[exp(A/(1+6)) —1]

Y < IM.
For M sufficiently large, this holds whenever
1+ 8)e?
% < §M. (15)
Set
5=0(A !
== e

Given a’ > 0, if M is large enough, 6(A) > 0 for every A such that a’/2 < A < log M, and
thus (15) is fulfilled. In that case, since we take R =y, (14) becomes

R A
/0 th(t)dt22(l+6).
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Using the expression of J,

r 1 A2 et
exp —/ hz (t)dt | < e “/“exp (—) .
o B 2M

Put ¥ = A/(3 — @), so that R* = &' LM . Then the last inequality becomes

R =1 v /2 eb’/(Sfoz) y 16
— S(t)dt | <e” .
P /0 r (Odt ) < e Pew | —r—+oreTy (16)

For M large enough, this quantity is bounded by (1 + 6/4)6’17//2. To sum up, given € > 0
and o' > 0, if M is large enough, then for every b’ satisfying a’'/2 < V' < log M, writing
R* =V LM, we have

P((f(Y®) -~ Bf(YW) > R) < (1 +¢/4)e™"/2. (17)

Remark that given @’ > 0 and a < 1, if «’ < b < alog M, then taking b’ as defined by (9), we
have o’ /2 < b’ < log M for M large enough and we can apply (17). Hence if = has the form
% =bLM with o’ < b < alog M, setting R* = V/ LM, we have for M large enough,

P((f(YI) — Ef(Y) > R) < (1+e/4)e™"/? < (1 4+¢/2)e "2

This provides an upper bound for the first term of the right-hand side of (5).
To bound the second term of the right-hand side of (5), recall (6) and remark that choosing
R*=VvLM,
L 1
aR® WM’
Given o’ > 0 and a < 1, if b satisfies a’ < b < alog M, then for M large enough, using again

(9);

1 € _—b/2
i < 26 .

This concludes the proof of (i).

To prove (ii), we shall decompose the integral (10). Fix a > 2, take z of the form z® =
bLM log M with b > a and let R = (b'LM log M)/ with b’ given by (9). First let

(1 —¢)LMlog M
(3 —a)Rx1

ug =

Then for M large enough, the same arguments as for (14) give

o (3 —a)ud (1—¢")log M
hn(t)dt > > .
/0 r Wt 2 5 TR = 2/

(18)

On the other hand, for M large enough, if sR > log M + loglog M,

esft— 1 M
> .
sR — 1+4¢
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Hence using (11), we have

hi'(u) >

for every u > uy, where
(24¢)LM log M
(3—a)R>"1
Now let R = (b'LM log M)/ with b/ given by (9). Then for M sufficiently large, R > u;. In
that case, we can integrate (19) and this gives

/uR hy (t)dt > Kl - %) log(1 + cR) — 1] - [(U—Rl - %) log(1 + cuy) — %

1

Uy =

where we denote

_ (3—a)R~!
(2+¢)L
For M large enough, this leads to
R / / _
e (_/ th(t)dt> c: +Ri)eL e ((2 +e )[1og(J;/410g M) 1]) | 20)
w1

Finally, since h;él is increasing,

/ul h}}l(t)dt > (ul _ Uo)hél(uo) > MM

0

Together with (18),(20), (6) and (9), this yields (ii).
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