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Abstract
We study the simultaneous zeros of a random family of d polynomials in d variables over the
p-adic numbers. For a family of natural models, we obtain an explicit constant for the expected
number of zeros that lie in the d-fold Cartesian product of the p-adic integers. Considering
models in which the maximum degree that each variable appears is N , this expected value is

pdblogp Nc (
1 + p−1 + p−2 + · · ·+ p−d

)−1

for the simplest such model.

1 Introduction

Various questions regarding the distribution of the number of real roots of a random polynomial
were considered in [LO38, LO39, LO43] and were taken up in [Kac43b, Kac43a, Kac49], where
the main result is that the expected number of roots of a degree n polynomial with independent
standard Gaussian coefficients is asymptotically equivalent to 2

π log n for large n. There has
since been a huge amount of work on various aspects of the distribution of the roots of random
polynomials and systems of random polynomials for a wide range of models with coefficients
that are possibly dependent and have distributions other than Gaussian. It is impossible to
survey this work adequately, but some of the more commonly cited early papers are [LS68a,
LS68b, IM71a, IM71b]. Reviews of the literature can be found in [BRS86, EK95, EK96, Far98],
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and some recent papers that indicate the level of sophistication that has been achieved in terms
of results and methodology are [SV95, IZ97, BR02, Ble99, DPSZ02, SZ03a, SZ04, SZ03b,
Wsc05].
In this paper we study the roots of random polynomials over a field other than the real or
complex numbers, the field of p-adic numbers for some prime p. Like the reals, the p-adics
arise as a completion of the rationals with respect to certain metric – see below. They are the
prototypical local fields (that is, non-discrete, locally compact topological fields) and any local
field with characteristic zero is a finite algebraic extension of the p-adic numbers (the local
fields with non-zero characteristic are finite algebraic extensions of the p-series field of Laurent
series over the finite field with p elements).
In order to describe our results we need to give a little background. For a fuller treatment, we
refer the reader to [Sch84] for an excellent introduction to local fields and analysis on them.
We begin by defining the p-adic numbers. Fix a positive prime p. We can write any non-zero
rational number r ∈ Q\{0} uniquely as r = ps(a/b) where a and b are not divisible by p. Set
|r| = p−s. If we set |0| = 0, then the map | · | has the properties:

|x| = 0 ⇔ x = 0,

|xy| = |x||y|,
|x + y| ≤ |x| ∨ |y|.

(1)

The map (x, y) 7→ |x − y| defines a metric on Q, and we denote the completion of Q in this
metric by Qp. The field operations on Q extend continuously to make Qp a topological field
called the p-adic numbers. The map | · | also extends continuously and the extension has
properties (1). The closed unit ball around 0, Zp := {x ∈ Qp : |x| ≤ 1}, is the closure in Qp of
the integers Z, and is thus a ring (this is also apparent from (1)), called the p-adic integers.
As Zp = {x ∈ Qp : |x| < p}, the set Zp is also open. Any other ball around 0 is of the form
{x ∈ Qp : |x| ≤ p−k} = pkZp for some integer k. Such a ball is the closure of the rational
numbers divisible by pk, and is thus a Zp-sub-module (this is again also apparent from (1)). In
particular, such a ball is an additive subgroup of Qp. Arbitrary balls are translates (= cosets)
of these closed and open subgroups. In particular, the topology of Qp has a base of closed and
open sets, and hence Qp is totally disconnected. Further, each of these balls is compact, and
hence Qp is also locally compact.
There is a unique Borel measure λ on Qp for which

λ(x + A) = λ(A), x ∈ Qp,

λ(xA) = |x|λ(A), x ∈ Qp,

λ(Zp) = 1.

The measure λ is just suitably normalized Haar measure on the additive group of Qp. The
restriction of λ to Zp is the weak limit as n →∞ of the sequence of probability measures that
at the n-th stage assigns mass p−n to each of the points {0, 1, . . . , pn − 1}.
There is a substantial literature on probability on the p-adics and other local fields. Two
notable early papers are [M

‘
ad85, M

‘
ad90]. We have shown in a sequence papers [Eva89,

Eva91, Eva93, Eva95, Eva01b, Eva01a, Eva02] that the natural analogues on Qp of the centered
Gaussian measures on R are the normalized restrictions of λ to the compact Zp-sub-modules
pkZp and the point mass at 0. More generally, the natural counterparts of centered Gaussian
measures for Qd

p are normalized Haar measures on compact Zp-sub-modules. We call such
probability measures Qp-Gaussian and say that a random variable distributed according to
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normalized Haar measure on Zd
p is standard Qp-Gaussian. There are also numerous papers

Markov processes taking values in local fields, for example [AK91, AK94, AKZ99, AK00,
AZ00a, AZ01, AZ02, KZ04, SJZ05]. There are also extensive surveys of the literature in the
books [Khr97, Koc01, KN04].
If we equip the space of continuous functions C(Zd

p, Qp) with the map f 7→ ‖f‖ := sup{|f(t)| :
t ∈ Zd

p}, then ‖ · ‖ is a p-adic norm in the sense that

‖f‖ = 0 ⇔ f = 0,

‖af‖ = |a|‖f‖, a ∈ Qp, f ∈ C(Zd
p, Qp),

‖f + g‖ ≤ ‖f‖ ∨ ‖g‖.

Moreover, C(Zd
p, Qp) is a p-adic Banach space in the sense that it is complete with respect to

the metric (f, g) 7→ ‖f − g‖.
There is a natural notion of orthogonality on the space C(Zd

p, Qp). A collection {f0, f1, . . .} is
orthogonal if ‖

∑n
k=0 akfk‖ =

∨n
k=0 |ak|‖fk‖ for any n and any ak ∈ Qp. At first glance, this

looks completely unlike the notion of orthogonality one is familiar with in real and complex
Hilbert spaces, but it can be seen from [Sch84] that there are actually close parallels. It is ap-
parent from [Sch84] that the sequence of functions {t 7→

(
t
k

)
}∞k=0, where

(
t
k

)
:= t(t−1)···(t−k+1)

k!
(the Mahler basis) is a very natural orthonormal basis for C(Zp, Qp) (that is, it is orthogonal
and each element has unit norm). It is not hard to see that the functions

(t1, t2, . . . , td) 7→
(

t1
k1

)(
t2
k2

)
· · ·

(
td
kd

)
, 0 ≤ k1, k2, . . . , kd < ∞,

are an orthonormal basis for C(Zd
p, Qp).

Putting all of these ingredients together, we see that a natural model for a random system of
d independent identically distributed Qp-valued polynomials in d variables lying in Zp is the
system

Fi(t1, t2, . . . , td) :=
∑

k

akZi,k

(
t1
k1

)(
t2
k2

)
· · ·

(
td
kd

)
, 1 ≤ i ≤ d,

where the sum is over multi-indices k = (k1, k2, . . . , kd), for each i the constants ak ∈ Qp

are zero for all but finitely many k, and the Qp-valued random variables are independent and
standard Qp-Gaussian distributed.

Assumption 1.1. Assume that a0 6= 0 and aej 6= 0 1 ≤ j ≤ d, where e1 := (1, 0, 0, . . . , 0),
e2 := (0, 1, 0, . . . , 0), and so on. By re-scaling, we can assume without loss of generality that
a0 = 1 for 1 ≤ i ≤ d. We will also suppose that |ak| ≥ |a`| when k ≤ ` in the usual partial
order on multi-indices (that is, if k = (k1, k2, . . . , kd) and ` = (`1, `2, . . . , `d), then kj ≤ `j for
1 ≤ i ≤ d). It follows from the orthonormality of the products of Mahler basis elements that
each (F1, F2, . . . , Fd) maps Zd

p into Zd
p.

Theorem 1.2. Suppose that Assumption 1.1 holds. For (x1, x2, . . . , xd) ∈ Zd
p, the expected

number of points in the set

{(t1, t2, . . . , td) ∈ Zd
p : Fi(t1, t2, . . . , td) = xi, 1 ≤ i ≤ d}

is  d∏
j=1

∞∨
h=1

∣∣∣ahej

h

∣∣∣
 (

1 + p−1 + p−2 + · · ·+ p−d
)−1

.
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Following some preliminaries in Section 2, we give the proof in Section 3. However, we provide
a heuristic argument now as motivation for the development we need to do in Section 2.
Because we are arguing heuristically, we do not justify various interchanges of limits, sums
and expectations.
Suppose first that d = 1 and x = 0. Write F =

∑
k akZk

( ·
k1

)
for F1. Let Bn,0, Bn,1, . . . , Bn,pn−1

be a list of the balls of radius p−n in Zp, numbered so that 0 ∈ Bn,0. Let Im,n
i,j be the in-

dicator of the event that the graph of F intersects Bm,i × Bn,j . The number of zeros of F ,
|{t ∈ Z : F (t) = 0}|, is

lim
m→∞

lim
n→∞

∑
i

Im,n
i,0 .

Because Z0 is distributed according to Haar measure on Zp, the distribution of z + F is the
same for all z ∈ Zp and so the expectation in question is also the expectation of

lim
m→∞

lim
n→∞

p−n
∑

i

∑
j

Im,n
i,j .

As we observe in Section 3, F is a stationary process on Zp (this is not at all obvious and will
hold if and only if |a0| ≥ |a1| ≥ . . ., hence our assumption to this effect). Consequently the
expectation in question is also the expectation of

lim
m→∞

lim
n→∞

pmp−n
∑

i

Im,n
0,j .

As in the real case, polynomials look approximately like affine functions on small scales, so for
large m the restriction of F to the ball Bm,0 of radius p−m around 0 is equivalent up to first
order to a random affine function t 7→ Z0 + bWt where W is standard Qp-Gaussian and b ∈ Qp

is a non-zero constant. This implies first of all that for large m the restriction is injective,
so that limn→∞ p−n

∑
i Im,n

0,j is the Haar measure of the image of Bm,0 by F . Moreover, the
image has Haar measure approximately that of the image by t 7→ Z0 + bWt, which is exactly
|b||W |p−m. Thus the expectation in question is nothing other than the expectation of |b||W |.
It remains to note that |W | takes the value p−r with probability p−r−p−(r+1) for r = 0, 1, 2, . . .
to conclude that the expectation of |bW | is |b|

∑
r(1− p−1)p−2r = |b|(1 + p−1).

Essentially the same heuristic argument works for general d. Once again the problem is
reduced to considering the expected Haar measure of the image of a small ball by a random
affine function. Computing the actual value of the expectation is more complicated however,
as it involves evaluating the expected value of the determinant of the linear part of the affine
function.
This paper appears to be the first to consider roots of random polynomials over the p-adic
field. There has been some work on random polynomials over finite fields, see [Odo92, ABT93,
IM96, Pan04, DP04].

2 Preliminaries

Write λd for the d-fold product measure λ⊗d. Thus λd is Haar measure on the additive group
of Qd

p normalized so that λd(Zd
p) = 1. The Euclidean analogue of the following result is

well-known.

Lemma 2.1. For a Borel set A ⊆ Qd
p and a d× d matrix H, the set H(A) has Haar measure

λd(H(A)) = |det(H)|λd(A).
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Proof. If H is singular, then the range of H is a lower dimensional subspace of Qd
p and the

result is obvious.
Suppose then that H is invertible. Write GL(d, Zp) for the space of d× d matrices that have
entries in Zp and are invertible with the inverse also having entries in Zp. By Cramer’s rule,
a matrix W is in GL(d, Zp) if and only if it has entries in Zp and |det(W )| = 1. Moreover,
GL(d, Zp) is the set of linear isometries of Qd

p equipped with the metric derived from the norm
|(x1, x2, . . . , xd)| =

∨d
i=1 |xi| (see Section 3 of [Eva02]). From the representation of H in terms

of its elementary divisors, we have

H = Udiag(pk1 , pk2 , . . . , pkd)V,

for integers k1, . . . , kd and matrices U, V ∈ GL(d, Zp) (see Theorem 3.1 of [Eva02]). Because
|det(U)| = |det(V )| = 1, it follows that |det(H)| = p−(k1+···+kd).
From the uniqueness of Haar measure, λd ◦ U and λd ◦ V are both constant multiples of λd.
Both U and V map the ball Zd

p bijectively onto itself. Thus λd ◦ U = λd ◦ V = λd.
Again from the uniqueness of Haar measure, λd ◦ diag(pk1 , pk2 , . . . , pkd) is a constant multiple
of λd. Now

λd ◦ diag(pk1 , pk2 , . . . , pkd)(Zd
p) = λd

 d∏
j=1

pkj Zp


=

d∏
j=1

λ(pkj Zp) = p−(k1+···+kd)

= |det(H)| = |det(H)|λd(Zd
p).

Write gl(d, Qp) for the space of d × d matrices with entries in Qp. We say that a function f
from an open subset X of Qd

p into Qd
p is continuously differentiable if there exists a continuous

function R : X ×X → gl(d, Qp) such that f(x) − f(y) = R(x, y)(x − y). This definition is a
natural generalization of Definition 27.1 of [Sch84] for the case d = 1. Set Jf(x) = R(x, x).
The next result is along the lines of the Euclidean implicit function theorem. It follows from
Lemma 2.1 and arguments similar to those which establish the analogous results for d = 1 in
Proposition 27.3, Lemma 27.4, and Theorem 27.5 of [Sch84].

Lemma 2.2. Suppose for some open subset X of Qd
p that f : X → Qd

p is continuously differ-
entiable.

(i) If Jf(x0) is invertible for some x0 ∈ X, then, for all sufficiently small balls B containing
x0, the function f restricted to B is a bijection onto its image, f(B) = Jf(x0)(B), and
|det(Jf(x))| = |det(Jf(x0))| for x ∈ B. In particular,

λd(f(B)) = |det(Jf(x0))|λd(B).

(ii) If Jf(x0) is singular for some x0 ∈ X, then, for all sufficiently small balls B containing
x0, λd(f(B)) = o(λd(B)).

The following result is an analogue of a particular instance of Federer’s co-area formula. The
special case of this result for d = 1 and an injective function is the substitution formula in
Appendix A.7 of [Sch84].
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Proposition 2.3. Suppose for some open subset X of Qd
p that f : X → Qd

p is continuously
differentiable. Then, for any non-negative Borel function g : Qd

p → R,∫
X

g ◦ f(x) |det(Jf(x))|λd(dx) =
∫

Qd
p

g(y) #f−1(y) λd(dy).

Proof. It suffices to consider the case when g is the indicator function of a ball C. Write δ for
the diameter of C. Put

S := {x ∈ X : Jf(x) is singular}

and
I := {x ∈ X : Jf(x) is invertible}.

From Lemma 2.2(ii), λd(f(S)) = 0, so that

λd({y ∈ Qd
p : f−1(y) ∩ S 6= ∅}) = 0

and ∫
Qd

p

g(y) #(f−1(y) ∩ S) λd(dy) = 0

=
∫

S

g ◦ f(x) |det(Jf(x))|λd(dx).

From Lemma 2.2(iii), we can cover the open set I with a countable collection of balls Bk

such that f restricted to Bk is a bijection onto its image, f(B) = Jf(x0)(B) for some x0 ∈
B, |det(Jf(x))| = |det(Jf(x0))| for all x ∈ Bk, λd(f(Bk)) = |det(Jf(x0))|λd(Bk), and
diamf(Bk) ≤ δ, so that g is constant on f(Bk). Hence∫

Qd
p

g(y) #(f−1(y) ∩Bk) λd(dy)

=
∫

f(Bk)

g(y) λd(dy)

=
∫

Bk

g ◦ f(x) |det(Jf(x))|λd(dx)

Summing over k gives∫
Qd

p

g(y) #(f−1(y) ∩ I) λd(dy) =
∫

I

g ◦ f(x) |det(Jf(x))|λd(dx)

and the result follows.

3 Proof of Theorem 1.2

For x ∈ Zd
p, write N(x) for the number of points in the set

{(t1, t2, . . . , td) ∈ Zd
p : Fi(t1, t2, . . . , td) = xi, 1 ≤ i ≤ d}.



284 Electronic Communications in Probability

Since Zi,0−(x1, x2, . . . , xd) has the same distribution as Zi,0, it follows that E[N(·)] is constant.
Also, by an extension of the argument for d = 1 in Theorem 9.3 of [Eva89] (see also Theorem
8.2 of [Eva01b]), the stochastic processes Fi are stationary.
Thus, by Proposition 2.3,

E[N(x)] =
∫

Zd
p

E[N(x)]λd(dx)

= E

[∫
Zd

p

N(x) λd(dx)

]

= E

[∫
Zd

p

|det(JF (t))|λd(dt)

]

=
∫

Zd
p

E[|det(JF (t))|]λd(dt)

= E[|det(JF (0))|].

Now

(JF (0))ij =
∑

h

ahej Zi,hej

(0− 1)(0− 2) . . . (0− h + 1)
h!

= bjWij ,

where the Wij are standard Qp-Gaussian random variables and bj ∈ Q is any constant with

|bj | =
∨
h

∣∣∣ahej

h

∣∣∣ ,

and so

det(JF (0)) =

 d∏
j=1

bj

det (Wij)1≤i,j≤d .

From Theorem 4.1 in [Eva02], we find, putting

Πk := (1− p−1)(1− p−2) · · · (1− p−k),

that

E[|det(JF (0))|] =

 d∏
j=1

|bj |

 ∞∑
h=0

p−hP{|det (Wij)1≤i,j≤d | = p−h}

=

 d∏
j=1

|bj |

 ∞∑
h=0

p−2h ΠdΠd+h−1

ΠhΠd−1
.

The result then follows from a consequence of the q-binomial theorem, see Corollary 10.2.2 of
[AAR99].

Remark 3.1. (i) Suppose that a(k1,...,kd) = 1 if ki ≤ N for all i and is zero otherwise. Then
|bj | is just pr, where r = blogp Nc is the largest power of p that divides some integer ` with
1 ≤ ` ≤ N .
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(ii) Results about level sets of Euclidean processes are often obtained using the Kac-Rice
formula. As shown in [AW05], result like the Kac-Rice formula are a consequence of Federer’s
co-area formula (see also [AT06] for an extensive discussion of this topic). It would be possible
to derive a p-adic analogue of the Kac-Rice formula from Proposition 2.3 and use it to prove
Theorem 1.2. However, the homogeneity in “space” of (F1, F2, . . . , Fd) makes this unnecessary.
(iii) Because (F1, F2, . . . , Fd) is stationary, its level sets are all stationary point processes on
Zd

p with intensity the multiple of λd given in Theorem 1.2.
(iv) The requirement that the Fi are identically distributed could be weakened. All we actually
use is that the distribution of (JF (0))ij does not depend on i.
Acknowledgment: We thank two anonymous referees for suggestions that improved the
presentation of the paper.
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