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Abstract

Consider a sequence of multinomial random vectors with increasing number of equiprobable
cells. We show that if the number of trials increases fast enough, the sequence of maxima of
the cells after a suitable centering and scaling converges to the Gumbel distribution. While
results are available for maxima of triangular arrays of independent random variables with
certain types of distribution, such results in a dependent setup is new. We also prove that the
maxima of a triangular sequence of appropriate Binomial random variables have the same limit
distribution. An auxiliary large deviation result for multinomial distribution with increasing
number of equiprobable cells may also be of independent interest.

1 Introduction and main result

Let (Y1n, . . . , Ymnn)n≥1 be a triangular sequence of random variables. Define the row maximum
as Mn = max{Y1n, . . . , Ymnn}. The question of convergence in distribution of Mn with linear
normalization has been addressed under a variety of conditions.

The classical case is when there is one sequence of i.i.d. random variables {Yi} and Mn =
max{Y1, . . . , Yn}. In this case, necessary and sufficient conditions for the convergence are
known. See for example, Fisher and Tippett (1928), Gnedenko (1943), de Haan (1970). In
particular, it follows from these results that if {Yi} are i.i.d. Poisson or i.i.d. binomial with
fixed parameters, then Mn cannot converge to any non degenerate distribution under any linear
normalization (cf. Leadbetter et al., 1983, pp 24–27). On the other hand (cf. Leadbetter et al.,
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1983, Theorem 1.5.3), if Yi are i.i.d. standard normal variables then

lim
n→∞

P [Mn ≤ αnx + βn] = exp(−e−x),

where

αn =
1√

2 logn
(1.1)

and

βn =
√

2 logn − log log n + log(4π)

2
√

2 log n
. (1.2)

General triangular schemes under various suitable conditions have been considered by several
authors. The classical large deviation results due to Cramér (cf. Petrov, 1975, pg 218) play an
important role in the proofs of these results.

Consider, for example, the case where Ymnn =
(
∑

1≤j≤mn
Uj − mnµ

)

/(σm
1/2
n ) and Uj are

i.i.d. with mean µ and standard deviation σ. Assuming that Uj has a finite moment generating

function in an open interval containing the origin and logn = o
(

m
(R+1)/(R+3)
n

)

for some integer
R ≥ 0, Anderson et al. (1997) showed that

lim
n→∞

P [Mn ≤ αnx + β(R)
n ] = exp(−e−x)

for αn as in (1.1) and some suitable sequences β
(R)
n .

They also consider the following case. Suppose mn = n and for each n, Ymnn, are independent

Poisson with mean λn such that for some integer R ≥ 0, log n = o(λ
(R+1)/(R+3)
n ). Then again

lim
n→∞

P [Mn ≤ λn + λ1/2
n (β(R)

n + αnx)] = exp(−e−x),

where αn and β
(R)
n are as before. In particular, in the above results, if R = 0 then we can

choose αn as in (1.1) and β
(0)
n = βn, given by (1.2).

Nadarajah and Mitov (2002) consider the maximum of a triangular array of binomial, nega-
tive binomial and discrete uniform. The case of binomial triangular array is discussed with
increasing number of trials mn and fixed probability of success, p. The idea of the proof in
this case is again similar to that of Anderson et al. (1997) and uses a large deviation result for
binomial distribution.
In this paper we consider the following dependent situation. Suppose Y n = (Y1n, · · · , Ynn)
follow multinomial (mn; 1/n, . . . 1/n) distribution and define Mn = max1≤i≤n Yin to be the
maximum of the n cell variables. If mn tends to infinity fast enough, then the sequence Mn

after a suitable linear normalization, converges to the Gumbel distribution. We summarize
this result in the following theorem:

Theorem 1.1. Suppose that Y n is distributed as multinomial (mn; 1
n , . . . , 1

n ) and define as
before Mn = max1≤i≤n Yin. If

lim
n→∞

log n

mn/n
= 0 (1.3)

holds, then, for x ∈ R,

P

[

Mn − (mn/n) − βn

√

mn/n

αn

√

mn/n
≤ x

]

→ exp(−e−x), (1.4)
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where αn is as in (1.1) and βn is the unique solution of

log z +
1

2
z2 +

1

2
log(2π) − z2B

(

z
√

mn/n

)

= log n (1.5)

in the region βn ∼ √
2 log n, where

B(z) =

∞
∑

i=1

(−1)i−1

(i + 1)(i + 2)
zi. (1.6)

A similar result for the maximum of i.i.d. Binomial random variables is given below. Unlike
Theorem 3 of Nadarajah and Mitov (2002), we do not require the probability of success to be
constant.

Proposition 1.1. Let {Yin : 1 ≤ i ≤ n, n ≥ 1} be a triangular array of independent Binomial
random variables, with {Yin : 1 ≤ i ≤ n} having i.i.d. Binomial (mn; pn) distribution for each
n ≥ 1. Define Mn = max1≤i≤n Yin. If we have

lim
n→∞

log n

mnpn
= 0 and lim

n→∞
pn(log n)r = 0,

for all r > 0, then we have

P

[

Mn − (mnpn) − βn
√

mnpn

αn
√

mnpn
≤ x

]

→ exp(−e−x),

where αn and βn are chosen as in Theorem 1.1.

The large deviation results used by Anderson et al. (1997) or Nadarajah and Mitov (2002) are
not directly applicable in our case. For our case, even though the random variables in each row
of the array can be written as sum of independent variables, the distributions of the summands
depend on the row. Our proof of the theorem is based on the following large deviation result.
As we are unable to locate this particular large deviation result in the existing literature, we
provide a detailed derivation in the next section.

Theorem 1.2. Suppose Y n be distributed as multinomial (mn; 1
n , . . . , 1

n ), such that the con-
dition (1.3)

lim
n→∞

log n

mn/n
= 0

holds. For any positive integer k and any sequence

vn ∼
√

2 logn, (1.7)

we have

P

[

min1≤i≤k Yin − mn/n
√

mn/n
> vn

]

∼
[

(1 − Φ(vn)) exp

(

v2
nB

(

vn
√

mn/n

))]k

, (1.8)

where B(z) is given by (1.6) and Φ is the univariate standard normal distribution function.
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2 Proofs

For a real number x, denote

yn = xαn

√

mn/n + βn

√

mn/n + (mn/n). (2.1)

We prove Theorem 1.1 using the following lemma.

Lemma 2.1. For each fixed k, and real number x, we have

nkP (∩k
i=1{Yin > yn}) → e−kx. (2.2)

where yn and x are related as in (2.1).

Proof of Theorem 1.1. For any fixed l, for sufficiently large n, using inclusion-exclusion prin-
ciple and the identical distribution of the marginals from the multinomial distribution, we
have,

1 −
2l−1
∑

k=1

(−1)k+1 n(n − 1) · · · (n − k + 1)

k!
P (∩k

i=1{Yin > yn})

≤P (∩n
i=1{Yin ≤ yn})

≤1 −
2l
∑

k=1

(−1)k+1 n(n − 1) · · · (n − k + 1)

k!
P (∩k

i=1{Yin > yn}). (2.3)

Hence using Lemma 2.1, we obtain from (2.2) and (2.3), for each fixed l,

1 −
2l−1
∑

k=1

(−1)k+1 e−kx

k!
≤ lim inf

n→∞
P (∩n

i=1{Yin ≤ yn})

≤ lim sup
n→∞

P (∩n
i=1{Yin ≤ yn}) ≤ 1 −

2l
∑

k=1

(−1)k+1 e−kx

k!
,

which gives the desired result (1.4) since l is arbitrary.

Remark 2.1. As pointed out by the referee, it can be easily seen, using negative dependence,
that P (Y1n ≤ yn)n is another choice of the upper bound in (2.3) and, hence,

lim sup
n→∞

P (∩n
i=1{Yin ≤ yn}) ≤ lim

n→∞
exp (−nP (Y1n > yn)) = exp(−e−x).

However, there appears to be no easy way to obtain an appropriate lower bound from the
existing literature.

Now we prove Lemma 2.1 using Theorem 1.2.

Proof of Lemma 2.1. Modifying Lemmas 1 and 2 of Anderson et al. (1997), we can find αn

and βn, so that, for xn = αnx + βn, we have

log xn +
1

2
log(2π) +

1

2
x2

n − x2
nB

(

xn
√

mn/n

)

− log n → x. (2.4)
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Note that the referred lemmas require a polynomial instead of a power series in the defining
equation. However, the proofs work verbatim in our case due to the specific form of the
coefficients. Also using (16) and (17) of the same reference, we have αn ∼ 1/

√
2 logn and βn

is the unique solution of (1.5) satisfying βn ∼
√

2 logn. Note that

xn =
yn − mn/n
√

mn/n
= αnx + βn ∼

√

2 logn.

Thus, using (1.8), we have,

nkP
[

∩k
i=1Yin > yn

]

= nkP

[

min1≤i≤k Yin − mn/n
√

mn/n
> xn

]

∼ nk

[

(1 − Φ(xn)) exp

(

x2
nB

(

xn
√

mn/n

))]k

.

Hence, using
1 − Φ(t) ∼ exp(−t2/2)/(t

√
2π) as t → ∞, (2.5)

(cf. Feller, 1968, Lemma 2, Chapter VII), we have,

nkP
[

∩k
i=1Yin > yn

]

∼ e
−k

»

log xn+ 1
2 log(2π)+ 1

2x2
n−x2

nB

„

xn√
mn/n

«

−log n

–

→ e−kx.

The last step follows from (2.4).

Now we prove the large deviation result given in Theorem 1.2.

Proof of Theorem 1.2. Let us consider a random vector (Z0, Z1, . . . , Zk), which has multino-
mial (1; n−k

n , 1
n , . . . , 1

n ) distribution. Denote by Fn the distribution of (Z1 − 1
n , · · · , Zk − 1

n ).
Note that Fn has mean vector 0 and its covariance matrix is given by ((aij)), aii = 1/n−1/n2,

aij = −1/n2, i 6= j. Let U (i)
n = (U

(i)
1n , . . . , U

(i)
kn ), 1 ≤ i ≤ mn, be i.i.d. Fn.

Define Xn = (X1n, · · · , Xkn) =
∑mn

i=1 U (i)
n . We apply Esscher transform or exponential tilting

on the distribution of Xn. Let Ψn(t1, . . . , tk) be the cumulant generating function of Fn:

Ψn(t1, . . . , tk) = − t1 + · · · + tk
n

+ log
(

1 +
et1 + · · · + etk − k

n

)

. (2.6)

Let sn be the unique solution of

mn∂1Ψn(s, . . . , s) = vn

√

mn/n. (2.7)

Next we define the exponential tilting for the multivariate case as

dVn(w1, . . . , wk) = e−Ψn(sn,...,sn)esn(w1+···+wk)dFn(w1, . . . , wk). (2.8)

Then, the mn-th convolution power of Vn is given by

dV ⋆mn
n (w1, . . . , wk) = e−mnΨn(sn,··· ,sk)esn(w1+···+wk)dF ⋆mn

n (w1, . . . , wk).

Denote
un = esn − 1. (2.9)
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Note that Vn has mean vector µn1k and covariance matrix Σn = anIk − bnJk, where 1k is the
k-vector with all coordinates 1, Ik is the k × k identity matrix, Jk is the k × k matrix with all
entries 1 and µn, an and bn are given as follows:

µn = ∂1Ψn(sn, . . . , sn) = − 1

n
+

esn

n + k(esn − 1)

=
(n − k)(esn − 1)

n(n + k(esn − 1))
=

(n − k)un

n(n + kun)
, (2.10)

bn = −∂1∂2Ψn(sn, . . . , sn) =
e2sn

(n + k(esn − 1))2

=

(

1 + un

n + kun

)2

, (2.11)

τ2
n := an − bn = ∂2

1Ψn(sn, . . . , sn) =
esn(n − k + (k − 1)esn)

(n + k(esn − 1))2

=
(1 + un)(n − k + (k − 1)(1 + un))

(n + kun)2
, (2.12)

and we also denote

γn = Ψn(sn, . . . , sn). (2.13)

With notations as above, the required probability becomes

Pn = P

[

min1≤i≤k Yin − mn/n
√

mn/n
> vn

]

= P [X1n > vn

√

mn/n, . . . , Xkn > vn

√

mn/n]

=

∫ ∞

vn

√
mn/n

· · ·
∫ ∞

vn

√
mn/n

dF ⋆mn
n (w1, . . . , wk)

= emnγn

∫ ∞

mnµn

· · ·
∫ ∞

mnµn

e−sn(w1+···+wk)dV ⋆mn
n (w1, . . . , wk). (2.14)

Now we replace Vn by a k-variate normal with mean vector µn1k and covariance matrix
τ2
nIk (i.e., independent coordinates). The result of this change of distribution leads to the

approximation (for Pn), given by

Asn =emnγn

[
∫ ∞

mnµn

e−snyφ

(

y − mnµn

τn
√

mn

)

dy

τn
√

mn

]k

(2.15)

=emnγn

[
∫ ∞

0

φ(z)e−sn(mnµn+zτn
√

mn)dz

]k

=emn(γn−ksnµn)ρk(snτn
√

mn), (2.16)

where ρ(t) =
∫∞
0

e−ztφ(z)dz = e
t2

2 (1 −Φ(t)) and φ and Φ are the univariate standard normal
density.
Then the proof follows combining the two following propositions.
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The first proposition shows that Asn has the correct asymptotic behavior and the second one
shows that Asn is a good approximation for Pn.

Proposition 2.1. If vn satisfies (1.7), namely, vn ∼
√

2 log n and mn satisfies (1.3) given by
log n = o(mn/n), then

Asn ∼
[

(1 − Φ(vn)) exp

(

v2
nB

(

vn
√

mn/n

))]k

. (2.17)

Proposition 2.2. If vn satisfies (1.7), namely, vn ∼
√

2 log n and mn satisfies (1.3) given by
log n = o(mn/n), then

Pn ∼ Asn . (2.18)

The proofs of Propositions 2.1 and 2.2 depend on the following lemma about the rate of growth
of un, where un is defined in (2.9).

Lemma 2.2. If vn satisfies (1.7) given by vn ∼ √
2 logn and if mn satisfies (1.3) given by

log n = o(mn/n), we have

un =
vn

√

mn/n

(

1 + O

(

1

n

))

→ 0. (2.19)

Proof. Note that the first partial of Ψn is

∂1Ψn(t1, . . . , tk) = − 1

n
+

et1

et1 + · · · + etk + n − k
.

Hence, using (2.7), we have

vn
√

mn/n
=

(n − k)(esn − 1)

n + k(esn − 1)
=

(n − k)un

n + kun
. (2.20)

Solving, we get,

un =

(

1 − k

n

)−1
(

1 − k

n − k

vn
√

mn/n

)−1
vn

√

mn/n

and, the result follows using vn√
mn/n

∼
√

2 log n
mn/n → 0, from (1.3) and (1.7).

The following corollary regarding the asymptotic behavior of µn, bn and τ2
n then follows im-

mediately from (2.10)–(2.12).

Corollary 2.1. Assume that vn satisfies (1.7) given by vn ∼
√

2 logn and mn satisfies (1.3)
given by log n = o(mn/n). If the tilted distribution Vn has mean vector µn1k and covariance
matrix Σn = anIk − bnJk, then

µn ∼ un

n
, bn ∼ 1

n2
, and τ2

n ∼ 1

n
. (2.21)

Now we prove Proposition 2.1 on the asymptotic behavior of Asn .
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Proof of Proposition 2.1. We first treat the exponent in the first factor of the expression (2.16)
for Asn . Since γn = − k

nsn + log(1 + k
n (esn − 1)) = − k

n log(1 + un) + log(1 + k
nun) using (2.6),

it follows from expression (2.10) for µn,

mn(γn − ksnµn)

=
mn

n
n log

(

1 +
k

n
un

)

− mn

n

k(1 + un) log(1 + un)

1 + k
nun

=
mn

n

(

1 +
k

n
un

)−1 [

(n + kun) log

(

1 +
k

n
un

)

− (k + kun) log(1 + un)

]

=k
mn

n

(

1 +
k

n
un

)−1 ∞
∑

r=2

(−1)r−1

r(r − 1)

[

1 −
(

k

n

)r−1
]

ur
n

= − k

2

mnu2
n

n
+

k2

2n

mnu2
n

n

− k
mnu2

n

n

∞
∑

i=1

(−1)i
i
∑

r=0

1

(r + 1)(r + 2)

(

k

n

)i−r
[

1 −
(

k

n

)r+1
]

ui
n

= − k

2

mnu2
n

n
+ k

mnu2
n

n
B(un) + E(0)

n + E(1)
n , (2.22)

where, using (2.19),

E(0)
n =

k2

2n

mnu2
n

n
∼ k2 log n

n
→ 0 (2.23)

and

E(1)
n =

mnu2
n

n

∞
∑

i=1

(−1)iui
n

[

i−1
∑

r=0

1

(r + 1)(r + 2)

(

k

n

)i−r
{

1 −
(

k

n

)r+1
}

− 1

(i + 1)(i + 2)

(

k

n

)i+1
]

.

Thus,
∣

∣

∣
E

(1)
n

∣

∣

∣
≤ S1 + S2, where

S1 =
mnu2

n

n

∞
∑

i=1

ui
n

i−1
∑

r=0

1

(r + 1)(r + 2)

(

k

n

)i−r
{

1 −
(

k

n

)r+1
}

≤mnu2
n

n

∞
∑

i=0

(

k

n
un

)i+1 i
∑

r=0

1

(r + 1)(r + 2)

(

k

n

)−r
{

1 −
(

k

n

)r+1
}

=
mnu2

n

n

∞
∑

r=0

1

(r + 1)(r + 2)

k

n

{

1 −
(

k

n

)r+1
}

ur+1
n

(

1 − k

n
un

)−1

∼2k
log n

n
un

∞
∑

r=0

1

(r + 1)(r + 2)

{

1 −
(

k

n

)r+1
}

ur
n → 0, (2.24)

and

S2 =
mnu2

n

n

∞
∑

i=1

1

(i + 1)(i + 2)

(

k

n
un

)i

≤ mnu2
n

n

∞
∑

i=1

(

k

n
un

)i

∼ 2 log n
k

n
un → 0, (2.25)
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since mnu2
n/n ∼ v2

n ∼ 2 log n, using (2.19) and (1.3). Hence, we have

E(1)
n → 0. (2.26)

Thus, using (2.22), (2.23) and (2.26), we have

mn(γn − ksnµn) = −k

2

mnu2
n

n
+ k

mnu2
n

n
B(un) + o(1)

and hence, we have,

emn(γn−ksnµn) ∼ exp

(

−k

2

mnu2
n

n
+ k

mnu2
n

n
B(un)

)

. (2.27)

Further, observe from (2.19) that, mnu2
n/n − v2

n = O(v2
n/n) = O(log n/n) → 0, using (1.7).

Also, B(un) ∼ un/6 → 0 and

B(un) − B

(

vn
√

mn/n

)

= O

(

un − vn
√

mn/n

)

= O

(

vn
√

mn/n

1

n

)

= o(1/v2
n),

using (2.19), (1.3) and (1.7). Hence, mnu2
n/n in (2.27) can be replaced by vn giving

emn(γn−ksnµn) ∼ exp

(

−k

2
v2

n + ku2
nB

(

vn
√

mn/n

))

. (2.28)

Using the asymptotic expression (2.21) for τn, the fact un = esn − 1 ∼ sn and (2.19), we have

τnsn
√

mn ∼ un

√

mn/n = vn.

The proof is then completed using (2.5), which gives

ρk(snτn
√

mn) ∼ 1

(vn

√
2π)k

. (2.29)

Next we prove Proposition 2.2.

Proof of Proposition 2.2. Let Φµ,A denote the k-variate normal distribution function with
mean vector µ and covariance matrix A. Using (2.14) and (2.15), we easily see that

Pn − Asn

emnγn
=

∫ ∞

mnµn

· · ·
∫ ∞

mnµn

e−sn(u1+···+uk)d(V ⋆mn
n − Φ⋆mn

µn1k,τ2
nIk

)(u1, . . . , uk).

Denote the distribution function of the signed measure V ⋆mn
n −Φ⋆mn

µ1k,τ2
nIk

by Hn. Then, using

Theorem 3.1 in Appendix and (2.16), we have

|Pn − Asn | ≤ 2k‖Hn‖∞emn(γn−ksnµn) = 2kAsnρ−k(snτn
√

mn)‖Hn‖∞, (2.30)

where ‖Hn‖∞ is the sup norm. Hence, using (2.29) and the fact that zn =
√

mn/nun ∼ vn,
using (2.19), we have

Pn

Asn

= 1 + O
(

vk
n‖Hn‖∞

)

. (2.31)
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So, to complete the proof, we need to study ‖Hn‖∞. We write Hn as sum of two signed
measures by introducing the normal distribution with covariance matrix, Σn, same as that of
Vn:

Hn =
(

Φ⋆mn

µn1k,Σn
− Φ⋆mn

µn1k,τ2
nIk

)

+
(

V ⋆mn
n − Φ⋆mn

µn1k,Σn

)

. (2.32)

We estimate the first part directly and the second part by Berry-Esseen theorem.
Observe that

‖Φ⋆mn

µn1k,Σn
− Φ⋆mn

µn1k,τ2
nIk

‖∞ = ‖Φ
0,τ−2

n Σn
− Φ0,Ik

‖∞,

which is estimated easily using normal comparison lemma, attributed to Slepian, Berman and
others (see, for example, Leadbetter et al., 1983, Theorem 4.2.1). Observe that τ−2

n Σn =
an

an−bn
Ik − bn

an−bn
Jk, using (2.11) and (2.12). Hence, from normal comparison lemma and

asymptotic behavior of an and bn in (2.21), we have

‖Φ⋆mn

µn1k,Σn
− Φ⋆mn

µn1k,τ2
nIk

‖∞ = ‖Φ
0,τ−2

n Σn
− Φ0,Ik

‖∞

≤ 1

2π

k(k − 1)

2

bn
√

an(an − 2bn)
∼ O(1/n).

Hence, corresponding to the first term of (2.32), we have, using (1.7),

vk
n‖Φ⋆mn

µn1k,Σn
− Φ⋆mn

µn1k,τ2
nIk

‖∞ = O(vk
n/n) → 0. (2.33)

Next we study the second term of (2.32). Suppose ξj are i.i.d. Vn with mean µn1k, covariance
Σn. Then

V ⋆mn
n (u1, . . . , uk) − Φ⋆mn

µn1k,Σn
(u1, . . . , uk))

= P





1√
mn

mn
∑

j=1

(ξj − µn1k) ≤ u − mnµn1k√
mn



− Φ0,Σn

(

u − mnµn1k√
mn

)

,

and hence, by multivariate Berry-Esseen theorem, (see, e.g., Bhattacharya and Ranga Rao,
1976, Corollary 17.2, pg. 165)

‖V ⋆mn
n − Φ⋆mn

µn1k,Σn
‖∞ = sup

u

∣

∣

∣

∣

P

[

1√
mn

mn
∑

j=1

(ξj − µn1k) ≤ u

]

− Φ0,Σn(u)

∣

∣

∣

∣

≤ C3√
mn

κn

λ
3/2
n

, (2.34)

where κn = E‖ξ1 − µn1k‖3
2, (the norm being Euclidean one),

λn = an − kbn ∼ 1

n
, (2.35)

by (2.11) and (2.12), is the smallest eigenvalue of Σn = anI − bnJ , and C3 is a universal
constant. So, to complete the proof we need to estimate κn. Using the definition of Vn, (2.8),
we have,

κn = e−mnγn

∫

· · ·
∫

esn(u1+···+uk)
(
∑k

j=1(uj − µn)2
)3/2

dFn(u1, . . . , uk).
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Recall that Fn is the distribution of the last k coordinates of the centered multinomial (1; (n−
k)/n, 1/n, . . . , 1/n) distribution, which puts mass 1/n at each of the k vectors which have
all coordinates −1/n except the ith one being (n − 1)/n, for i = 1, . . . , k, and (n − k)/n at
(−1/n, . . . ,−1/n). Thus,

emnγnκn =
n − k

n
e−

ksn
n k

3
2

( 1

n
+ µn

)3

+
k

n
e

(n−k)sn
n

[

(k − 1)
( 1

n
+ µn

)2

+
(

1 − 1

n
− µn

)2
]

3
2

.

Since, from (2.21) we have µn ∼ un

n , and by (2.19), we have sn = log(1 + un) ∼ un → 0,

κn ∼ e−mnγn
k

n
.

Thus, using (2.34) and (2.35), we have,

vk
n‖V ⋆mn

n − Φ⋆mn

µn1k,Σn
‖∞ ≤ kC3

vk
n

√

mn

n

e−mnγn . (2.36)

Also, from (2.6), we get, for fixed k,

mnγn = mnΨ(sn, . . . , sn) = −kmnsn

n
+ mn log

[

1 +
k(esn − 1)

n

]

=
mn

n
[−k log(1 + un) + n log(1 +

k

n
un)] ∼ k

2

mn

n
u2

n ∼ k

2
v2

n → ∞

using (2.19). Hence, from (2.36), we have

lim
n→∞

vk
n‖V ⋆mn

n − Φ⋆mn

µn1k,Σn
‖∞ = 0. (2.37)

Combining (2.33) and (2.37), we get,

lim
n→∞

vk
n‖Hn‖∞ = 0

and the result follows from (2.31).

Finally we prove Proposition 1.1.

Proof of Proposition 1.1. If pn = 1/n, the condition pn(log n)r → 0 holds for all r > 0 and the
result follows from (2.2) with k = 1, since

− log(P [Y1n ≤ yn])n ∼ nP [Y1n > yn] → e−x.

For general pn, the argument is exactly same as that for derivation of (2.2). The extra condition
is required to prove the convergence in (2.23)–(2.25) and (2.33). In (2.33), the bound is of the
order vk

npn ∼ (2 log n)k/2pn, necessitating the extra condition. In (2.23)–(2.25), the bound for

E
(0)
n in (2.23) is of the highest order, which in this case becomes pn log n. It is still negligible

under the assumption.
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3 Appendix

Here we prove the result on integration by parts, which was used in the proof of Proposition 2.2,
see (2.30). Let H be the distribution function of a finite signed measure on R

k. For any subset
I of {1, . . . , k} and a ∈ R, define,

yI
i =

{

a, i ∈ I

yi, i /∈ I
, for 1 ≤ i ≤ k,

HI(a; y1, . . . , yk) = H(yI
1 , . . . , yI

k)

and

HI
y
(yi; i ∈ I) = H(y1, . . . , yk)

considered as a function in coordinates indexed by I only.

Theorem 3.1. For 1 ≤ l ≤ k and I ⊆ {1, . . . , l}, we have,

∫ ∞

a

· · ·
∫ ∞

a

e−s(y1+···+yk)dH{1,...,l}
y1,...,yk

(y1, . . . , yk)

=
∑

I⊂{1,...,l}

∫ ∞

a

· · ·
∫ ∞

a

(−1)|I|sle−s(y1+···+yk)HI(a; y1, . . . , yk)dy1 · · · dyk. (3.1)

The bound (2.30) then follows immediately by considering l = k.

Proof. We prove (3.1) by induction on l. For l = 1, (3.1) is the usual integration by parts
formula. Assume (3.1) for l. Then

∫ ∞

a

· · ·
∫ ∞

a

e−s(y1+···+yl+1)H{1,...,l+1}
y1,...,yk

(dy1, . . . , dyl+1)

=
∑

I⊂{1,...,l}
(−1)|I|

∫ ∞

a

· · ·
∫ ∞

a

sle−s(y1+···+yl)

∫ ∞

a

e−syl+1H
{l+1}
yI
1 ,...,yI

k

(dyl+1)dy1 · · · dyl

=
∑

I⊂{1,...,l}
(−1)|I|

∫ ∞

a

· · ·
∫ ∞

a

sle−s(y1+···+yl)

[

e−saHI∪{l+1}(a; y1, . . . , yk)

+

∫ ∞

a

se−syl+1HI(a; y1, . . . , yk)dyl+1

]

dy1 · · · dyl

=
∑

I⊂{1,...,l}

∫ ∞

a

· · ·
∫ ∞

a

e−s(y1+···+yl+1)sl+1×

[

(−1)|I|+1HI∪{l+1}(a; y1, . . . , yk) + (−1)|I|HI(a; y1, . . . , yk)
]

dy1 · · · dyl+1

where we use the induction hypothesis for the first step and the usual integration by parts
for the second step, and the final step is the required sum, since any subset of {1, . . . , l + 1}
either contains l + 1 or does not and the remainder is a subset of {1, . . . , l}. This completes
the inductive step and the proof of the theorem.
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