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Abstract

Novikov and Shiryaev (2004) give explicit solutions to a class of optimal stopping problems
for random walks based on other similar examples given in Darling et al. (1972). We give the
analogue of their results when the random walk is replaced by a Lévy process. Further we
show that the solutions show no contradiction with the conjecture given in Alili and Kyprianou
(2004) that there is smooth pasting at the optimal boundary if and only if the boundary of
the stopping reigion is irregular for the interior of the stopping region.

1 Introduction

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability space (Ω,F , {Ft},P)
satisfying the usual conditions. For x ∈ R denote by Px (·) the law of X when it is started at
x and for simplicity write P = P0. We denote its Lévy-Khintchine exponent by Ψ. That is to
say E[eiθX1 ] = exp{−Ψ(θ)} for θ ∈ R such that

Ψ(θ) = iθa+
1

2
σ2θ2 +

∫

R
(1− eiθx + iθx1|x|<1)Π(dx) (1)

where a ∈ R, σ ≥ 0 and Π is a measure supported on R\{0} satisfying
∫

R
(1 ∧ x2)Π(dx) <∞.

Consider an optimal stopping problem of the form

V (x) = sup
τ∈T0,∞

E(e−qτG(Xτ )1(τ<∞)) (2)

146



Novikov-Shiryaev optimal stopping problems 147

where q ≥ 0 and T0,∞ is the family of stopping times with respect to {Ft}.
The purpose of this short paper is to characterize the solution to (2) for the choices of gain
functions

G(x) = (x+)n n = 1, 2, 3...

under the hypothesis

(H) either q > 0 or q = 0 and lim supt↑∞Xt <∞.

Note that when q = 0 and lim supt↑∞Xt =∞ it is clear that it is never optimal to stop in (2)
for the given choices of G.
This short note thus verifies that the results of Novikov and Shiryaev (2004) for random walks
carry over into the context of the Lévy process as predicted by the aforementioned authors.
Novikov and Shiryaev (2004) write:

“The results of this paper can be generalized to the case of stochastic processes with continuous
time parameter (that is for Lévy processes instead of the random walk). This generalization
can be done by passage of limit from the discrete time case (similarly to the technique used in
Mordecki (2002) for pricing American options) or by use of the technique of pseudo-differential
operators (described e.g. in the monograph Boyarchenko and Levendorskii (2002) in the context
of Lévy processes)”.

We appeal to neither of the two methods referred to by Novikov and Shiryaev however. Instead
we work with fluctuation theory of Lévy processes which is essentially the direct analogue of
the random walk counterpart used in Novikov and Shiryaev (2004). In this sense our proofs
are loyal to those of of the latter. Minor additional features of our proofs are that we also allow
for discounting as well avoiding the need to modify the gain function in order to obtain the
solution. Truncation techniques are also avoided as much as possible. Undoubtedly however,
the link with Appell polynomials as laid out by Novikov and Shiryaev remains the driving
force of the solution. In addition we show that the solutions show no contradiction with the
conjecture given in Alili and Kyprianou (2004) that there is smooth pasting at the optimal
boundary if and only if the boundary of the stopping reigion is irregular for the interior of the
stopping region.

2 Results

In order to state the main results we need to introduce one of the tools identified by Novikov
and Shiryaev to be instrumental in solving the optimal stopping problems at hand.

Definition 1 (Appell Polynomials) Suppose that Y is a non-negative random variable with
n-th cumulant given by κn ∈ (0,∞] for n = 1, 2, ... Then define the Appell polynomials
iteratively as follows. Take Q0(x) = 1 and assuming that κn <∞ (equivalently Y has an n-th
moment) given Qn−1(x) we define Qn(x) via

d

dx
Qn(x) = nQn−1(x). (3)

This defines Qn up to a constant. To pin this constant down we insist that E(Qn(Y )) = 0.
The first three Appell polynomials are given for example by

Q0(x) = 1, Q1(x) = x− κ1, Q2(x) = (x− κ1)
2 − κ2,
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Q3(x) = (x− κ1)
3 − 3κ2(x− κ1)− κ3,

under the assumption that κ3 < ∞. See also Schoutens (2000) for further details of Appell
polynomials.

In the following theorem, we shall work with the Appell polynomials generated by the random
variable Y = Xeq

where for each t ∈ [0,∞], Xt = sups∈[0,t] Xs and eq is an exponentially
distributed random variable which is independent of X. We shall work with the convention
that when q = 0, the variable eq is understood to be equal to ∞ with probability 1.

Theorem 2 Fix n ∈ {1, 2, ...}. Suppose that we assume (H) as well as
∫

(1,∞)

xnΠ(dx) <∞.

Then Qn(x) has finite coefficients and there exists x∗n ∈ [0,∞) being the largest root of the
equation Qn(x) = 0. Let

τ∗n = inf{t ≥ 0 : Xt ≥ x∗n}.

Then τ∗n is an optimal strategy to (2) with G(x) = (x+)n. Further,

Vn(x) = Ex(Qn(Xeq
)1(Xeq≥x∗n))

Theorem 3 For each n = 1, 2, ... the solution to the optimal stopping problem in the previous
theorem is continuous and has the property that

d

dx
Vn(x

∗
n−) =

d

dx
Vn(x

∗
n+)−

d

dx
Qn(x

∗
n)P(Xeq

= 0).

Hence there is smooth pasting at x∗n if and only if 0 is regular for (0,∞) for X.

Remark 4 The theory of Lévy processes offers us the opportunity to specify when regularity
of 0 for (0,∞) for X occurs in terms of the triple (a, σ,Π) appearing the Lévy-Khintchine
exponent (1). When X has bounded variation it will be more convenient to write (1) in the
form

Ψ(θ) = −idθ +

∫

R
(1− eiθx)Π(dx) (4)

where d ∈ R is known as the drift. We have that 0 is regular for (0,∞) for X if and only if
one of the following three conditions are fulfilled.

(i)
∫

(−1,1)
|x|Π(dx) =∞ (so that X has unbounded variation).

(ii)
∫

(−1,1)
|x|Π(dx) <∞ (so that X has bounded variaiton) and in the representation (4) we

have d > 0.

(iii)
∫

(−1,1)
|x|Π(dx) <∞ (so that X has bounded variaiton) and in the representation (4) we

have d = 0 and further
∫

(0,1)

x
∫

(0,x)
Π(−∞,−y)dy

Π(dx) =∞.

The latter conclusions being collectively due to Rogozin (1968), Shtatland (1965) and Bertoin
(1997).
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3 Preliminary Lemmas

We need some preliminary results given in the following series of lemmas. All have previously
been dealt with in Novikov and Shiryayev (2004) for the case of random walks. For some of
these lemmas we include slightly more direct proofs which work equally well for random walks
(for example avoiding the use of truncation methods).

Lemma 5 (Moments of the supremum) Fix n > 0. Suppose that the Lévy process X has
jump measure satisfying

∫

(1,∞)

xnΠ(dx) <∞. (5)

Then E((X+
1 )n) <∞. Suppose further that (H) holds. Then E(Xn

eq
) <∞.

Although the analogue of this lemma is well known for random walks, it seems that one cannot
find so easily the equivalent statement for Lévy processes in existing literature; in particular
the final statement of the lemma. None the less the proof can be extracted from a number of
well known facts concerning Lévy process.

Proof. The fact that E((X+
1 )n) < ∞ follows from the integral condition can be seen by

combining Theorem 25.3 with Proposition 25.4 of Sato (1999).
The remaining statement follows when q > 0 by Theorem 25.18 of the same book. To see this
one may stochastically dominate the maximum of X at any fixed time (and hence at eq) by
the maxium at the same time of a modified version of X, say XK , constructed by replacing
the negative jumps of size greater than K > 0 by negative jumps of size precisely K. One
may now apply the aforementioned theorem to this process. Note that one will use in the
application that the assumption (5) implies that XK has absolute moments up to order n.
For the case q = 0 and lim supt↑∞Xt <∞ the final statement can be deduced from the Wiener-

Hopf factorization. By considering again the modified process XK one easily deduces that the
descending ladder height process has all moments. Indeed the jumps of the descending ladder
height process can be no larger than the negative jumps of XK and hence the latter claim
follows again from Theorem 25.3 with Proposition 25.4 of Sato (1999) applied to the descending
ladder height process of XK . On the other hand, XK has finite absolute moments up to order n
and hence finite cumulants up to order n. Amongst other things, the Wiener-Hopf factorization
says that the Lévy-Khintchine exponent, which is a cumulant generating function1, factorizes
into the cumulant generating functions of the ascending and descending ladder height processes.
The ascending ladder height process of XK is therefore forced to have finite cumulants, and
hence finite moments, up to order n; see for example the representation of cumulant generating
functions for distributions which do not have all moments in Lukacs (1970). By choosing K

sufficiently large so that E(XK
1 ) < 0 (which is possible since the assumptions on X imply that

E(X1) < 0) we have X
K

∞ < ∞. Since X
K

∞ is equal in distribution to the ascending ladder
height subordinator of XK stopped at an independent and exponentially distributed time,

the finiteness of the n-th moment of X
K

∞, and hence of X∞ ≤ X
K

∞, follows from the same
statement being true of the ascending ladder height subordinator of XK .
Note, that the above argument using the Wiener-Hopf factorization can easily be adapted to
deal with the case q > 0 too.

1Note, the cumulant generating function is sometimes called the second characteristic function (cf. Lukacs
(1970)).
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Lemma 6 (Mean value property) Fix n ∈ {1, 2, ...} Suppose that Y is a non-negative ran-
dom variable satisfying E(Y n) <∞. Then if Qn is the n-th Appell polynomial generated by Y

then we have that
E(Qn(x+ Y )) = xn

for all x ∈ R.

Proof. As remarked in Novikov and Shiryaev (2004), this result can be obtained by truncation
of the variable Y . However, it can also be derived from the definition of Qn given in (3). Indeed
note the result is trivially true for n = 1. Next suppose the result is true for Qn−1. Then
using dominated convergence we have from (3) that

d

dx
E(Qn(x+ Y )) = E

(

d

dx
Qn(x+ Y )

)

= nE(Qn−1(x+ Y )) = nxn−1.

Solving together with the requirement that E(Qn(Y )) = 0 we have the result.

Lemma 7 (Fluctuation identity) Fix n ∈ {1, 2, ...} and suppose that
∫

(1,∞)

xnΠ(dx) <∞

and that hypothesis (H) holds. Then for all a > 0 and x ∈ R

Ex(e
−qτ+

a Xn

τ
+
a
1(τ+

a <∞)) = Ex(Qn(Xeq
)1(Xeq≥a))

where τ+
a = inf{t ≥ 0 : Xt ≥ a}.

Proof. Note that on the event {τ+
a < eq} we have that Xeq

= Xτ
+
a
+S where S is independent

of Fτ
+
a

and has the same distribution as Xeq
. It follows that

Ex(Qn(Xeq
)1(Xeq≥a)|Fτ

+
a
) = 1(τ+

a <eq)h(Xτ
+
a
)

where h(x) = Ex(Qn(Xeq
)). From Lemma 6 with Y = Xeq

one also has that h(x) = xn. We
see then by taking expectations again in the previous calculation that

Ex(Qn(Xeq
)1(Xeq≥a)) = Ex(e

−qτ+
a Xn

τ
+
a
1(τ+

a <∞))

as required.

Lemma 8 (Largest positive root) Fix n ∈ {1, 2, ...} and suppose that
∫

(1,∞)

xnΠ(dx) <∞.

Suppose that hypothesis (H) holds and Qn is generated by Xeq
. Then Qn has a unique positive

root x∗n such that Qn(x) is negative on [0, x∗n) and positive and increasing on [x∗n,∞).

Proof. The proof follows proof of the same statement given for random walks in Novikov
and Shiryaev (2004) with minor modifications. (It is important to note that in following their
proof, it is not necessary to make an approximation of the Lévy process by a random walk).
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4 Proofs of Theorems

Proof of Theorem 2. In light of the Novikov-Shiryaev optimal stopping problems and their
solutions, we verify that the analogue of their solution, namely the one proposed in Theorem
2, is also a solution for (2) for G(x) = (x+)n, n = 1, 2, ....
To this end, fix n ∈ {1, 2, ...} and define

Vn(x) = Ex(Qn(Xeq
)1(Xeq≥x∗n)) = E(Qn(x+Xeq

)1(x∗n−Xeq≤x)).

From the above representation one easily deduces that Vn is right continuous. From Lemma
7 we have that

Vn(x) = Ex(e
−qτ∗n(X+

τ∗n
)n1(τ∗n<∞))

and hence the pairs (Vn, τ
∗
n) are a candidate pair to solve the optimal stopping problem.

Secondly we prove that Vn(x) ≥ (x+)n for all x ∈ R. Note that this statement is obvious for
x ∈ (−∞, 0] ∪ [x∗n,∞) just from the definition of Vn. Otherwise when x ∈ (0, x∗n) we have,
using the mean value property in Lemma 6 that

Vn(x) = Ex(Qn(Xeq
)1(Xeq≥x∗n))

= xn − Ex(Qn(Xeq
)1(Xeq<x∗n))

≥ (x+)n

where the final inequality follows from Lemma 8 and specifically the fact that Qn(x) ≤ 0 on
(0, x∗n]. Note in the second equality above, by taking limits as x ↑ x∗n and using the fact that
Q(x∗n) = 0 we see that Vn(x−) = (x+)n at x = x∗n. That is to say there is continuity at x∗n.
Thirdly on the event that {eq > t} we have that Xeq

is equal in distribution to (Xt +S)∨Xt

where S is independent of Ft and equal in distribution to Xeq
. In particular Xeq

≥ Xt + S.

Since, Px almost surely, Qn(Xeq
)1(Xeq≥x∗n) ≥ 0 and Qn is positive increasing on [x∗n,∞) it

follows that

Vn(x) ≥ Ex(1(eq>t)Qn(Xeq
)1(Xeq≥x∗n))

≥ Ex(1(eq>t)Ex(Qn(Xt + S)1(Xt+S≥x∗n)|Ft))

= Ex(e
−qtVn(Xt)).

From this inequality together with the Markov property, it is easily shown that {e−qtVn(Xt) :
t ≥ 0} is a supermartingale. As Vn and X are right continuous then so is the latter super-
martingale.
Finally we put these three facts together as follows to complete the proof. From the super-
martingale property and Doob’s Optimal Stopping Theorem we have for any τ ∈ T0,∞ that

Vn(x) ≥ Ex(e
−q(t∧τ)Vn(Xt∧τ )).

Hence by Fatou’s Lemma,

Vn(x) ≥ Ex(lim inf
t↑∞

e−q(t∧τ)Vn(Xt∧τ ))

≥ Ex(lim inf
t↑∞

e−q(t∧τ)Vn(Xt∧τ )1(τ<∞))

= Ex(e
−qτVn(Xτ )1(τ<∞)).
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Using the fact that τ is arbitrary in T0,∞ together with the lower bound on Vn, it follows that

Vn(x) ≥ sup
τ∈T0,∞

Ex(e
−qτVn(Xτ )1(τ<∞)) ≥ sup

τ∈T0,∞

Ex(e
−qτ (X+

τ )n1(τ<∞)).

On the other hand, rather trivially, we have

sup
τ∈T0,∞

Ex(e
−qτ (X+

τ )n1(τ<∞)) ≥ Ex(e
−qτ∗n(X+

τ∗n
)n1(τ∗n<∞)) = Vn(x).

and the proof of the theorem follows.

Proof of Theorem 3. On account of the fact that (x+)n is convex, it follows that for each
fixed τ ∈ T0,∞ the expression E(e−qτ ((x + Xτ )

+)n1(τ<∞)) is convex. Taking the supremum
over T0,∞ preserves convexity (as taking supremum is a subadditive operation) and we see
that Vn is a convex, and hence continuous, function.
To establish when there is smooth fit at this point we calculate as follows. For x < x∗n

Vn(x
∗
n)− V (x)

x∗n − x
=

(x∗n)
n − xn

x∗n − x
+

Ex(Qn(Xeq
)1(Xeq<x∗n))

x∗n − x

=
(x∗n)

n − xn

x∗n − x
+

Ex((Qn(Xeq
)−Qn(x

∗
n))1(Xeq<x∗n))

x∗n − x

where the final equality follows because Qn(x
∗
n) = 0. Clearly

lim
x↑x∗n

(x∗n)
n − xn

x∗n − x
=

dVn

dx
(x∗n+).

However,

Ex((Qn(Xeq
)−Qn(x

∗
n))1(Xeq<x∗n))

x∗n − x

=
Ex((Qn(Xeq

)−Qn(x))1(x<Xeq<x∗n))

x∗n − x

−
Ex((Qn(x

∗
n)−Qn(x))1(Xeq<x∗n))

x∗n − x
(6)

where in the first term on the right hand we may restrict the expectation to {x < Xeq
< x∗n}

as the atom of Xeq
at x gives zero mass to the expectation. Denote Ax and Bx the two

expressions on the right hand side of (6). We have that

lim
x↑x∗n

Bx = −
dQn(x

∗
n)

dx
P(Xeq

= 0).

Integration by parts also gives

Ax =

∫

(0,x∗n−x)

Qn(x+ y)−Qn(x)

x∗n − x
P(Xeq

∈ dy)

=
Qn(x

∗
n)−Qn(x)

x∗n − x
P(Xeq

∈ (0, x∗n − x))

−
1

x∗n − x

∫ x∗n−x

0

P(Xeq
∈ (0, y])

dQn

dx
(x+ y)dy.
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Hence it follows that
lim
x↑x∗n

Ax = 0.

In conclusion we have that

lim
x↑x∗n

Vn(x
∗
n)− V (x)

x∗n − x
=

dVn

dx
(x∗n+)−

dQn(x
∗
n)

dx
P(Xeq

= 0)

which concludes the proof.

5 Remarks

(i) As in Alili and Kyprianou (2004) one can argue that the occurence of continuous pasting for
irregularity and smooth pasting for regularity appear as a matter of principle. The way to
see this is to consider the candidate solutions (V (a), τ+

a ) where τ+
a = inf{t ≥ 0 : Xt ≥ a}

and
V (a)(x) = Ex(Qn(Xeq

)1(Xeq≥a)).

Let C∗ be the class of a > 0 for which V (a) is bounded below by the gain function and
let C be the class of a > 0 in C∗ for which V (a) is superharmonic (i.e. it composes with
X to make a supermartingale when discounted at rate q). By varying the value of a in
(0,∞) one will find that, when there is irregularity, in general there is a discontinuity
of V (a) at a and otherwise when there is regularity, there is always continuity at a.
When there is irregularity, the choice of a = x∗n is the unique point for which the
discontinuity at a disappears and the function V (a) turns out to be pointwise minimal in
C (consistently with Dynkin’s characterization of least superharmonic majorant to the
gain) and pointwise maximal in C∗. When there is regularity, the minmal curve indexed
in C and simultaneously the maximal curve in C∗ will occur by adjusting a so that the
gradients either side of a match which again turns out to be the unique value a = x∗n.

(ii) From arguments presented in Novikov and Shiryaev (2004) together with the supporting
arguments given in this paper, it is now clear how to handle the gain function G(x) =

1− ex
+

for Lévy processes instead of random walks as well as how to handle the pasting
principles at the optimal boundary. We leave this as an exercise for the reader.
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