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Abstract

Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn + bn

(mod p) where X0 = 0, p is odd, and bn for n = 0, 1, 2, . . . are i.i.d. random variables on
{−1, 0, 1}. If Pr(bn = −1) = Pr(bn = 1) = β and Pr(bn = 0) = 1− 2β, they asked which value
of β makes Xn get close to uniformly distributed on the integers mod p the slowest. In this
paper, we extend the results of Chung, Diaconis, and Graham in the case p = 2t − 1 to show
that for 0 < β ≤ 1/2, there is no such value of β.

1 Introduction

In [1], Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn+bn

(mod p) where p is an odd integer, X0 = 0, and b0, b1, b2, . . . are i.i.d. random variables. This
process is also described in Diaconis [2], and generalizations involving random processes of the
form Xn+1 = anXn + bn (mod p) where (ai, bi) for i = 0, 1, 2, . . . are i.i.d. were considered by
the author in [3] and [4]. A question asked in [1] concerns cases where Pr(bn = 1) = Pr(bn =
−1) = β and Pr(bn = 0) = 1 − 2β. If β = 1/4 or β = 1/2, then Pn is close to the uniform
distribution (in variation distance) on the integers mod p if n is a large enough multiple of
log p where Pn(s) = Pr(Xn = s). If β = 1/3, however, for n a small enough multiple of
(log p) log(log p), the variation distance ‖Pn − U‖ is far from 0 for certain values of p such as
p = 2t − 1. Chung, Diaconis, and Graham comment “It would be interesting to know which
value of β maximizes the value of N required for ‖PN − U‖ → 0.”
If β = 0, then Xn = 0 with probability 1 for all n. Thus we shall only consider the case β > 0.
We shall show that unless β = 1/4 or β = 1/2, then there exists a value cβ > 0 such that
for certain values of p (namely p = 2t − 1), if n ≤ cβ(log p) log(log p), then ‖Pn − U‖ → 1 as
t → ∞. Furthermore, one can have cβ → ∞ as β → 0+. Work of the author [3] shows that for
each β, there is a value c′β such that if n ≥ c′β(log p) log(log p), then ‖Pn − U‖ → 0 as p → ∞.
Thus one may conclude that there is no value of β which maximizes the value of N required
for ‖PN − U‖ → 0.
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This paper will consider a broader class of distributions for bn. In particular, Pr(bn = 1) need
not equal Pr(bn = −1). The main argument here relies on a generalization of an argument in
[1].

2 Notation and Main Theorem

Recall that the variation distance of a probability P on a finite group G from the uniform
distribution on G is given by

‖P − U‖ =
1

2

∑

s∈G

|P (s) − 1/|G||

= max
A⊆G

|P (A) − U(A)|

=
∑

s:P (s)>1/|G|

|P (s) − 1/|G||

The following assumptions are used in the main theorem. Suppose Pr(bn = 1) = a, Pr(bn =
0) = b, and Pr(bn = −1) = c. We assume a + b + c = 1 and a, b, and c are all less than 1.
Suppose b0, b1, b2, . . . are i.i.d. and X0 = 0. Suppose Xn+1 = 2Xn + bn (mod p) and p is odd.
Let Pn(s) = Pr(Xn = s). The theorem itself follows:

Theorem 1 Case 1: Suppose either b = 0 and a = c = 1/2 or b = 1/2. If n > c1 log2 p where
c1 > 1 is constant, then ‖Pn − U‖ → 0 as p → ∞ where p is an odd integer.

Case 2: Suppose a, b, and c do not satisfy the conditions in Case 1. Then there exists a
value c2 (depending on a, b, and c) such that if n < c2(log p) log(log p) and p = 2t − 1, then
‖Pn − U‖ → 1 as t → ∞.

3 Proof of Case 1

First let’s consider the case where b = 1/2. Then bn = en+dn where en and dn are independent
random variables with Pr(en = 0) = Pr(en = 1) = 1/2, Pr(dn = −1) = 2c, and Pr(dn = 0) =
2a. (Note that here a + c = 1/2 = b. Thus 2a + 2c = 1.) Observe that

Xn =

n−1
∑

j=0

2n−1−jbj (mod p)

=

n−1
∑

j=0

2n−1−jej +

n−1
∑

j=0

2n−1−jdj (mod p)

Let

Yn =

n−1
∑

j=0

2n−1−jej (mod p).

If Pn is the probability distribution of Xn (i.e. Pn(s) = Pr(Xn = s)) and Qn is the probability
distribution of Yn, then the independence of en and dn implies ‖Pn−U‖ ≤ ‖Qn−U‖. Observe



Chung-Diaconis-Graham random process 349

that on the integers,
∑n−1

j=0 2n−1−jej is uniformly distributed on the set {0, 1, . . . , 2n − 1}.
Each element of the integers mod p appears either ⌊2n/p⌋ times or ⌈2n/p⌉ times. Thus

‖Qn − U‖ ≤ p

(

⌈2n/p⌉

2n
−

1

p

)

≤
p

2n
.

If n > c1 log2 p where c1 > 1, then 2n > pc1 and ‖Qn − U‖ ≤ 1/pc1−1 → 0 as p → ∞.

The case where b = 0 and a = c = 1/2 is alluded to in [1] and left as an exercise. �

4 Proof of Case 2

The proof of this case follows the proof of Theorem 2 in [1] with some modifications.

Define, as in [1], the separating function f : Z/pZ → C by

f(k) :=

t−1
∑

j=0

qk2j

where q := q(p) := e2πi/p. We shall suppose n = rt where r is an integer of the form
r = δ log t − d for a fixed value δ.

If 0 ≤ j ≤ t − 1, define

Πj :=
t−1
∏

α=0

(

aq(2α(2j−1)) + b + cq−(2α(2j−1))
)

.

Note that if a = b = c = 1/3, then this expression is the same as Πj defined in the proof of
Theorem 2 in [1].

As in the proof of Theorem 2 in [1], EU (f) = 0 and EU (ff) = t. Furthermore

EPn(f) =
∑

k

Pn(k)f(k)

=
∑

k

t−1
∑

j=0

Pn(k)qk2j

=

t−1
∑

j=0

P̂n(2j)

=

t−1
∑

j=0

t−1
∏

α=0

(

aq2α2j/p + b + cq−2α2j/p
)r

= tΠr
1.
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Also note

EPn(ff) =
∑

k

Pn(k)f(k)f(k)

=
∑

k

∑

j,j′

Pn(k)qk(2j−2j′ )

=
∑

j,j′

P̂n(2j − 2j′)

=
∑

j,j′

t−1
∏

α=0

(

aq2α(2j−2j′ ) + b + cq−2α(2j−2j′ )
)r

= t
t−1
∑

j=0

Πr
j .

(Note that the expressions for EPN (f) and EPN (ff) in the proof of Theorem 2 of [1] have
some minor misprints.)
The (complex) variances of f under U and Pn are VarU (f) = t and

VarPn(f) = EPn(|f − EPn(f)|2)

= EPN (ff) − EPn(f)EPn(f)

= t
t−1
∑

j=0

Πr
j − t2|Π1|

2r.

Like [1], we use the following complex form of Chebyshev’s inequality for any Q:

Q

({

x : |f(x) − EQ(f)| ≥ α
√

VarQ(f)

})

≤ 1/α2

where α > 0. Thus
U
({

x : |f(x)| ≥ αt1/2
})

≤ 1/α2

and

Pn

















x : |f(x) − tΠr
1| ≥ β



t
t−1
∑

j=0

Πr
j − t2|Π1|

2r





1/2















≤ 1/β2.

Let A and B denote the complements of these 2 sets; thus U(A) ≥ 1 − 1/α2 and Pn(B) ≥
1 − 1/β2. If A and B are disjoint, then ‖Pn − U‖ ≥ 1 − 1/α2 − 1/β2.
Suppose r is an integer with

r =
log t

2 log(1/|Π1|)
− λ

where λ → ∞ as t → ∞ but λ ≪ log t. Then t|Π1|
r = t1/2|Π1|

−λ ≫ t1/2. Observe that the
fact a, b, and c do not satisfy the conditions in Case 1 implies |Π1| is bounded away from 0 as
t → ∞. Furthermore |Π1| is bounded away from 1 for a given a, b, and c.
In contrast, let’s consider what happens to |Π1| if a, b, and c do satisfy the condition in Case
1. If b = 1/2, then the α = t−1 term in the definition of Π1 converges to 0 as t → ∞ and thus
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Π1 also converges to 0 as t → ∞ since each other term has length at most 1. If a = c = 1/2
and b = 0, then the α = t − 2 term in the definition of Π1 converges to 0 as t → ∞ and thus
Π1 also converges to 0 as t → ∞.

Claim 1

1

t

t−1
∑

j=0

(

Πj

|Π1|2

)r

→ 1

as t → ∞.

Note that this claim implies (VarPn(f))1/2 = o(EPn(f)) and thus Case 2 of Theorem 1 follows.

Note that Π0 = 1. By Proposition 1 below, Πj = Πt−j . Thus t
∑t−1

j=0 Πr
j is real. Also note

that since VarPn(f) ≥ 0, we have

t
∑t−1

j=0 Πr
j

t2|Π1|2r
≥ 1.

Thus to prove the claim, it suffices to show

1

t

t−1
∑

j=0

(

|Πj |

|Π1|2

)r

→ 1.

Proposition 1 Πj = Πt−j.

Proof: Note that

Πj =

t−1
∏

α=0

(

aq−(2α(2j−1)) + b + cq(2α(2j−1))
)

and

Πt−j =

t−1
∏

β=0

(

aq(2β(2t−j−1)) + b + cq−(2β(2t−j−1))
)

.

If j ≤ β ≤ t − 1, then note

2β(2t−j − 1) = 2β−j(2t − 2j)

= 2β−j(1 − 2j) (mod p)

= −2β−j(2j − 1).

Thus the terms in Πt−j with j ≤ β ≤ t−1 are equal to the terms in Πj with 0 ≤ α ≤ t− j−1.
If 0 ≤ β ≤ j − 1, then note

2β(2t−j − 1) = 2t+β(2t−j − 1) (mod p)

= 2t+β−j(2t − 2j)

= 2t+β−j(1 − 2j) (mod p)

= −2t+β−j(2j − 1).

Thus the terms in Πt−j with 0 ≤ β ≤ j−1 are equal to the terms in Πj with t− j ≤ α ≤ t−1.
�
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Now let’s prove the claim. Let G(x) = |ae2πix + b + ce−2πix|. Thus

|Πj | =

t−1
∏

α=0

G(2α(2j − 1)/p).

Note that if 0 ≤ x < y ≤ 1/4, then G(x) > G(y). On the interval [1/4, 1/2], where G increases
and where G decreases depends on a, b, and c.
We shall prove a couple of facts analogous to facts in [1].
Fact 1: There exists a value t0 (possibly depending on a, b, and c) such that if t > t0, then
|Πj | ≤ |Π1| for all j ≥ 1.
Since G(x) = G(1 − x), in proving this fact we may assume without loss of generality that
2 ≤ j ≤ t/2. Note that

|Πj | =

t−j−1
∏

i=0

G

(

2i+j − 2i

p

) j−1
∏

i=0

G

(

2i+t−j − 2i

p

)

.

We associate factors x from |Πj | with corresponding factors π(x) of |Π1| in a manner similar
to that in [1]. For 0 ≤ i ≤ t − j − 2, associate G((2i+j − 2i)/p) with G(2i+j−1/p). Note
that for 0 ≤ i ≤ t − j − 2, we have G((2i+j − 2i)/p) ≤ G(2i+j−1/p). For 0 ≤ i ≤ j − 3,
associate G((2i+t−j − 2i)/p) in |Πj | with G(2i/p) in |Π1|. Note that for 0 ≤ i ≤ j − 3, we have
G((2i+t−j − 2i)/p) ≤ G(2i/p).
The remaining terms in |Πj | are

G

(

2t−1 − 2t−j−1

p

)

G

(

2t−1 − 2j−1

p

)

G

(

2t−2 − 2j−2

p

)

and the remaining terms in |Π1| are

G

(

2t−1

p

)

G

(

2t−2

p

)

G

(

2j−2

p

)

.

It can be shown that

lim
t→∞

G
(

2t−1−2t−j−1

p

)

G
(

2t−1−2j−1

p

)

G
(

2t−2−2j−2

p

)

G
(

2t−1

p

)

G
(

2t−2

p

)

G
(

2j−2

p

) =
G(1/2)

G(0)
< 1.

Indeed, for some t0, if t > t0 and 2 ≤ j ≤ t/2,

G

(

2t−1 − 2t−j−1

p

)

G

(

2t−1 − 2j−1

p

)

G

(

2t−2 − 2j−2

p

)

≤ G

(

2t−1

p

)

G

(

2t−2

p

)

G

(

2j−2

p

)

.

�

Fact 2: There exists a value t1 (possibly depending on a, b, and c) such that if t > t1, then
the following holds. There is a constant c0 such that for t1/3 ≤ j ≤ t/2, we have

|Πj |

|Π1|2
≤ 1 +

c0

2j
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To prove this fact, we associate, for i = 0, 1, . . . . , j − 1, the terms

G

(

2t−i−1 − 2j−i−1

p

)

G

(

2t−i−1 − 2t−j−i−1

p

)

in |Πj | with the terms

(

G

(

2t−i−1

p

))2

in |Π1|
2. Suppose A = max |G′(x)|. Note that A < ∞. Then

∣

∣

∣

∣

G

(

2t−i−1 − 2j−i−1

p

)∣

∣

∣

∣

≤

∣

∣

∣

∣

G

(

2t−i−1

p

)∣

∣

∣

∣

+ A
2j−i−1

p
.

Thus
∣

∣

∣
G
(

2t−i−1−2j−i−1

p

)∣

∣

∣

∣

∣

∣G
(

2t−i−1

p

)∣

∣

∣

≤ 1 + A
2j−i−1

p
∣

∣

∣G
(

2t−i−1

p

)∣

∣

∣

.

Likewise
∣

∣

∣G
(

2t−i−1−2t−j−i−1

p

)∣

∣

∣

∣

∣

∣G
(

2t−i−1

p

)∣

∣

∣

≤ 1 + A
2t−j−i−1

p
∣

∣

∣G
(

2t−i−1

p

)∣

∣

∣

.

Since we do not have the conditions for Case 1, there is a positive value B and value t2 such
that if t > t2, then |G(2t−i−1/p)| > B for all i with 0 ≤ i ≤ j − 1. By an exercise, one can
verify

j−1
∏

i=0

∣

∣

∣G
(

2t−i−1−2j−i−1

p

)

G
(

2t−i−1−2t−j−i−1

p

)∣

∣

∣

∣

∣

∣G
(

2t−i−1

p

)∣

∣

∣

2 ≤ 1 +
c3

2j

for some value c3 not depending on j.

Note that the remaining terms in |Πj | all have length less than 1. The remaining terms in
|Π1|

2 are

t−1
∏

i=j

∣

∣

∣

∣

G

(

2t−i−1

p

)∣

∣

∣

∣

2

.

Since G′(0) = 0, there are positive constants c4 and c5 such that

∣

∣

∣

∣

G

(

2t−i−1

p

)∣

∣

∣

∣

≥ 1 − c4

(

2t−i−1

p

)2

≥ exp

(

−c5
2t−i−1

p

)
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for i ≥ j ≥ t1/3. Observe

t−1
∏

i=j

exp

(

−c5
2t−i−1

p

)

= exp



−c5

t−1
∑

i=j

2t−i−1/p





= exp

(

−c5

t−j−1
∑

k=0

2k/p

)

= exp

(

−c5
2t−j − 1

2t − 1

)

> exp

(

−c5
2t−j

2t

)

= exp(−c5/2j) > 1 − c5/2j.

There exists a constant c0 such that

1 + c3/2j

(1 − c5/2j)2
≤ 1 + c0/2j

for j ≥ 1.
Thus, as in [1],

∑

t1/3≤j≤t/2

∣

∣

∣

∣

(

|Πj |

|Π1|2

)r

− 1

∣

∣

∣

∣

≤
c6tr

2t1/3
<

c7

2t1/4

for values c6 and c7. Since |Πj | = |Πt−j |,

1

t

t−1
∑

j=0

(

|Πj |

|Π1|2

)r

≤
1

t

1

|Π1|2r
+

2

t





∑

1≤j<t1/3

(

|Πj |

|Π1|2

)r

+
∑

t1/3≤j≤t/2

(

|Πj |

|Π1|2

)r




= 1 + o(1)

as t → ∞. Thus Fact 2, the claim, and Theorem 1 are proved. �

The next proposition considers what happens as we vary the values a, b, and c.

Proposition 2 If a = c = β and b = 1−2β and mβ = lim inft→∞ |Π1|, then limβ→0+ mβ = 1.

Proof: Suppose β < 1/4. Then

Π1 =

t−1
∏

α=0

((1 − 2β) + 2β cos(2π2α/p)) .

Let h(α) = (1 − 2β) + 2β cos(2π2α/p). Note that

lim
β→0+

h(t − 1) = 1

lim
β→0+

h(t − 2) = 1

lim
β→0+

h(t − 3) = 1
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Furthermore, for some constant γ > 0, one can show

h(α) > exp(−βγ(2α/p)2)

if 2α/p ≤ 1/8 and 0 < β < 1/10. So

t−4
∏

α=0

h(α) >

t−4
∏

α=0

exp(−βγ(2α/p)2)

= exp

(

−βγ

t−4
∑

α=0

(2α/p)2

)

> exp(−βγ22(t−4)(4/3)/p2) → 1

as β → 0+. �

Recalling that

r =
log t

2 log(1/|Π1|)
− λ,

we see that 1/(2 log(1/|Π1|)) can be made arbitrarily large by choosing β small enough. Thus
there exist values cβ → ∞ as β → 0+ such that if n ≤ cβ(log p) log(log p), then ‖Pn −U‖ → 1
as t → ∞.

5 Problems for further study

One possible problem is to see if in some sense, there is a value of β on [1/4, 1/2] which
maximizes the value of N required for ‖PN − U‖ → 0; to consider such a question, one might
restrict p to values such that p = 2t − 1.
Another possible question considers the behavior of these random processes for almost all
odd p. For β = 1/3, Chung, Diaconis, and Graham [1] showed that a multiple of log p steps
suffice for almost all odd p. While their arguments should be adaptable with the change of
appropriate constants to a broad range of choices of a, b, and c in Case 2, a more challenging
question is to determine for which a, b, and c in Case 2 (if any), (1 + o(1)) log2 p steps suffice
for almost all odd p.
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