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Abstract
Chung, Diaconis, and Graham considered random processes of the form X, 1 = 2X,, + b,
(mod p) where Xy = 0, p is odd, and b,, for n = 0,1,2,... are i.i.d. random variables on

{-1,0,1}. If Pr(b, = —1) = Pr(b, = 1) = 8 and Pr(b, = 0) = 1 — 2/, they asked which value
of 8 makes X,, get close to uniformly distributed on the integers mod p the slowest. In this
paper, we extend the results of Chung, Diaconis, and Graham in the case p = 2¢ — 1 to show
that for 0 < 8 < 1/2, there is no such value of £.

1 Introduction

In [1], Chung, Diaconis, and Graham considered random processes of the form X,, 11 = 2X,,+b,
(mod p) where p is an odd integer, Xy = 0, and by, b1, ba, ... are i.i.d. random variables. This
process is also described in Diaconis [2], and generalizations involving random processes of the
form X, 1 = an X, + b, (mod p) where (a;,b;) for i =0,1,2,... are i.i.d. were considered by
the author in [3] and [4]. A question asked in [I] concerns cases where Pr(b, = 1) = Pr(b,, =
—1) = and Pr(b, =0) =1—-26. If 3 =1/4 or § = 1/2, then P, is close to the uniform
distribution (in variation distance) on the integers mod p if n is a large enough multiple of
logp where P,(s) = Pr(X,, = s). If § = 1/3, however, for n a small enough multiple of
(logp) log(log p), the variation distance || P, — U|| is far from 0 for certain values of p such as
p = 2t — 1. Chung, Diaconis, and Graham comment “It would be interesting to know which
value of § maximizes the value of N required for ||Py — U|| — 0.”

If B =0, then X,, = 0 with probability 1 for all n. Thus we shall only consider the case 3 > 0.
We shall show that unless 8 = 1/4 or § = 1/2, then there exists a value c¢g > 0 such that
for certain values of p (namely p = 2! — 1), if n < ¢g(logp) log(log p), then |P, — Ul — 1 as
t — oo. Furthermore, one can have cg — oo as 3 — 0F. Work of the author [3] shows that for
each 3, there is a value cj; such that if n > cj;(log p) log(log p), then || P, — U[| — 0 as p — oo.
Thus one may conclude that there is no value of 8 which maximizes the value of N required
for ||[Py — UJ| — 0.
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This paper will consider a broader class of distributions for b,. In particular, Pr(b, = 1) need
not equal Pr(b, = —1). The main argument here relies on a generalization of an argument in

.
2 Notation and Main Theorem

Recall that the variation distance of a probability P on a finite group G from the uniform
distribution on G is given by

1P~ = 33 1P -1/l
seG
= x| P(4) - U(4)
= > 1P6) -1/l
s:P(s)>1/|G]|

The following assumptions are used in the main theorem. Suppose Pr(b, = 1) = a, Pr(b,, =
0) = b, and Pr(b, = —1) = ¢. We assume a+b+c =1 and qa, b, and c¢ are all less than 1.
Suppose bg, b1, ba, ... are ii.d. and Xy = 0. Suppose X,,+1 = 2X,, + b, (mod p) and p is odd.
Let P,(s) = Pr(X,, = s). The theorem itself follows:

Theorem 1 Case 1: Suppose either b=0 and a =c=1/2 orb=1/2. If n > ¢y log, p where
c1 > 1 is constant, then ||P, — U| — 0 as p — oo where p is an odd integer.

Case 2: Suppose a, b, and ¢ do not satisfy the conditions in Case 1. Then there exists a
value co (depending on a, b, and c) such that if n < ca(logp)log(logp) and p = 2t — 1, then
1P, —=U|| =1 ast— oo.

3 Proof of Case 1

First let’s consider the case where b = 1/2. Then b,, = e, +d,, where e,, and d,, are independent
random variables with Pr(e, = 0) = Pr(e, = 1) = 1/2, Pr(d,, = —1) = 2¢, and Pr(d,, =0) =
2a. (Note that here a + ¢ =1/2 =b. Thus 2a + 2¢ = 1.) Observe that

n—1

X, = Z 2"~ 17p;  (mod p)
7=0
n—1 . n—1 )
= Z 2" e, + Z 2"179d;  (mod p)
7=0 3=0

Let

n—1
Y, = Z 2" 17Je;  (mod p).
j=0

If P, is the probability distribution of X,, (i.e. P,(s) = Pr(X,, = s)) and @, is the probability
distribution of Y}, then the independence of e,, and d,, implies ||P,, —U|| < ||@Qn —U||. Observe
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that on the integers, 27;01 2n=1=Je; is uniformly distributed on the set {0,1,...,2" — 1}.
Each element of the integers mod p appears either |2 /p| times or [2"/p] times. Thus

IIQnUngp(%l) _ P

p) =2

If n > c1logy p where ¢; > 1, then 2" > p©t and ||Q,, — U|| < 1/p©*~! — 0 as p — oo.

The case where b =0 and @ = ¢ = 1/2 is alluded to in [I] and left as an exercise. O

4 Proof of Case 2

The proof of this case follows the proof of Theorem 2 in [I] with some modifications.

Define, as in [I], the separating function f : Z/pZ — C by

t—1
fk) ==Y q"
j=0
where ¢ := q(p) = e?™i/P We shall suppose n = rt where r is an integer of the form

r = dlogt — d for a fixed value 0.
If0<j5<t—1, define

t—1
H_] = H (aq(Qa(QJ_l)) + b+cq—(2a(29—1))> )

a=0

Note that if a = b = ¢ = 1/3, then this expression is the same as II,; defined in the proof of
Theorem 2 in [I].

As in the proof of Theorem 2 in [1], Ey(f) = 0 and Ey(ff) = t. Furthermore

Ep,(f)

> Palk)f (k)
k

1
Pn(k)qky
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Also note

Ep,(ff) = Y Pu(k)f(k)F(k)
k
= Y3 Pk )

k3.4’

= an(gj — 27"
53’

t—1 . s . v T
= STT (ag® @2 4 b4 g @' =20)

43" a=0
t—1
_ T
= tE 1I%.
Jj=0

(Note that the expressions for Ep, (f) and Ep, (ff) in the proof of Theorem 2 of [I] have
some minor misprints.)
The (complex) variances of f under U and P, are Vary(f) =t and

Varp,(f) = Ep,(If — Ep,(/)?)
= Epy(ff) = Ep,(f)Ep,(f)

t—1

=ty T — 20>
j=0

Like [1], we use the following complex form of Chebyshev’s inequality for any Q:
@ ({17 - Bt = ayVarg(n) }) < 1/

U ({:c |f(2)] > atl/Q}) <1/a?

where a > 0. Thus

and
1/2
t—1 /

Py | Qa:|f(z) 07| > B | Y I} — [T [ <1/62%
=0

Let A and B denote the complements of these 2 sets; thus U(A) > 1 — 1/a? and P, (B) >
1—1/B% If A and B are disjoint, then ||P, —U|| > 1—1/a? —1/32.
Suppose r is an integer with
- logt _
2log(1/[I])

where A\ — oo as t — 0o but A < logt. Then ¢|II;|" = t'/2|TI;|=* > t1/2. Observe that the
fact a, b, and ¢ do not satisfy the conditions in Case 1 implies |II;| is bounded away from 0 as
t — oo. Furthermore |II;] is bounded away from 1 for a given a, b, and c.

In contrast, let’s consider what happens to |II1] if a, b, and ¢ do satisfy the condition in Case
1. If b=1/2, then the & = t — 1 term in the definition of IT; converges to 0 as ¢ — oo and thus
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IT; also converges to 0 as ¢ — oo since each other term has length at most 1. If a = ¢ = 1/2
and b = 0, then the a =t — 2 term in the definition of II; converges to 0 as ¢ — oo and thus
II; also converges to 0 as t — oo.

Claim 1
t—1 r
1 11,
— g 1
t (|H1|2) -
Jj=0
ast — o0.

Note that this claim implies (Varp, (f))/? = o(Ep, (f)) and thus Case 2 of Theorem [ follows.

Note that IIp = 1. By Proposition [l below, II; = II;_;. Thus tZﬁ;é II7 is real. Also note
that since Varp, (f) > 0, we have

t—1
201 >1
t2|H1 |27‘ =

Thus to prove the claim, it suffices to show

t—1 r
1 ITL, |
- 1.
t Z (|H1|2) -

j=0

Proposition 1 ﬁj =1II;_;.

Proof: Note that

~

—1

0 =] (aqf@“(szl)) +b+cq<2a<2f‘—1>>)

a=0
and
t—1
M, =[] (aqwﬁ(?ﬂ'—l)) b Cq—<2ﬁ<2t*j—1>>) _
B=0
If j < B <t—1, then note
202t —1) = 28772t —29)
2079(1 = 27)  (mod p)
—2073 (29 —1).

Thus the terms in II;_; with j < 8 <t —1 are equal to the terms in ﬁj with)0 <a<t—j5—1.
If 0 < g <j—1, then note

20(2t9 —1) = 2P(2%9 —1) (mod p)
2t+3—j(2t _ 2j)

204873 (1 — 29)  (mod p)
= —oiFh-i(2d — 1),

Thus the terms in II;_; with 0 < 3 < j —1 are equal to the terms in ﬁj witht—j<a<t—1.
O
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Now let’s prove the claim. Let G(x) = |ae* ™ + b + ce~2™@|. Thus
t—1
| = [T ¢ - 1)/p).
a=0

Note that if 0 < x < y < 1/4, then G(x) > G(y). On the interval [1/4,1/2], where G increases
and where G decreases depends on a, b, and c.

We shall prove a couple of facts analogous to facts in [I].

Fact 1: There exists a value t; (possibly depending on a, b, and ¢) such that if ¢ > tg, then
IIL;| < || for all j > 1.

Since G(x) = G(1 — z), in proving this fact we may assume without loss of generality that
2 < j <t/2. Note that

1

t—j—1 iti _ oi i—
- 15501

2i+t7j _ 21
G (7) .
i=0 =0 p

We associate factors x from |II;| with corresponding factors w(z) of |II;| in a manner similar
to that in [I]. For 0 < i <t — j — 2, associate G((2"77 — 2%)/p) with G(2°77~1/p). Note
that for 0 <4 < t — j — 2, we have G((2°77 —2%)/p) < G(2"77~1/p). For 0 < i < j — 3,
associate G((2°71=7 —2%) /p) in |II;| with G(2'/p) in |II;|. Note that for 0 <4 < j — 3, we have
G2 ~2)/p) < G2 p).

The remaining terms in |II;| are

G (2151 o 2tj1) C <2t1 N 2]'1) o <2t2 _ 2j2)
p p p

and the remaining terms in |II;| are

2t71 2t72 2j72
o(5)e (5 )e(5):
p p p
It can be shown that

lim ¢ Ptilfiiil) ¢ (Qt_1;2j_l) G (QH;QH) _GQA/2) <1.
S G T G o

p p p

Indeed, for some tg, if t > tp and 2 < j < t/2,

t—1 _ ot—j—1 t—1 _ 9j5—1 t—2 _ 9j—2
o (2 2 ) o (2 2 ) o (2 2 )
p p p
2t—1 2t—2 2j—2
< o(5)e(5)e (%)
b p p
O

Fact 2: There exists a value t; (possibly depending on a, b, and ¢) such that if ¢ > t;, then
the following holds. There is a constant ¢ such that for ¢1/3 < j < t/2, we have

|11, co
<14+ —
mE =" "o
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To prove this fact, we associate, for i =0,1,....,j — 1, the terms

2t7i71 _ 2]'1'1) <2ti1 _ 2tji1)
G| ————| (¢
(— ;
gt—i—1\ \ 2
((57))
p

in |I1;|?. Suppose A = max|G’(z)|. Note that A < co. Then
2t7i71 _ 2]'71'71 2t7i71 2]'71'71
)=l ()l
p p p

t—i—1__oj—i—1
G ()| yoit

6 (25-)]

in II;| with the terms

Thus

Likewise

P -, .~ -
e ele()l

Since we do not have the conditions for Case 1, there is a positive value B and value t5 such
that if ¢ > to, then |G(2!7"1/p)| > B for all 4 with 0 < i < j — 1. By an exercise, one can

verify
1 gt—i—1_gj—i—1 gt—i—1_ogt—j—i-1
e e e | P

5 < .
- ot—i—1 27
= (57

for some value c3 not depending on j.

‘G (Qt—i—l _gt—i—i-1

Note that the remaining terms in |II;| all have length less than 1. The remaining terms in

ITI;|? are
t—1 ;
2t—t—1>
G
I (%

i=j

2

Since G'(0) = 0, there are positive constants c4 and c5 such that

gt—i—1 gt—i—1 2 gt—i—1
o (5 )| 21-a(5) 2ew(-et)
p p p




Electronic Communications in Probability

fori>j> t1/3. Observe

t—1 2t7i71 t—1
Hexp (—05 ) = exp —055 2=/
o p —
1=) =7

t—j—1
= exp (—05 Z 2k/p>
k=0
2t=7 1
= oo (o)

2!=i
. >

= exp(—c5/29) > 1 —c5/27.

There exists a constant cg such that

1+c3/27

W <1+¢o/2

for j > 1.
Thus, as in [T],

>

L \" cetr 7
(k) ] =577 < 57

1/3<j<t/2
for values ¢¢ and c7. Since |IL;| = |TI;—,],
t—1 T r T
1 1L 1 1 2 1L 1L, |
- < Z_- 4=z
t.zo<|nl|2 < ame el 2 \mE) r 2 (mp
= 1<j<t1/? t1/3<j<t/2
= 1+4o0(1)
as t — oco. Thus Fact 2, the claim, and Theorem [ are proved. O

The next proposition considers what happens as we vary the values a, b, and c.
Proposition 2 Ifa =c= andb=1-20 and mg = liminf, . |II1|, then limg_,o+ mg = 1.

Proof: Suppose 3 < 1/4. Then

t—1

I = ] (1 - 28) + 28 cos(272%/p)) .

a=0

Let h(a) = (1 —283) + 20 cos(2m2/p). Note that

lim h(t—1) = 1
B—0+

lim h(t—2) = 1
Jim 1 —2)

lim A(t—3) = 1

B—0+
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Furthermore, for some constant v > 0, one can show

h(a) > exp(—B7(2%/p)?)
if29/p < 1/8 and 0 < B < 1/10. So

[Th@ > ILesp(-8v2/p)

= exp <—ﬁ7 z_:(Qo‘/p)2>

a=0
> eXp(—5722(t_4)(4/3)/p2) —1

as 3 — 07. O]
Recalling that
logt
r=——— — A,
2log(1/[I4])

we see that 1/(21og(1/|I1;1])) can be made arbitrarily large by choosing 3 small enough. Thus
there exist values cg — oo as f — 071 such that if n < cg(log p) log(log p), then || P, — UJ| — 1
as t — oo.

5 Problems for further study

One possible problem is to see if in some sense, there is a value of 8 on [1/4,1/2] which
maximizes the value of N required for ||Py — U|| — 0; to consider such a question, one might
restrict p to values such that p = 2¢ — 1.

Another possible question considers the behavior of these random processes for almost all
odd p. For g = 1/3, Chung, Diaconis, and Graham [I] showed that a multiple of logp steps
suffice for almost all odd p. While their arguments should be adaptable with the change of
appropriate constants to a broad range of choices of a, b, and ¢ in Case 2, a more challenging
question is to determine for which a, b, and ¢ in Case 2 (if any), (1 + o(1)) log, p steps suffice
for almost all odd p.
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