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Abstract

The free energy of quenched disordered systems is bounded above by the free energy of the
corresponding annealed system. This bound may be improved by applying the annealing
procedure, which is just Jensen inequality, after having modified the Hamiltonian in a way
that the quenched expressions are left unchanged. This procedure is often viewed as a partial
annealing or as a constrained annealing, in the sense that the term that is added may be
interpreted as a Lagrange multiplier on the disorder variables.
In this note we point out that, for a family of models, some of which have attracted much
attention, the multipliers of the form of empirical averages of local functions cannot improve
on the basic annealed bound from the viewpoint of characterizing the phase diagram. This
class of multipliers is the one that is suitable for computations and it is often believed that in
this class one can approximate arbitrarily well the quenched free energy.

1 The framework and the main result

1.1 The set–up (I): linear chain models

A number of disordered models of linear chains undergoing localization or pinning effects can
be put into the following general framework. Let S := {Sn}n=0,1,... be a process with Sn

taking values in Zd, d ∈ N := {1, 2, . . .} and law P.
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The disorder in the system is given by a sequence ω := {ωn}n of IID random variables of law
P, with ωn taking values in Γ ⊆ R. As a matter of fact we could simply set Γ = R, however
several examples that we will present deal with the case in which Γ is a finite set and in this
situation our results require no measurability conditions. The disorder acts on the paths of
S via an Hamiltonian that, for a system of size N , is a function HN,ω of the trajectory S,
but depending only on S0, S1, . . . , SN . One is interested in the properties of the probability
measures PN,ω defined by giving the density with respect to P:

dPN,ω

dP
(S) =

1

ZN,ω
exp (HN,ω (S)) , (1.1)

where ZN,ω := E [exp (HN,ω (S))] is the normalization constant. Our attention focuses on the
asymptotic behavior of logZN,ω.

In the sequel we will assume:

Basic Hypothesis. There exists a sequence {Dn}n of subsets of Zd such that P(Sn ∈

Dn for n = 1, 2, . . . , N)
N→∞
³ 1, namely

lim
N→∞

1

N
logP (Sn ∈ Dn for n = 1, 2, . . . , N) = 0, (1.2)

and such that HN,ω(S) = 0 if Sn ∈ Dn for n = 1, 2, . . . , N .

One sees directly that this hypothesis implies

lim inf
N→∞

1

N
logZN,ω ≥ lim

N→∞

1

N
logP (Sn ∈ Dn for n = 1, 2, . . . , N) = 0, (1.3)

P(dω)–a.s.. We will assume that {(1/N) logZN,ω}N is a sequence of integrable random vari-
ables that converges in the L1 (P(dω)) sense and P(dω)–almost surely to a constant, the free
energy, that we will call f . These assumptions are verified in the large majority of the inter-
esting situations, for example whenever super/sub–additivity tools are applicable.
Of course (1.3) says that f ≥ 0 and one is lead to the natural question of whether f = 0 or
f > 0. In the instances that we are going to consider the free energy may be zero or positive
according to some parameters from which HN,ω(S) depends: f = 0 and f > 0 are associated
to sharply different behaviors of the system.

In order to establish upper bounds on f one may apply directly Jensen inequality (annealed
bound) obtaining

f = lim
N→∞

1

N
E
[
logZN,ω

]

≤ lim inf
N→∞

1

N
logE

[
ZN,ω

]
=: f̃ ∈ [0,∞],

(1.4)

and, in our context, if f̃ = 0 then f = 0. The annealed bound may be improved by adding
to HN,ω(S) an integrable function AN : ΓN → R such that E [AN (ω)] = 0: in fact f as
defined in the first line of (1.4) is unchanged by such transformation, while the second line
of (1.4) may depend on the choice of {AN}N . We stress that not only f is left unchanged
by HN,ω(S) → HN,ω(S) + AN (ω), but PN,ω itself is left unchanged (for every N). Notice
moreover that the optimal choice AN (ω) = − logZN,ω + E [logZN,ω] yields the equality in
(1.4).

In the sequel when we refer to f̃ we mean that ZN,ω is defined with respect to HN,ω satisfying
the Basic Hypothesis (no AN term added).
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1.2 The result

What we prove in this note is that

Proposition 1.1. If f̃ > 0 then for every local bounded measurable function F : ΓN −→ R
such that E [F (ω)] = 0 one has

lim inf
N→∞

1

N
logEE

[
exp

(
HN,ω(S) +

N∑

n=0

F (θnω)

)]
> 0, (1.5)

where (θnω)m = ωn+m.

We can sum up this result by saying that when f = 0 but f̃ > 0 it is of no use modifying
the Hamiltonian by adding the empirical average of a (centered) local (bounded measurable)
function.
Notice that requiring F (·) to be bounded and measurable is superfluous if Γ is a finite set.
From now on the reader should read local as a short–cut for local, measurable and bounded.
We take this occasion also to observe that in principle one should be able to extend the result
in the direction of unbounded F (·) or of non IID disorder: this however requires additional
assumptions and leads far from the spirit of this note.

On a mathematical level it is not obvious that the free energy may be approximated via em-
pirical averages of a local function of the disorder, because we are playing with an exchange
of limits (recall the optimal choice of AN above). But we remark that in the physical litera-
ture the approach of approximating the free energy via what can be viewed as a constrained
annealed computation, the term

∑N
n=0 F (θnω) being interpreted as a Lagrange multiplier, is

often considered as an effective way of approximating the quenched free energy. Here we men-
tion in particular [20] and [16] in which this point of view is taken up in a systematic way:
the aim is to approach the quenched free energy by constrained annealing via local functions
F that are more and more complex, the most natural example being linear combinations of
correlations of higher and higher order.

The proof of Proposition 1.1 is based on the simple observation that whenever AN is centered

1

N
logEE [exp (HN,ω(S) +AN (ω))] ≥

1

N
logE [exp (AN (ω))] +

1

N
logP (Sn ∈ Dn for n = 1, 2, . . . , N) =: QN + PN . (1.6)

By hypothesis PN = o(1) so one has to consider the asymptotic behavior ofQN . If lim infN QN >
0 there is nothing to prove. So let us assume that lim infN QN = 0: in this case the inferior
limit of the left–hand side of (1.6) may be zero and we want to exclude this possibility when

f̃ > 0 and AN (ω) =
∑N

n=0 F (θnω), F local and centered (of course in this case limN QN

does exist). And in Proposition 2.1 below in fact we show that if logE [exp (AN (ω))] = o(N),
then supω |AN (ω)| = o(N) and therefore the corresponding constrained annealing is just the
standard annealing.

Remark 1.2. We stress that our Basic Hypothesis is more general than it may look at first.
As already observed, one has the freedom of adding to the Hamiltonian HN,ω(S) any term that
does not depend on S (but possibly does depend on ω and N) without changing the model
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PN,ω. It may therefore happen that the natural formulation of the Hamiltonian does not
satisfy our Basic Hypothesis, but it does after a suitable additive correction. This happens for
example in §1.2.3 below: the additive correction in that case is linear in ω and it corresponds
to what in [21] is called first order Morita approximation. In these terms, Proposition 1.1
is saying that higher order Morita approximations cannot improve the bound on the critical
curve found with the first order computation.

Remark 1.3. In the Morita approach of [16, 20], when applied to spin systems, it was also
taken for granted that the infinite volume measure describing the joint distribution of disor-
der variables and spin variables can be described as Gibbs measure with a proper (absolutely
summable) Hamiltonian. This was shown to be false in general, and potentials with weaker
summability properties are needed [7, 17]. This phenomenon underlines from a different per-
spective that local dependence of the Morita potential on the disorder variables is not enough.

Let us now look at applications of Proposition 1.1.

1.2.1 Random rewards or penalties at the origin

Let S, S0 = 0 ∈ Zd, be a random walk with centered IID non degenerate increments {Xn}n,
(Xn)j ∈ {−1, 0, 1} for j = 1, 2, . . . , d, and

HN,ω = β

N∑

n=1

(1 + εωn)1{Sn=0}. (1.7)

for β ≥ 0 and ε ≥ 0. The random variable ω1 is chosen such that E[exp(λω1)] < ∞ for
every λ ∈ R, and centered. We write f(β, ε) for f : by super–additive arguments f exists and
it is self–averaging (this observation is valid for all the models we consider and will not be
repeated). We note that for ε = 0 the model can be solved, see e.g. [12], and in particular
f(β, 0) = 0 if and only if β ≤ βc(d) := − log(1 − P(S never comes back to 0)). Adding
the disorder makes this model much more complex: the annealed bound yields f(β, ε) = 0

if β ≤ βc(d) − logE [exp(εω1)] =: β̃c. It is an open question whether β̃c coincides with the

quenched critical value or not, that is whether f(β, ε) = 0 implies β ≤ β̃c or not. For references
about this issue we refer to [2] and [23], see however also the next paragraph: the model we
are considering can in fact be mapped to the wetting problem ([2, 12]). Proposition 1.1 applies
to this context with Dn = {0}{ for every n [8, Ch. 3] and says that one cannot answer this
question via constrained annealed bounds.

1.2.2 Wetting models in 1 + d dimensions

Let S and ω be as in the previous example and

HN,ω =

{
β
∑N

n=1 (1 + εωn)1{(Sn)d=0} if (Sn)d ≥ 0 for n = 1, 2, . . . , N

−∞ otherwise.
(1.8)

with β ≥ 0 and ε ≥ 0. If one takes the directed walk viewpoint, that is if one considers the
walk {(n, Sn)}n, then this is a model of a walk constrained above the (hyper–)plane xd = 0
and rewarded β, on the average, when touching this plane. If d = 1 then this is an effective
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model for a (1+1)–dimensional interface above a wall which mostly attracts it. As a matter of
fact in this case there is essentially no loss of generality in considering d = 1, since localization
is measured in terms of orthogonal displacements of the walk with respect to the wall and
we may restrict ourselves to this coordinate. Once again if ε = 0 the model can be solved in
detail, see e.g. [12]. Computing the critical β and deciding whether the annealed bound is
sharp, at least for small ε, is an unresolved and disputed question in the physical literature,
see e.g. [9, 6, 26]. Proposition 1.1 applies with the choice Dn = Zd−1 × N.

1.2.3 Copolymer with adsorption models

For definiteness choose S to be a one dimensional simple random walk and take the directed
walk viewpoint. Imagine that the space above the horizontal axis is filled with a solvent A,
while below there is a solvent B. We choose ω1 ∈ {A,B} and for example

HAB
N,ω(S) =

N∑

n=1

(
a1{sign(Sn)=+1, ωn=A} + b1{sign(Sn)=−1, ωn=B} + c1{Sn=0}

)
(1.9)

with a, b and c real parameters and sign(Sn) = sign(Sn−1) if Sn = 0 (this is just a trick to
reward the bonds rather than the sites). In order to apply Proposition 1.1 one has to subtract
a disorder dependent term, cf. Remark 1.2: if a ≥ b we change the Hamiltonian

HN,ω(S) := HAB
N,ω(S)−

N∑

n=1

a1{ωn=A}. (1.10)

without changing the measure PN,ω while the free energy has the trivial shift from f to
f − aP (ω1 = A). One can therefore choose Dn = Zd−1 ×N and Proposition 1.1 applies. This
model has been considered for example in [21].
Note that if c = 0 the model can be cast in a form that has been considered by a variety of
authors (see e.g. [15, 24, 1, 4, 25, 27, 19, 3]):

HN,ω(S) = λ

N∑

n=1

(ωn + h) sign(Sn), (1.11)

with ω taking values in R. Once again the Hamiltonian has to be corrected by subtracting the
term λ

∑
n(ωn + h) in order to apply Proposition 1.1. One readily sees that (1.10) and (1.11)

are the same model when in the second case ω takes only the values ±1, A = +1 and B = −1,
and h = (a− b)/(a+ b), λ = (a+ b)/4.
Proposition 1.1 acquires some interest in this context given the fact that the physical literature
is rather split on the precise value of the critical curve and on whether the annealed bound
is sharp or not, see [3] for details on this issue. In [5] we present numerical evidence on
the fact that the annealed curve does not coincide with the quenched one, and in view of
Proposition 1.1 this would mean that constrained annealing via local functions cannot capture
the phase diagram of the quenched system.

1.2.4 Further linear chain models and observations

In spite of substantial numerical evidence that in several instances f = 0 but f̃ > 0, we
are unaware of an interesting model for which this situation is rigorously known to happen.
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Consider however the case P(ω1 = +1) = P(ω1 = −1) = 1/2 and

HN,ω(S) = β

N∑

n=1

(1 + εωn)1{Sn=n}, (1.12)

with β and ε real numbers and S the standard simple symmetric random walk on Z. We
observe that Proposition 1.1 applies to this case with Dn = {n}{ and that the model is
solvable in detail. In particular f(β, ε) = (β − log 2) ∨ 0, regardless of the value of ε. The

annealed computation instead yields f̃(β, ε) = (β+log cosh(ε)− log 2)∨0. Notice in particular
that the critical values of β, respectively log 2 and log 2 − log cosh(ε), differ as long as there
is disorder in the system (ε 6= 0). It is interesting to see in this toy model how the optimal

choice of AN , mentioned at the end of § 1.1, is rather far from being the empirical average of
a local function, when N is large.

Remark 1.4. We point out that we restricted our examples only to cases in which S is a
simple random walk, but in principle our approach goes through for much more general models,
like walks with correlated increments or self–interacting walks, see [22] for an example. And of
course Sn takes values in Zd only for ease of exposition and can be easily generalized. Another
important class of models to which our arguments apply is the disordered Poland–Scheraga
one [10].

1.3 The set–up (II): interface pinning models

It is natural to wonder whether one can go beyond the linear chain set–up. The answer is
positive and we give the example of (d + 1)–dimensional effective interface models, d > 1,
natural generalization of the (1+1)–dimensional interfaces considered in the previous section.
By this we mean for example the case of S := {Sn}n∈Zd with Sn ∈ R and the law of S is
P = PN :

P (dϕ) ∝ exp


−1

2

∑

n,n′:|n−n′|=1

U (ϕn − ϕn′)



∏

n∈VN

dϕn

∏

n∈V {
N

δ0(dϕn), (1.13)

where VN = [−N/2, N/2]d ∩ Zd and U(·) is a measurable function such limr→±∞ U(r) = +∞
sufficiently rapidly to make the right–hand side of (1.13) integrable (note that we may assume
U(·) to be even). As a matter of fact, in order to have a treatable model one has to restrict
rather strongly the choice of U(·): interface models are extremely challenging even without
introducing pinning potentials (or, of course, disorder). Connected to that is also the reason
why we have chosen the continuous set–up for interface models: discrete models are even more
challenging [13].
The disorder in the system this time is given by an IID field ω := {ωn}n∈Zd and HN,ω(S)
depends only upon Sn with n ∈ VN : ω0 takes once again values in Γ. The definition (1.1) of
PN,ω is unchanged and the Basic Hypothesis varies in the obvious way, that is we assume that
there exists {Dn}n∈Zd such that

lim
N→∞

1

Nd
logP (Sn ∈ Dn for n ∈ VN ) = 0, (1.14)

and such that HN,ω(S) = 0 if Sn ∈ Dn for every n ∈ VN . Like for linear chains we assume
the existence of the quenched free energy, that is of the L1(P(dω)) and P(dω)–a.s. limit of the
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sequence
{
N−d logZN,ω

}
N

and like in the linear chain case we have 0 ≤ f ≤ f̃ , where f̃ is
again the annealed free energy defined in analogy with (1.4).

The punch–line of this section is that Proposition 1.1 holds in this new set–up and it is proven
exactly in the same way:

Proposition 1.5. If f̃ > 0 then for every local bounded measurable function F : ΓZ
d

−→ R
such that E [F (ω)] = 0 one has

lim inf
N→∞

1

Nd
logEE

[
exp

(
HN,ω(S) +

∑

n∈ΛN

F (θnω)

)]
> 0. (1.15)

In order to give examples of applications we may consider the d + 1 dimensional model of
random rewards and penalties near the origin, that is the case of

HN,ω = β
∑

n∈VN

(1 + εωn)1{Sn∈(−1,1)}, (1.16)

but one can write natural straightforward generalizations of the wetting models and of the
copolymer with adsorption. The Basic Hypothesis in all these cases is a probability estimate
on what is known as an entropic repulsion event, that is, for example, the event that Sn ≥ 1
for every n ∈ VN and one can for example show that such a probability is bounded below by
exp

(
−cNd−1

)
, c > 0, if U(·) is C2 and infr U

′′(r) > 0, see [13] and references therein. So in
this case one may apply Proposition 1.1 to conclude that one cannot improve on the annealed
bound by constraining via local functions.
Two comments, of opposite spirit, are however in order (for details see the lecture notes [13]):

1. The Basic Hypothesis requires a substantially weaker estimate and it is reasonable to
expect that one is able to verify it in greater generality.

2. The understanding of the associated deterministic models (ε = 0 for random rewards and
wetting models and the annealed models in general) is still extremely partial. Somewhat
satisfactory results are available for quadratic U(·), that is P is Gaussian, but even in
this case one has to give up the precise estimates available for the linear chain case
(like computing exactly βc) and basic questions are still open. So the application of
Proposition 1.5, while being relevant on a conceptual level, yields a result that has little
quantitative content.

2 On zero free energy and null potentials

In this Section d ≥ 1. Let {ωn}n∈Zd be an IID family of random variables under the probability
measure P, taking values in Γ = R. The law of ω1 is denoted by ν.
We are interested in the family A = {AN}N∈N of empirical averages of a local function F , that
is

AN (ω) =
∑

n∈VN

F (θnω) , (2.1)



186 Electronic Communications in Probability

where F : ΓZ
d

→ R depends only on the variables indexed by a finite set Λ ⊂ Zd, that
is F (ω) = F (ω′) if ωn = ω′n for every n ∈ Λ. Notice that, by standard (super–additivity)
arguments, the limit

L(F ) := lim
N→∞

1

Nd
logE [exp (AN (ω))] , (2.2)

exists. Moreover, by Jensen’s inequality, L(F ) ≥ E [F (ω)].

We will prove the following:

Proposition 2.1. Assume that E [F (ω)] = 0. If L(F ) = 0, then

lim
N→∞

1

Nd
sup

ω
|AN (ω)| = 0 . (2.3)

Of course, since the result is uniform in ω, the proposition covers also the linear chain set–up,
where one considers θbN/2c+1VN rather than VN .

Proof. We consider the potential, in the sense of [11, Def. (2.2)], Φ := {ΦB}B⊂Zd defined by

ΦB(ω) =

{
F (θ−nω) if there exists n such that θnB = Λ,

0 otherwise.
(2.4)

Let ν be the single spin reference measure [11, Def. (2.9)] and let us set

ZΦN (ω) :=

∫
exp

(
HΦ

N (σ)
) ∏

n∈VN

ν(dσn)
∏

n∈V {
N

δωn
(dσn), (2.5)

with HΦ
N (σ) :=

∑
B:B∩VN 6=∅

ΦB(σ). Note that AN (·) differs from HΦ
N (·) only by boundary

terms so that supω |AN (ω)−HΦ
N (ω)| ≤ CNd−1 for some C > 0 (we recall that F (·) is bounded).

Therefore it suffices to show that (2.3) holds with AN (·) replaced by HΦ
N (·).

Let us consider the θ–invariant Gibbs measure µ associated to the potential Φ, the existence of
which is established in a standard way by taking infinite volume limits with periodic boundary
conditions (if ν has unbounded support tightness follows from the fact that F (·) is bounded).
By [11, Theorem (15.30)] the relative entropy density of ν∞ (ν∞(dω) :=

∏
n∈Zd ν(dωn)) with

respect to µ exists and can be written as

lim
N→∞

1

Nd
HVN

(
ν∞
∣∣µ
)

= lim
N→∞

1

Nd
logZΦN (ω) −

∫
F (ω) ν∞(dω), (2.6)

where HVN
(ν∞|µ) is the relative entropy of ν∞ with respect to µ, when both measures are

restricted to the σ–algebra generated by the variables {ωn}n∈VN
. We have of course used

the standard definition of relative entropy, H(µ1|µ2) =
∫
log(dµ1/dµ2)dµ1 for µ1 and µ2

two probability measures with µ1 absolutely continuous with respect to µ2. A last remark on
formula (2.6) is that it holds for any choice of ω: this is just the independence of the free energy
on boundary conditions. This independence may be seen directly since log(ZΦN (ω)/ZΦN (ω′)) =
O(Nd−1) uniformly in ω and ω′ and this implies also that the first term in the right–hand side
of (2.6) may be replaced by L(F ).
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Notice now that both terms in the right–hand side of (2.6) are zero, respectively by the
hypotheses L(F ) = 0 and E[F (ω)] = 0, and therefore, as a consequence of the Gibbs variational
principle [11, Theorem (15.37)], ν∞ is a Gibbs measure with the same specification of µ, but
of course ν∞ is the Gibbs measure with potential Φ(0) identically equal to zero and single spin
measure ν. This means that Φ − Φ(0)(= Φ) is a negligible potential, that is [11, Theorem
(2.34)] the function ∑

B:B∩VN 6=∅

(
ΦB(ω)− Φ

(0)
B (ω)

)
(2.7)

does not depend on the variables ωn for n ∈ VN . We can write

HΦN (ω) =
∑

B:B∩VN 6=∅

ΦB(ω) =
∑

B:B⊂VN

ΦB(ω) +
∑

B:B∩VN 6=∅, B 6⊂VN

ΦB(ω)

=: IN (ω) +RN (ω),

(2.8)

and since HΦN (ω) does not depend on the ωn’s for n ∈ VN we may change in the right–hand

side the configuration ω with ω̃ defined by setting ω̃n = ωn for n ∈ V {
N and ωn = c, c an

arbitrary fixed constant, for n ∈ VN . Therefore, in random variable terms, we have

HΦN (ω) = cN +RN (ω̃), (2.9)

with cN = IN (ω̃) (notice that it is not random and it depends only on the choice of c). From
the immediate estimate supω |RN (ω)| ≤ CNd−1 for some C = C(F ) > 0 it follows that for
all ω

cN − CNd−1 ≤ HΦN (ω) ≤ cN + CNd−1, (2.10)

and the hypothesis L(F ) = 0 yields immediately limN→∞ cN/N
d = 0. Therefore

sup
ω

∣∣HΦN (ω)
∣∣ ≤ cN + CNd−1 = o(Nd), (2.11)

and the proof is complete.
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[16] R. Kühn, Equilibrium ensemble approach to disordered systems I: general theory, exact
results, Z. Phys. B (1996), 231–242.
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