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Abstract

We use the evolving set methodology of Morris and Peres to show Cheeger inequalities for
bounding the spectral gap of a finite ergodic Markov kernel. This leads to sharp versions of
several previous inequalities, including ones involving edge-expansion and/or vertex-expansion.
A bound on the smallest eigenvalue also follows

1 Introduction

The Perron-Frobenius theorem guarantees that a finite, ergodic, reversible Markov kernel P
has a real valued eigenbasis with eigenvalues 1 = Ao(P) > A (P) > --- > X\,_1(P) > —1.
The spectral gap A = 1 — A1 (P) between the largest and second largest eigenvalues, or in the

P+P*
2

properties of the Markov chain. Alon [1], Lawler and Sokal [7], and Jerrum and Sinclair [6]
showed lower bounds on the spectral gap in terms of geometric quantities on the underlying
state space, known as Cheeger inequalities [3|. Similarly, in the reversible case Diaconis and
Stroock [4] used a Poincaré inequality to show a lower bound on 1 + A,,_; which also has a
geometric flavor.

Such inequalities have played an important role in the study of the mixing times of Markov
chains. Conversely, in a draft of [8] the authors used their Evolving set bounds on mixing
times to show a Cheeger inequality, but removed it from the final version as it was weaker
than previously known bounds. We improve on their idea and find that our resulting Theorem
13.2] can be used to show sharp Cheeger-like lower bounds on A, both in the edge-expansion
sense of Jerrum and Sinclair, the vertex-expansion notion of Alon, and a mixture of both.
These bounds typically improve on previous bounds by a factor of two, which is essentially all
that can be hoped for as most of our bounds are sharp. Cheeger-like lower bounds on 14 A,,_1

non-reversible case the gap A =1 — )\; of the additive symmetrization, governs key
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follow as well, in terms of a notion of a fairly natural notion of edge-expansion which is yet
entirely new.

The paper is organized as follows. In the preliminaries we review some mixing time and Evolv-
ing set results. This is followed in Section[3 by our main result, an Evolving set generalization
of Cheeger’s inequality. In Section [4] this is used to show sharp versions of the edge expansion
Cheeger Inequality and the vertex-expansion bounds of Alon and of Stoyanov. Similar bounds
on A\,_1, and more generally the second largest magnitude eigenvalue, are found in Section[5.

2 Preliminaries

All Markov chains in this paper will be finite and ergodic, and so in the remainder this will
not be stated explicitly. Consider a Markov kernel P (i.e. transition probability matrix) on
state space V with stationary distribution m. It is lazy if P(z,z) > 1/2 for every x € V,

and reversible if P* = P where the time-reversal P*(z,y) = %SM) The ergodic flow from

ACVitoBCVisQAB) =23 ,ca,ep7(@)P(z,y). The total variation distance between

distributions o and 7 is |0 — 7l|7v = £ 3, oy |o(@) — w(z)|. Convergence of a reversible walk
is related to spectral gap [6, 4] by

1 1 1 AL
—(1=A)"< =\ < — < - —mar 2.1
3 (1= A" < 5 Ny < ma 0~y < 5 oS (2.1)

where pZ(y) = P"(z,y) and Apae = max{A(P), |A\n—1(P)|}.
The results of this paper will be derived by using the Evolving set methodology of Morris and
Peres [8]:

Definition 2.1. Given set A C V, a step of the evolving set process is given by choosing
u € [0, 1] uniformly at random, and transitioning to the set

={yeV:Q(A,y) >un(y)} ={y eV :P(y,A) > u}.

Denote an evolving set walk by Sp, Si, S2, ..., S,, the transition kernel by K"(A,S) =
Prob(S,, = S|So = A), and the expectation E,, f(Sn) = > g v K" (S0, Sn) f(Sn).

The main result of [§] is a bound on the rate of convergence in terms of Evolving sets:

Lemma 2.2 (Equation (24) of [8]). If So = {x} for some x € V then

P = 7llzv < 5— E Vmin{m(Sy,), 1 —7(5,)}.

A few easy identities will be required for our work. First, a Martingale type relation:

Az
/0 w) du —/ Z ) 0Q(A,2)>un(x) AU = Z W(m)er(x)) =7(A) (2.2)

zeV zeV

Note that for a lazy walk A C A, if and only if u < 1/2, and otherwise A, C A. The gaps
between A and A, are actually related to ergodic flow:

Lemma 2.3. Given a lazy Markov kernel and A C V', then

1

1/2
Q(A,AC):/ (W(A)—W(Au))du:/O (1(Ay) — 7(A)) du.

1/2
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Proof. The second equality holds by (2.2). For the first, A, C A if u > 1/2 and so

1 1
/ m(Ay)du = // > (@) Sa(a.e)2un(z) du
1 1/2

/2 €A
o (A 1Yo o m)
Finish by substituting in Q(4, A) = Q(A,V) — Q(A4, A°) = n(A) — Q(4, A°). O

In applying the Evolving set results we regularly use Jensen’s Inequality, that if f is a concave
function and p a probability measure then

[1o@yan =g ([awan). (23)

3 A Generalized Cheeger Inequality

Recall that a Cheeger inequality is used to bound eigenvalues of the Markov kernel in terms
of some geometric quantity. “The Cheeger Inequality” generally refers to the bound

2 c
/\21—\/1—h22% where h = min M (3.4)

o<n(A)<1/2  w(A)

The quantity h is known as the Cheeger constant, or Conductance, and measures how quickly
the walk expands from a set into its complement. In the lazy case this can be interpreted as
measuring how quickly the walk expands from a set A to a larger set in a single step. Our
generalization of the Cheeger inequality will be expressed in terms of Evolving sets, with the
Cheeger constant replaced by f-congestion:

Definition 3.1. A weighting function is a function f : [0,1] — R>¢ non-zero except possibly
at f(0) and f(1). For weighting function f, the f-congestion of a set A C 'V is

o F(r(Aw)) du
fx(4))

if A¢{0,V}, otherwise Cf(A) = 1. The f-congestion is C; = maxo<r(ay<1 Cs(A).

Cr(A)

Small f-congestion usually indicates a rapid change in set sizes for the Evolving Set process.
In [9] it is found that many measures of convergence rate (total variation, relative entropy,
chi-square, etc.) can be bounded in terms of f-congestion, with different choices of f for
each distance. The f-congestion is thus closely related to convergence of Markov chains, as is
spectral gap, which in part explains why our main result holds:

Theorem 3.2. If f is a weighting function, then for any reversible Markov kernel
A>1—=Xdpae >1—-Cy.

IfVa € (0,1/2) : f(a) < f(1 — a) then it suffices to let Cy = maxo<r(ay<1/2 Cs(A).
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Proof. Given x € V, let Sy = {z}, g be some weighting function, A% = A if 7(A4) < 1/2 and

A# = Acif 1(A) > 1/2, and M = maXy(4)£0, 1 27%' By Lemma 2.2,

o2 =iy < g En/m(SH) < s Eu(a(S,)

N

—~

= %EnAQ(W(Sna))Cg(snfl)

The final inequality follows from C,4(S,—1) < Cg4, then induction. The first equality is
Eng(m(Sn)) = En1E(g(m(Sn)) [ Sn—1) = En—19(m(Sn-1)) Cg(Sn-1) -
By equation (2.1),

ngymWwywmvsvmW 9rlr)) g moce

The first bound of the theorem (i.e. general case) follows by setting g(a) = f(a).

For the special case, let g(a) = f(min{a,1 — a}). Observe that A4;_, U (4°), = V. Also,
x € Ay_y, N (A°), exactly when Q(A,z) = (1 — u)w(x), which occurs for only a finite set of
u’s since V is finite, so A;_, N (A°), = 0 for a.e. u. Hence 7(A1_,) = 1 — 7((A°),) almost
everywhere, and so [ g(w(A,)) du = [; g(m((A°),)) du and C,(A) = C4(A°) = Cy(A#). Now,
g(m(A#)) = f(m(A#)) and g < f, and so Cy(A) = Cy(A#) < C;(A#). We conclude that
Amaz < Cg = maxa Cy(A) = maxgcr(ay<1/2 Cr(A), as desired. O

Remark 3.3. For a non-reversible walk Theorem 3.2 holds with 1 — A4, replaced by 1 — A,
where A, = max;~ |\;| is the second largest magnitude (complex-valued) eigenvalue of P. This
follows from the related lower bound (see e.g. [9]):

1 n n
5 A <max P — 7llrv (3.5)

While intriguing, it is unclear if such a bound on 1 — A\, has any practical application.

Remark 3.4. An anonymous reader notes that in order to prove our main result, Theorem
[3.2] one can use weaker bounds than those of the form of (2.1) and (3.5). Instead, consider
the well known-relation p(A) = limy_o ||A*||*/* (e.g. Corollary 5.6.14 of [5]), where spectral
radius is defined by p(A) = max{|\| : A is an eigenvalue of A}, and || - || : M,, — R denotes

any matrix norm. In the current setting let [|A[| be the vector-norm [|Al| = sup,cgn\o ”lﬁjﬂl"'

where [[v|1~ = >, cy 7(x)[v(z)]. Then, if F is the matrix with rows all equal to =,
A(P) = AP =plP ~ B) = Jim (P~ B)F|
_ li P*k_E 1/k: li 2 k _ 1/k
Jim || I Jim max(2(jp; —7rv)

The first equality is because, for the reversal P* as defined in the first paragraph of the

N N
preliminaries, if ¥; P = \;P for a row vector ¢; and eigenvalue \;, then P* (h) =\ (%)

s
where %(az) = Z:((af)) is a row vector and P* acts by matrix multiplication.
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4 Cheeger Inequalities

Special cases of Theorem include bounds of the vertex type as in Alon [1], the edge type
as in Jerrum and Sinclair [6], and mixtures of both.

4.1 Edge expansion
We first consider edge-expansion, i.e. ergodic flow, and in particular derive a bound in terms

of the symmetrized Cheeger constant:

i .5 = QA A9
h = O<71r1(1}4r§<1 h(A) where h(A)= A A)r (A

This will be done by first showing a somewhat stronger bound, and then a few special cases
will be considered including that of h.

Corollary 4.1. If f : [0,1] — R not identically zero is such that f and f"” are concave,
then the spectral gap of a Markov kernel satisfies

) Q(A,AC)Q
A2 ST P (A

IfVa € (0,1/2) : f(a) < f(1 —a) then it suffices to minimize over w(A) € (0,1/2].

Proof. First consider the reversible, lazy case. By Jensen’s Inequality (2.3) and Lemma 2.3,

! 1 (/2 du 1 [* du
| tetana = 5 [T rean s [ a0 17

0 1/2

1/2 1 1
f (2/0 (Ay) du) + if <2 /1/2 m(Ay) du)

f (r(4) +2Q(4, 49) + 5 f (x(4) — 2Q(4, 4))

IN
N = N

Since f is concave then it is a weighting function (see definition|3.1), and so by Theorem (3.2,

. f(m(A) +2Q(A, A%)) + f(m(A) — 2Q(4, A9))
Azl-Cpz  min 1- 2 f(n(4))

(4.6)

More generally, consider the lazy reversible Markov kernel P’ = 1 (I + P+TP*). If {(Ni,v)} is

an eigenbasis of PP~ then {(322,0;)} is an eigenbasis for P/, and so A = 1 — )\ <P+P*) =

2 2 2
2(1 = A (P)) = 2\pr. Also, Qpr(A, A°) = 2 Q(A, A°) + 1Qp- (4, A%), Qp+ (4, A°) = Q(A°, A),
and Q(A, A4°) = 7(4) — Q(A, A) = m(A) — (r(4) - Q(A%, 4)) = Q(A®, A), and 50 Qpr (4,

% Q(A, A°). Hence, by equation ,

3 =
b

m
Il

f(m(A) +Q(A, A%)) + f(n(4) — Q(4, A%))

A= Vo2 omip 1o 2 F(m(A)) (47)
c\2
N Q(4, A% ws)

o<rth <1t T (r(A)/ 7 (n(A))
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Equation (4.8) required that f(z + &) + f(z — 6) < 2 f(z) + f"’(x) 8% To show this let
F(z,6) = f"(x)8% + 2 f(x) — f(x + ) — f(z — ). Observe that %F(x,é) = 2f"(x)d —
fllx+0)+ f'(x—95) =0at 6§ =0, and aa—;zF(x,é) =2f"(x) = (f"(x+0)+ f'(x—9)) >0
because f” is concave. Hence F(z,d) is convex in ¢ with minimum at 6 = 0, and therefore
F(z,0) > F(x,0) =0. O

We now show our first Cheeger inequality. If A C V then Q(4,A°) > hr(A)m(A€), and so
to maximize the lower bound of Corollary [4.1 in terms of h look for a concave f such that
¢ = Ming_r(4)e(0,1) % is maximized, i.e. find a concave solution to — f(x)/f"(x) <

¢ 1 22(1 — x)? for some ¢. When ¢ = 1/4 then f(z) = \/z(1 — z) works, so A > ch? = h?/4.
A more direct computation leads to a slightly stronger result:

Corollary 4.2. The spectral gap of a Markov kernel satisfies

~ ” 72
h>)\>2<1—\/1—h2/4>>f2.

Proof. The upper bound on A is classical (e.g. [6]). The second lower bound follows from the
first because /1 — 2 < 1 —x/2. For the first lower bound on A, let f(a) = \/a(1 — a), use Q4
to denote Q(A, A¢), and apply (4.7) in the case that Va € (0,1/2] : f(a) < f(1 — a),

oo w1 VT QAT ~ Q) + () - QA + Q)
0<m(A)<1/2 2/m(A)m(Ac)

- V14 h(A)m(A9)/1 - h(A)m(4) ) V1= h(A)m(A9)/1+ h(A)m(4)
2 2

= 2 min
0<m(A)<1/2
Simplify using Lemma 4.3 with X = (1 + h(A) 7(A°)) and Y = (1 — h(A) 7(A)). O

Lemma 4.3. If X,Y € [0,1] then

VXY +/1-X)1-Y)</1- (X —Y)2.

Proof. Let g(X,Y)=vVXY +/(1-X)(1-Y). Then

g(X, V)2 = 1—-(X+Y)+2XY
+VI-(X+Y)+2XYP—[1-2(X+Y)+ (X +Y)2.

Now, Va2 —b<a—bifa® > b, a < % and a > b (square both sides to show this). These
conditions are easily verified whena =1 — (X +Y)+2XY andb=1-2(X +Y)+ (X +Y)?
for X, Y €[0,1], and so

9(X,Y)?

N

< 21— (X4Y)+2XY]-[1-2(X+Y)+ (X +Y)?
= 14+2XY - X?-Y?2=1—-(X-Y)?
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The Corollary is sharp on the two-point space u — v with P(u,v) = P(v,u) = 1, because h=2
and so the upper and lower bounds are equal. In contrast, “the Cheeger inequality” of (3.4)
shows at best A > 1, and so cannot be sharp for even this simple example.

Different choices of f(a) work better if more is known about the dependence of h(A) on set
size:

Example 4.4. Consider the walk on the cycle C,, = Z/nZ with P(i,i =1 mod n) = 1/2. If
A C C, then Q(A,A°) > 1/n, and so the Cheeger Inequality shows only A > h?/2 = 2/n?,
whereas Corollary [4.2 improves this slightly to A > h%/4 = 4/n?. To apply Corollary [4.1]
directly, by the same argument as was done before Corollary [4.2, we solve the differential
equation —f/f” < ¢!, or f” + cf > 0. The largest value of ¢ with a concave solution is
c = 72 with f(a) = sin(wa). Although f” is not concave, the function f can still be used in
(4.7) to obtain

Y > 9 min 11— sin (m(z + Q(A, A9))) + sin (7(z — Q(A, A9)))
T e=rn(A)<1/2 2sin(mx)
2
= 2 min 1-—cos(mQ(A,A°%)) =2(1— cos(r/n)) ~ .

0<m(A)<1/2 n2
A sharp bound can be obtained by evaluating Cgn(ra)(A) exactly. As before, let P’ =

% (IJr P+TP*) = %. If n is even then

A= 2)\p/ > 2 (1 - Csin(Tra),P') =1- COS(27T/71) .

The final equality follows from computing Cgin(ra),pr = Csin(ra),p (A), where A is any subset of
n/2 consecutive vertices. A similar bound for the odd case is sharp as well.

4.2 Vertex-expansion

The Generalized Cheeger inequality can also be used to show Cheeger-like inequalities in terms
of vertex-expansion (the number of boundary vertices), leading to sharp versions of bounds
due to Alon [1], Bobkov, Houdré and Tetali [2] and Stoyanov [10].

Two notions of vertex-expansion are required:

Definition 4.5. If A C V then the internal and external boundaries are 9;,(A4) = {z € 4 :
Q(x, A%) > 0} and Oput(A) = 0in(A°) = {z € A°: Q(z,A) > 0}. The internal and external

vertex expansion are

hin =  min  h,(A) and howt =  min  hyu(A)
o<n(A)<1/2 0<m(A)<1/2
where
in A ou A
hzn(A) _ ﬂ-(a ( )) and hout(A) — W(a t( ))

m(4) m(A)

Quantities hyy, and hy, (A) are defined similarly, but with 7(A)m(A¢) in the denominator. The
minimum transition probability Py = min,4ycv{P(z,vy) : P(z,y) > 0} will also be required.
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Theorem 4.6. The spectral gap of a reversible Markov kernel satisfies

A > 1—+/1=hgwPo—Po (\/1 ¥ gt — 1) > % min {h2,;, Fou }
A > 1—+/1+ himPo+Po (1—\/1—hm) > PO h2,
Po -

For the non-reversible case replace Py by Pgo/2.

Proof. The proofs are not difficult and involve application of Jensen’s inequality (2.3) to upper
bound fol f(m(Ay)) du with f(a) = /a for inequalities 1 and 2, or f(a va(l —a) for
inequality 3. Theorem [3.2 then induces a bound on A. However, in order to aV01d repeatlng
nearly the same proof in both this and the following sub-section, we note that the first bound of
Theorem [4.6]follows from the first bound of Theorem[4.8] with the substitution h;,(A) > h(A),
followed by the substitution h(A) > Pghowt(A), and finishing with hyui(A) > howr (simple
differentiation verifies that these substitutions can only decrease the bound of Theorem [4.8).
Likewise, our second bound follows from the first bound of Theorem [4.8 and the substitution
hout(A) > h(A) followed by h(A) > Pg hin(A) and finally h;,(A) > hi,. The third bound of
Theorem [4.6 follows from the second bound of Theorem[4.8/and the relations h(A) > Pohip, (A)
For the simplified versions of the bounds use the approximations v/1—2 < 1 — /2 and
Vi+az—1-2/2 < —min{2? z}/12 for the first bound, v1+2 < 1+ z/2 and /1 -z <
1 —2/2 — 22 /8 for the second, and /1 —z < 1 — /2 for the third. O

Stoyanov [10], improving on results of Alon [1] and Bobkov, Houdré and Tetali [2], showed
that a reversible Markov kernel will satisfy

Po 2 Po
max{ 5 (1— 1—hm) e (\/m_l) }
max{ h?n, o1 mln{hiut,hout}} .

Theorem and the approximations /1 — hyutPo < 1 — houtPo/2 and 1+ hipPo < 1+

hinPo/2, leads to stronger bounds for reversible kernels:

A

\%

%

p 2

A > %max{l /1= hamy /1 + ot — 1} (4.9)
Po:y Py

and A > max hm, Emln{hout, hout} (4.10)

Remark 4.7. The h;, and h,,: bounds in this section were not sharp, despite our having
promised sharp bounds. These bounds were derived by use of the relation A > 1 —C 7,
but if C Jal=a) were used instead then we would obtain sharp, although quite complicated,

bounds; these bounds simplify in the & and h;, cases, which is why we have used C Ja=a)

for those two cases. Bounds based on C Ja=a) are sharp on the two-point space u — v with
P(u,v) = P(v,u) = 1.
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4.3 Mixing edge and vertex expansion

We can easily combine edge and vertex-expansion quantities, and maximize at the set level
rather than at a global level. For instance, in the reversible case

I Po
> i S h(A)?, = hin(A)?, = A .
A > O<7rr(r}11)n§1/2 max{4 h(A)Z, g hin(A)?, B mln{hout( )%, hou ( )}}

Alternatively, we can apply Theorem directly:

Theorem 4.8. The spectral gap of a reversible Markov kernel satisfies

A>  min 2—Pyy/1— hin(A) — Po/1 + how(A)

m(A)<1/2
—(1- PO)\/1 _ h(A) I—_Popf;m(A) - Po)\/l ICY Ifos(f”m)

. . - - 2
| i2,(4) i2(4) F(A) — Poiin(4)
A > 7T(frlr)ngnl/2 2—P0\/1— 1 —\/1— 4 —(1—P0)\J1_ ( 0 —OPO) > .

For the non-reversible case replace Py by Pgo/2.

Proof. We begin by showing the first inequality.
Consider the lazy reversible case. Let f(a) = v/a. It follows from Lemma/2.3|that [; Fo (m(Ay)—

(A ))du = Pom(Qout(A)), that [o/*(m(A,) — 7(A))du = Q(A, A%) — Pom(9pur(A)), that
e, (m(A) = m(Aw) du = Pom(in(A)), and that [}, (1(A) — w(A,))du = Q(A, A%) -
P07r( )). An application of Jensen’s Inequality 1eads to the bound

o
1

/ F(r(AL)) du
0

Po U 1/2 U
= b0 [ swange 4 (5-R0) [ i) o

Po

+(3-m) | :Pof@r(fxm iy [ () 2

< Po/7(A) + m(0out(A)) + (; - Po) \/W(A) + 4, AC)l/Qli)ZE)&mt(A))

! (1 } P°) \/ () - AR 4P () (0 ()

1/2-P
Hence Theorem [3.2]1leads to the bound

o F(m(Ay)) du
L= < max Cr(4) =500
1 h(A) - Py hout(A)
S R, Po VI howl(d) + (2 - PO> \/1 TR,

+ <; — Po) \/1 - h(A)l/_2P_O Z;R(A) +Po /1 = hin(A)
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To generalize to the non-lazy case consider the lazy walk P’ = % and use the relations

N o= %)\, R (A) = hin(A), hl(A) = hout(A), H'(A) = %h(A) and P{, = Pg/2. For the
non-reversible case, use the result on reversible walks to bound the gap A’ of the Markov
kernel P” = P+TP*7 and then deduce a bound on A via the relations A = X, b} (A) > hin(A),
hl(A) > hout(A), B (A) = h(A) and P > Py/2.

out
Now for the second spectral bound. Given a lazy reversible walk, let f(a) = y/a(1 —a). By
Lemma 2.3, note that f1/2 (Ay) — m(A))du = Q(A, A°), that fl_PO A) —7m(Ay))du =
Pom(9in(A)) and f1/2 7m(A) — m(Ay)) du = Q(A, A°) — Pom(din(A)). By Jensen’s Inequality
(2.3) and Theorem
1-2<

B Oy )

< max <+ \/(1 + 2h(A) ﬁ(Ac)) (1 — 2h(A) W(A)) (4.11)

m(A)<1/2 2

+ (; - P0> \l <1 -2 h(A)l__P;g;”(A) 7T(AC)> (1 +2 h(A)l__P;;I;"(A) 7T(A)>

+Py /(1= Rin (A)m(A))(1 + hip (A)(A))

If h(A) and hgy,(A) are fixed then this is maximized when 7(A) = 1/2 (see below), and so
setting m(A) = 1/2 gives a bound for a lazy chain. In the general reversible case use the
bound on the gap A of the lazy walk P’ = 1(I 4+ P) to deduce the result for A via the

relations A = 2\, &}, (A) = hin(A), I'(A) = h(A) and P = Py/2, as before. Use the same
non-reversible reduction as before.

It remains only to show that (4.11) is maximized at m(A) = 1/2. Given ¢ € [-1,1] let
F.(z) = /(1 +c¢(1 —2))(1 — cx) where x = w(A). Then (4.11) is just

1— 2P, 1
¢ /7(1(1_@)(14) < Po F—ﬁm(A) (z) + g Ffz E(A%Poggnm) (z) + ) Fzﬁ(A)(l’) .

To maximize this with respect to x, observe that F)(z) = 4[(1—cx)(;—:2(1—x))]3/2 < 0 and
so any sum »_ o;F,, with a; > 0 is concave. It follows that if (3 «;Fc;)'(1/2) > 0 then

> i Fe, () will be maximized in the interval x € [0,1/2] at = 1/2. In the case at hand,

since F/(1/2) = \/ﬁ the upper bound on C\/i( ) differentiates as

Pohin(A) N h(A) — Pohin(A) N(A

e \/1 — (hin(4)/2)? \/1 _ (h(A)1 PSQQ" A)) \/1 - ’

which in turn differentiates as
0 B Po B Po -0
Ohin(A) - 273/2 R ~ 073/2 = 7
" {1 - (Ln(m) } {1 _ (M) ]

T—2P,

(4.12)
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where the inequality is because h(A) < hin(A)/2 (recall the chain is lazy). Then equation
4.12) is minimized when h;, (A) is as small as possible, that is at ks, (A) = 2h(A), at which
point equation (4.12) is zero. Therefore equation (4.12) is non-negative, and from the comments
above it follows that the upper bound on Cm(A) is maximized when w(A) = 1/2. O

5 Bounding the smallest eigenvalue

The generalized Cheeger inequality can also be used to bound 1 — A4, for a reversible walk,
and more generally 1— A\, for a non-reversible walk, by examining P directly instead of working
with the lazy walk P’ = '+P as was done in the preceding proofs. Modified expansion quantities
will be required, such as the following:

Definition 5.1. If A C V then its modified ergodic flow is defined by

/ m(Au) — 7(4)|du.

The modified Cheeger constant h is given by

— i GO
h= 0<W{r}x1)n§1/2 h(A) where h(A)= T(A)r (A

By Lemma 2.3, for a lazy chain U(A) = Q(A, A°) and hence also i(A) = h(A).
We can now show a lower bound on the eigenvalue gap:

Theorem 5.2. Given a Markov kernel then

1=\ >1—+1-h2>hn%/2.

Proof. Let f(a) = v/a(l — a) and choose p4 € [0, 1] to be such that w(A,) > 7(A) if u < pa

and m(A,) < w(A) if u > pa. Then W(A) = [[7*(n(Ay) — 7(A)) du = f;A (r(A) — 7(Ay)) du

because fol 7m(Ay) du = w(A). By Jensen’s Inequality,

1 pa ” 1 u
/ faA)) du = pa [ Fr(A) D £ (- o) / Flr(Ay)) —2
0 ©PA

0 o 1 —pa
‘I’(A)>

< ot (w0 + 5 ) - oa) g () - 2

Hence, by the extension of Theorem in Remark[3.3, we have

B f V(A1 —n(Ay)) du
Mo AE Ve =, O T(A)m(A°)
V(pa + h(A) 7(A9) (pa — h(A) w(A))
+V(1 = pa — h(A) w(A°)) (1 = pa + h(A) w(A))

To finish let X = pa + A(A) 7(A°) and Y = pa — h(A) 7(A) in Lemma [4.3. O

IN
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For an isoperimetric interpretation of this, note that in Lemma 4.17 of [9] it was shown that

. 7(A°) — w(B
vy @B+ T T w0,
W(B)S‘IT(A’C)<7I'ZBU’U)
Q(A,x)

To understand this, observe that B contains those vertices where ~ ©) is minimized, i.e. with

a minimum fraction of their stationary distribution due to ergodic flow from A, and v is the

vertex with the next smallest fo?y’;) . So, given some set A, then W(A) is the worst-case ergodic

flow from A into a set of size w(A°).

Hence, in our results, to bound A consider the (worst-case) ergodic flow from a set A to its
complement A€ (i.e. Q(A,A€)), whereas to bound A, use the worst-case ergodic flow from a
set A to a set the same size as its complement A° (i.e. ¥(A)).

Just as in the examples of Section[4, a careful choice of f can give better results than the
general bound.

Example 5.3. Consider the cycle walk of Example [4.4. Given z = £ < %, define sets

Ay ={0,2,4,...,2k—2} and By = A, U{—1,-2,—3,..., —n+2k}. Then min,4)_, ¥(A) =
Q(Az, B:). It follows that h = 4Q(A;/2,B1/2) = 0if n is even and so 1 + X\,_1 > 0, while
h= n?fl > % if n is odd and so 1+ \,, > h%/2 > 2/n>.

The bound for n even was optimal. To improve on the case of n odd, note that a bound similar
to the lower bound of Corollary [4.1 holds for ¥(A) as well. Since ¥(A4) > 1/2n for all A C V,

this again suggests taking f(a) = sin(wa), and so if n is odd then

1~ Apaz = 1= Cain(ray = 1 — COS(QT(\I’(.A%)) =1-—cos (%)

This is again an equality.

Vertex-expansion lower bounds for 1 — A\, (and hence also 1 — A4, ) hold as well. For instance,
if Pg = ming yev{P(x,y) : P(x,y) > 0} (note that x = y is permitted) then

B: A
By = mi mi m({z € Q(A,z) > 0})
0<m(A)<1/2 n(B)=m(Ac) m(A)

if 7 is uniform. Working through a vertex-expansion argument shows the relation 1 — A, >
% min{h2,;, Fout} -
Example 5.4. A vertex-expander is a lazy walk where h,,; > € > 0. Analogously, we might

define a non-lazy vertex-expander to be a walk where h,,; > € > 0. If the expander is regular
of degree d then

out>

12d =124’

which (up to a small factor) generalizes the relation 1 — A0 > Z—z for the lazy walk.

32 2
1A > min{7# Rout } S €
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