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Abstract

We conjecture that the Parisi functional in the Sherrington-Kirkpatrick model is convex in
the functional order parameter. We prove a partial result that shows the convexity along
“one-sided” directions. An interesting consequence of this result is the log-convexity of L,,
norm for a class of random variables.

1 A problem and some results.

Let M be a set of all nondecreasing and right-continuous functions m : [0,1] — [0, 1]. Let us
consider two convex smooth functions ® and £ : R — R both symmetric, ®(—z) = ®(x) and
&(—z) = &(x), and ®(0) = £(0) = 0. We will also assume that ® is of moderate growth so that
all integrals below are well defined.

Given m € M, consider a function ®(q,x) for ¢ € [0,1],z € R such that ®(1,z) = ®(x) and

Z—j = —%5”((1)(% + m(q)(g—if)- (1.1)

Let us consider a functional P : M — R defined by P(m) = ®(0, h) for some h € R.
Main question: Is P a convex functional on M?

The same question was asked in [7]. Unfortunately, despite considerable effort, we were not
able to give complete answer to this question. In this note we will present a partial result that
shows convexity along the directions Am + (1 — A)n when m(q) > n(q) for all ¢ € [0,1]. It is
possible that the answer to this question lies in some general principle that we are not aware
of. A good starting point would be to find an alternative proof of the simplest case of constant
m given in Corollary 1 below.
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The functional P arises in the Sherrington-Kirkpatrick mean field model where with the choice
of ®(x) = log chz, the following Parisi formula

1 1
int (og2+P(m) = 5 [ m(a)ac” (@) (1.2)
gives the free energy of the model. A rigorous proof of this result was given by Michel Talagrand
in [5]. Since the last term is a linear functional of m, convexity of P(m) would imply the

uniqueness of the functional order parameter m(q) that minimizes (1.2). A particular case of
&(x) = 3?22 /2 for B > 0 would also be of interest since it corresponds to the original SK model
[2].

In the case when m is a step function, the solution of (1.1) can be written explicitly, since for
a constant m the function g(q,z) = exp m®(q, =) satisfies the heat equation

dg _ 1., 629

Given k£ > 1, let us consider a sequence
O=mg<mi <...<mp =1

and a sequence
P0=0<q¢ <...<qx <qgp1 =1

We will denote m = (my,...,my) and ¢ = (qo, - - -, qx+1). Let us define a function m € M by
m(g) = my for i < q < quy1. (1.3)

For this step function P(m) can be defined as follows. Let us consider a sequence of indepen-
dent Gaussian random variables (z;)o<i<k such that

Ez =& (q1) — €' (@)
Define ®j41(z) = ®(x) and recursively over [ > 0 define
1
(I)I(LE) = El log E; exp ml<I>l+1(x + Zl) (14)
where E; denotes the expectation in (z;);>; and in the case of m; = 0 this means ®;(z) =
E;®141(x + 2z;). Then P(m) for m in (1.3) is be given by
Pr. = Pr(m, q) = ®o(h). (1.5)

For simplicity of notations, we will sometimes omit the dependence of P, on g and simply
write P (m). Let us consider another sequence n = (ng, ..., ny) such that

O=ng<m <...<np=1.
The following is our main result.

Theorem 1 Ifn; < my; for all j orn; > m; for all j then
0Py

Pu(n) = Ps(m) 2 9Py(m) - (n—m) = 3 Z0-

0<j<k
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Remark. In Theorem 1 one does not have to assume that the coordinates of vectors m
and n are bounded by 1 or arranged in an increasing order. The proof requires only slight
modifications which for simplicity will be omitted.

Since the functional P is uniformly continuous on M with respect to L; norm (see [1] or
[7]), approximating any function by the step functions implies that P is continuous along the
directions Am + (1 — A\)n when m(q) > n(q) for all ¢ € [0, 1].

Of course, (1.6) implies that Px(m) is convex in each coordinate. This yields an interesting
consequence for the simplest case of a constant function m(q) = m, which formally corresponds
to the case of k = 2,

O=mp<m<me=land0=qg=q¢ <gp=q =1
In this case,
1
Pr = f(m) = . log Eexpm®(h + 0z). (1.7)
Here 02 = ¢/(1) can be made arbitrary by the choice of . (1.6) implies the following.

Corollary 1 If ®(z) is convex and symmetric them f(m) defined in (1.7) is convex.

Corollary 1 implies that the L,, norm of exp ®(h + 02) is log-convex in m. This is a stronger
statement than the well-known consequence of Holder’s inequality that the L,, norm is always
log-convex in 1/m. At this point it does not seem obvious how to give an easier proof even in
the simplest case of Corollary 1 than the one we give below. For example, it is not clear how
to show directly that

f"(m) = m 3(EV log? V — (EV log V)? — 2EV log V) > 0,

where V = expm/(®(h + 0z) — f(m)).
Finally, let us note some interesting consequences of the convexity of f(m). First, f”(0) > 0
implies that the third cumulant of n = ®(h + 0z) is nonnegative,

En® — 3En?En + 2(En)® > 0. (1.8)

Another interesting consequence of Corollary 1 is the following. If we define by continuity
f(0) =En =E®(h+0z) and write A= X-1+ (1 — A) - 0 then convexity of f(m) implies

Eexp(A) < (Eexpn)™ exp(A(1 — \)En). (1.9)
If A=logEexp(n—En) < oo then Chebyshev’s inequality and (1.9) imply that
P(n > En+t) < Eexp(An — A\En — M) < exp(A\%A — \t)
and minimizing over \ € [0, 1] we get,

exp(—t2/4A), t <24
P(n 2 En+1) < { exp(A—1t), t>2A. (1.10)

This result can be slightly generalized.

Corollary 2 If n = ®(|h + z|) for some h € R™ and standard Gaussian z € R™ then the
function m~'log Eexpmn is convex in m and, thus, (1.9) and (1.10) hold.

The proof follows along the lines of the proof of Corollary 1 (or Theorem 1 in the simplest
case of Corollary 1) and will be omitted.
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2 Proof of Theorem 1.

The proof of Theorem 1 will be based on the following observations. First of all, we will
compute the derivative of Py with respect to ¢;. We will need the following notations. For
0 <! < k we define

Vi=Vi(z,z1) = expmy (P11 (x + 21) — Py(x)). (2.1)

Let Z=h+2zy+...+zrand Z; =h+ 20+ ...+ z,_1 and define
Xl = ‘I)I(Zl) and VVl = Vl(ZlaZl) = eXpml(XH_l - Xl).
Then the following holds.

Lemma 1 For 1 <[ <k, we have,

87Dk _ 1 "
e 5 (1 —mi—1)¢" (@) Ui (2.2)
where )
Uy = Uy(m,q) = EW; ... Wi, (ElWl . WkCD’(Z)) . (2.3)

Proof. The proof can be found in Lemma 3.6 in [7] (with slightly different notations).
m

It turns out that the function U; is nondecreasing in each m; which is the main ingredient in
the proof of Theorem 1.

Theorem 2 For any 1 <1 < k the function U; defined in (2.3) is nondecreasing in each m;
for1<j<k.

First, let us show how Lemma 1 and Theorem 2 imply Theorem 1.
Proof of Theorem 1. Let us assume that n; < m; for all j < k. The opposite case can be
handled similarly. If we define

ml = (n07"‘7nl7ml+17~"7mk)

then
Pr(n) — Pr(m) = > (Pe(m!) — Pp(m!™")).

We will prove that
o, OPk(m)

Pi(m!) — Pp(m!~) > oy

(ru —mu) (2.4)
which, obviously, will prove Theorem 1. Let us consider vectors
ml+ = (’I’Lo7 e, My, My 41 - - ,mk)

and
q'(t) = (g0, - a1 (), Qi1 Gryas - -5 Qi)
where q41(t) = ¢ +t(qi+1 — q;). Notice that we inserted one coordinate in vectors m! and q.
For 0 <t <1, we consider
(1) = Pria(ml, ¢'(1)).
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It is easy to see that ¢(t) interpolates between ¢(1) = Pr(m!) and ©(0) = Pr(m!~!). By
Lemma 1,

1
¢'(t) = =5 (mi = )€ (@41 (1)) Ui
where U4 is defined in terms of Tnl+ and q'(t). Next, let us consider
I _
ms - (m07 e, Mp—1, My — E(ml - nl)7 mlaml-‘rlv .. )mk>

and define
0(t) = Pri1(ml, g (1)).

First of all, we have ¢.(0) = Pi(m) and ¢.(1) = Px(m.), where
me = (Mmg,...,my_1,m; —e(my —ngy), My, ..., mg).
Again, by Lemma 1,
1 (3
¢e(t) = —ge(mi = )" (@ (1)Ut

where U, ; is defined in terms of m! and ¢'(t). It is obvious that for ¢ € [0, 1] each coordinate
of m! is not smaller than the corresponding coordinate of m! and, therefore, Theorem 2
implies that U;41 < Ury- This implies

and, therefore,

Le(1) — 9.(0)) < 9(1) ~ 9(0)

which is the same as
1
E(Pk(ms) — Pi(m)) < Pr(ml) — Pp(m! ™).

Letting &€ — 0 implies (2.4) and this finishes the proof of Theorem 1.

3 Proof of Theorem 2.

Let us start by proving some preliminary results. Consider two classes of (smooth enough)
functions

C={f:R—][0,00): f(—x) = f(x), f(x) >0 for z > 0} (3.1)

and
C'={f:R—10,00): f(—z) = —f(x), f(x) >0 for z > 0}. (3.2)

The next Lemma describes several facts that will be useful in the proof of Theorem 2.
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Lemma 2 For all1 <1<k and V; = Vj(x, z;) defined in (2.1) we have,
(a) ®;(x) is convexr, ®;(x) € C and

D) (z) =E V.. Vi@ (x+2,+...+2;) €C.
(b) If f1 € C and fy € C' then for x>0
EVifi(z + z1) fo(x + 2) > EVifi(z 4+ 2)EVifo(z + 21).
(c) If f(—x) = —f(x) and f(x) >0 for x >0 then g(x) = B;Vif (x + z) is such that
g(—z) = —g(z) and g(x) = 0 if x > 0.

(A)If f €C then BV, f(x+2z)€eC. (e If f €l then B)Vif(xz+2z) €.
(f) f(x) =E;VilogV; € C.

Proof. (a) Since @1 is convex, symmetric and nonnegative then ®;(x) is convex, symmetric
and nonnegative by induction on [ in (1.4). Convexity is the consequence of Holder’s inequality
and the symmetry follows from the symmetry of ®;1; and the symmetry of the Gaussian
distribution. Obviously, this implies that ®](z) € C'.

(b) Let 2] be an independent copy of z; and, for simplicity of notations, let o2 = Ez}?. Since
E;V; =1 (i.e. we can think of V} as the change of density), we can write,

EVifile + z) fole + 21) —EVifi(e + 2)EVifole + 2) = (3.3)
= EVi(w, 2a)Vi(w, o) (fule+20) = fulw+2))) (falo+ 20) = falo+ 20) ) Iz = 2)

Since Vi(z, z1)Vi(x, z]) = expmy(Pi(z + z;) + D1(z + 2]) — 28;(z)), if we make the change of
variables s = x + z; and t = x + z] then the right hand side of (3.3) can be written as

L exp(—2m,®)(2)) / K(s,t)exp(— ! ((sf:c)er(tfx)Q))dsdt, (3.4)

2o 202
{s>1}
where
K (s,1) = expm(@u(s) + () (£1(5) = 10) (f2(5) = 1))

We will split the region of integration {s >t} = Q; U Qg in the last integral into two disjoint
sets
Q ={(s,t) : s > 1, || 2 |t|]}, Q2={(s,t):s>1]s| <|t|}.

In the integral over )5 we will make the change of variables s = —v,t = —u so that for
(s,t) € Qo we have (u,v) € Q; and dsdt = dudv. Also,

K(s,t) = K(—v,—u) = —K(u,v)

since @, is symmetric by (a), f1 € C, fo € C’ and, therefore,

(A1(=0) = i) ) (Fol=0) = fo(—w)) = = (Aw) = £ ) (£2(0) = f2(0) ).
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Therefore,

1

/K(s,t) exp(—TiQ((s—x)Q—#( dsdt /K U, v) exp ~5 - ((utz) +(v+x)2)>dudv

and (3.4) can be rewritten as

102 exp(—2m®;(z)) / K (s,t)L(s, t, z)dsdt (3.5)

1951

where

1 1
Lis,t,2) = exp(—5 5 (s — ) + (= 2)") ) —exp(— 55 (s +2)° + (t+ 1))
Since fy € C, for (s,t) € Q1 we have fi(s) — f1(t) = fi(|s]) — f1(|t]) > 0. Moreover, since for
(s,t) € Q1 we have ¢t < s, the fact that fo € C’ implies that fa(s) — f2(t) > 0. Combining these
two observations we get that K(s,t) > 0 on ;. Finally, for (s,t) € Q; we have L(s,t,z) >0
because

(s—a2)+(t—2)?<(s+z)+(t+z) < 2(s+1) >0,

and the latter holds because > 0 and s +¢ > 0 on ;. This proves that (3.5), (3.4) and,
therefore, the right hand side of (3.3) are nonnegative.

(c) Let g(z) = E,Vi(x, z1) f(x + z). Then
9(=) = EVi(—z,2)) f(—z + 21) = BV (~z, —2) f(—z — z1) = —EVi(z, 21) f(z + 21) = —g().

Next, if z > 0 and 0? = E;z? then

1
g(x) = exp(—m®)(z))Erexp(mi@ii(z + 2)) f(x + 21) = eXp(—mz‘I’Z(ﬂﬁ))%
1 2 1 2
x| exp(miis () £(s) (exp(— 55 (0 = 5)2) = exp(— g5 (¢ +)?) )ds > 0
s>0 g
because (z — s)? < (z + 5)? for 2,5 > 0 and f(s) > 0 for s > 0.
(d) Take f € C. Positivity of E;V;f(x 4 z) is obvious and symmetry follows from
]El‘/l(—J?, Zl)f(—13 =+ Zl) = ]El‘/l(_'T’a _Zl)f(_l‘ - Zl) = ]El‘/l(.f,Zl)f(l' + Zl)' (36)

Let > 0. Recalling the definition (2.1), the derivative

0

—EVi(z,z))f(x +z1) =1+ myll
Ox

where I = E;V(z, z;) f'(z + 2;) and

I = EVi(e,z)f(@+2) (@ (2 + ) - @)
= EVi(z,2)f(x + 2) @41 (2 + 21) — EVi(w, 20) f (2 + 20) EVi®) (x + 20),
since (1.4) yields that ®;(z) = E;Vi(x, 2))®;, (v + 21). By (a), ®;,, € C', and since f € C, (b)

implies that II > 0. The fact that I > 0 for > 0 follows from (c¢) because f/'(—z) = —f'(x)
and f'(z) >0 for > 0.
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(e) Take f € C'. Antisymmetry of E;V; f(x + z;) follows from
EVi(—z,z) f(—x 4+ z1) = E\Vi(—z, —2z) f(—z — z1) = —E, Vi(x, z1) f(x + z1).

As in (d), the derivative can be written as

0
%Em(x, 2)f(x+2) =14+m1

where I = E;V(z, z;) f'(z + 2) and
IT = EVi(z, 20) f(z + 20 P41 (z + 20) — EVi(w, 20) f (2 + 20) B Vi®pyy (2 + 20).
First of all, T > 0 because f >0 for f € C’. As in (3.3) we can write
I = BiVi(e, 20) Vi, 2) (f (2 + 21) = f @+ 20)) (P (2 + 21) = (@ 4+ 2) (20 2 2)-

But both f and ®;_; are in the class C’ and, therefore, both nondecreasing which, obviously,
implies that they are similarly ordered, i.e. for all a,b € R,

(f(a) = F(0) (@141 (a) — @141 (D) 2 0 (3.7)

and as a result I > 0.
(f) Symmetry of g(z) = E;V;logV, follows as above and positivity follows from Jensen’s in-
equality, convexity of z log 2 and the fact that E;V; = 1. Next, using that ®}(x) = E,;V;®;, | (z+
z1) we can write
g (@) = mBEi(1l+1logV)Vi(®1y (2 + 21) — Pi(2))
= miEVi(Prpr(x + 21) — B1(2))(Pryq (2 + 21) — D) ()
= mMiEVi®rp(z + 20) (D4 (¢ + 21) — @)(2))

= mj (Esz@zH(CE +21) @ (2 + 21) — EVi®uya (x4 21)EiVi® 4 (o + Zl))-

Since ®;41 € C and ®;,, € C', (b) implies that for z > 0, ¢’(x) > 0 and, therefore, g € C.

o
Proof of Theorem 2.
We will consider two separate cases.
Case 1. j <[ — 1. First of all, using Lemma 2 (a) we can rewrite U; as
Uy =EW:.. Wi_1fi(Z)
where
fi(z) = (®}(z))? € C since ®}(x) € C". (3.8)
Using that
1
Xj = — IOgEj exp ijj+1
mj
we get
0X; 1 1 1
=—E,W,;X;11 — —logE, iXiy1 = —E;W;(X,;+1 — Xj).
om;  my 0 j+1 mf Og ILj eXpMjAjt1 m; o (XG4 i)
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For p < 3, we get
X, 1

amj m;j

B, Wy W (X - X)),

and for p > j, X, does not depend on m,;. Therefore,

0 0
%Wl Wl,1 = %exp( Z mp(Xp+1 - Xp))
J J p<i—1

1

=Wi.. Wi 1(( J+1 X])_EZ(mP_mP DEWp . Wj( X — XJ))'
7 p<i

Hence,
U,
M Gy mEWy - Wi fil(Z) (X1 — X)
= (mp — my ) )EWy .. Wi il Z)E, W, .. Wi(X 1 — X;).
p<J

If we denote fj(Z;41) =E;j1-1Wjt1 ... Wi_1fi(Z;) then we can rewrite

oU;
mijo— = mEWy .. W;fi(Zj11)(Xj41 — Xj) (3.9)
om;
*Z — Mp— 1 ]EW1 Wp 1E W W f]( J+1)IE W W( Jj+1 = X])'
p<j

First of all, let us show that
E;W; f]( J+1)<Xj+1 - X ) > E;W; f]( J+1)E W( J+1 = XJ)' (3.10)
Since X; does not depend on z; and E;W; = 1, this is equivalent to
E;W,fi(Zix1)Xj41 > E;W, fi(Zj41)E;W; X 41 (3.11)

Here f; and X1 are both functions of Z; 1 = Z;+z;. Since by (3.8), fi(Z;) seen as a function
of Z; is in C, applying Lemma 2 (d) 1nduct1ve1y we get that f;(Z;41) seen as a function of
Zj41 is also in C. By Lemma 2 (a), X;41 seen as a function of Z;; is also in C. Therefore, f;
and X, are similarly ordered i.e.

(fi(Zj1) = £5(Z} 1) (Xj31(Zj1) — Xj31(Z)10)) 2 0

and, therefore, using the same trick as in (3.3) we get (3.11) and, hence, (3.10). By Lemma 2
(d), E;W, f;(Z;41) seen as a function of Z; is in C and by Lemma 2 (f), E;W;(X;11 — X;) =
my IE W;log W; seen as a function of Z; is also in C. Therefore, they are snmlarly ordered
and again

Ey W,y ... Wi B W, £5(Z s )Es W, (Xju1—X;) > By Wy o Wi f5(Zi1) By W . W, (Xj41—X).

Combining this with (3.10) implies that

Wi fi(Zj1) (X1 —X5) 2 EWr oo Wy aBpWy, oo W f5(Z41) Ep Wy o Wi( X1 — X).
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Since m; = > ;(my — mp_1), this and (3.9) imply that OU;/Om; > 0 which completes the
proof of Case 1.
m

Case 2. j > . If we denote
9 =9(Z) =EW,.. Wi®'(2), fi=filZ) =g}
then a straightforward calculation similar to the one leading to (3.9) gives

ou,

J 8mj

= = > (mp—mpy)EWi . Wi AE, W, W (X — X))
p<i-—1
— (le —ml_l)EW1 ...Wl_lflElWl...Wj(Xj+1 —Xj)

- Z Q(mp —mp_l)IEW1 ...Wl_lglElVVl...Wk‘l)/(Z)Epr...Wj(Xj+1 —Xj)
I+1<p<j
+ Qijwl...Wl_lglElWl...qu),(Z)(Xj+1 7Xj). (312)

To show that this is positive we notice that
2my; = Z (mp —mp—1) + (2my — my—1) + Z 2(myp — mp—1)
p<i-1 I+1<p<j

and we will show that the last term with factor 2m is bigger than all other terms with negative

factors. If we denote
MZji1) = Ejp Wi ... Wi®'(Z)

then since ®’ € C’, using Lemma 2 (e) inductively, we get that h(Z;11) seen as a function of
Zj41 is in C'. Each term in the third line of (3.12) (without the factor 2(m, —m,_1)) can be
rewritten as

EWy ... Wi gBiWi .. . Wy sEyW, . . Wih(Z 1) By Wy ... Wi(Xj 11 — X;), (3.13)

the term in the second line of (3.12) (without the factor 2m; — m;_1)) is equal to (3.13) for
p =1, and the term in the fourth line (without 2m;) can be written as

EWl NN VVlflgl]ElWl .o th(Zj+1)(Xj+1 - X]) (314)

We will show that (3.14) is bigger than (3.13) for I < p < j. This is rather straightforward
using Lemma 2. Notice that g; = ¢;(Z;) seen as a function of Z; is in ¢’ by Lemma 2 (a). If
we define for [ < p < j,

ro(Z)) = ByWi ... Wy By W,y ... Wih(Z 1) By Wy ... Wi (Xj41 — X;)
and
T(Zl) = ElVVl e th(ZjJrl)(XjJrl — Xg)
then the difference of (3.14) and (3.13) is
EWl “e Wlflgl(Zﬂ(’r(Zl) - ’I“p(Zl)). (315)

Using the argument similar to (3.6) (and several other places above), it should be obvious
that r,(—Z;) = —rp(Z;) since X,;’s are symmetric and h is antisymmetric. Similarly, r(—Z;) =
—r(Z;). Therefore, if we can show that

r(Z1) —rp(Z1) = 0 for Z; > 0 (3.16)
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then, since g; € C’, we would get that
a(Z)(r(Z)) — rp(Z))) > 0 for all Z,

and this would prove that (3.15) is nonnegative. Let us first show that (3.16) holds for p = j.
In this case, since X; does not depend on z; and, therefore, E;W;X; = X, (3.16) is equivalent
to

EW, .. W;1EW;hZj41) X410 > EW, .. . W AE;Wh(Z41)E; W, X 44, (3.17)
for Z; > 0. Let us define
Aj(Z5) = EsWih(Zj11) X1 — BjWih(Zj 01 )E; W X 41

As above, Aj(—Z;) = —A;(Z;) and by Lemma 2 (b), A;(Z;) > 0 for Z; > 0, since h € C' and
Xj+1 € C. Therefore, by Lemma 2 (c),

Aj,1<Zj,1) = EjfleflAj(ijl + Zj) 2 0 if Zj,1 Z 0
and, easily, Aj_1(—Zj_1) = —A;_1(Z;_1). Therefore, if for i > [ we define

we can proceed by induction to show that A;(—Z;) = —A;(Z;) and A;(Z;) > 0 for Z; > 0.
For ¢ = [ this proves (3.17) and, therefore, (3.16) for p = j. Next, we will show that

rp+1(Z1) —rp(Z;) > 0 for Z; > 0 (3.18)
for all [ <p < j, and this, of course, will prove (3.16). If we define
J1(Zps1) = Bpri Wppr ... Wih(Zj11) and fo(Zpt1) = Epp i Wigr ... W;(Xja — Xj)
then (3.18) can be rewritten as
E\W, ... Wy By W 1 (Zpsr) f2(Zpsr) = EaWi ... Wy s By W f1(Zy i1 )Ep fo(Zpn) for Zy > 0.
Since h(Z;4+1) € C', recursive application of Lemma 2 (e) implies that fi(Z,41) € C'. Since

E,W;(Xj41—X;) = mj_lEjo log W; seen as a function of Z; is in C by Lemma 2 (f), recursive
application of Lemma 2 (d) implies that fo(Z,+1) € C. If we now define

Ap(Zp) = Eprfl(Zerl)fZ(Zerl) - Epwpfl(Zp+1)Eprf2(Zp+1)v

then, as above, A,(—Z,) = —A,(Z,) and by Lemma 2 (b), A,(Z,) > 0 for Z, > 0, since
f1 € C" and f5 € C. Therefore, by Lemma 2 (c),

Ap—l(Zp—l) = ]Ep_le_lAp(Zp_l +pj) > 0 if Zp_l > 0
and, easily, A,_1(—=Zp_1) = =Ap_1(Zp—_1). Therefore, if for i > | we define
Ai(Z;) = EsWiAi 1 (Zi + 2)

we can proceed by induction to show that A;(—Z;) = —A;(Z;) and A;(Z;) > 0 for Z; > 0. For
¢ = [ this proves (3.18). Thus, we finally proved that (3.14) is bigger than (3.13) for p > I. To



166

Electronic Communications in Probability

prove that (3.12) is nonnegative it remains to show that each term in the first line of (3.12)
(without the factor —(m, — mp_1)) is smaller than (3.14). Clearly, it is enough to show that

EWy ... Wit filBy Wy .. Wi(Xj1 — X;) <EWy ... Wi fEW, .. . Wi(X;01 — X;)  (3.19)

since the right hand side of (3.19) is equal to (3.13) for p = | which was already shown to be
smaller than (3.14). The proof of (3.19) can be carried out using the same argument as in the
proof of (3.10) in Case 1 and this finishes the proof of Case 2.
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