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Abstract

We investigate the asymptotic behavior of weighted sums of independent standardized random
variables with uniformly bounded third moments. The sequence of weights is given by a family
of rectangular matrices with uniformly small entries and approximately orthogonal rows. We
prove that the empirical CDF of the resulting partial sums converges to the normal CDF with
probability one. This result implies almost sure convergence of empirical periodograms, almost
sure convergence of spectral distribution of circulant and reverse circulant matrices, and almost
sure convergence of the CDF generated from independent random variables by independent
random orthogonal matrices. In the special case of trigonometric weights, the speed of the
almost sure convergence is described by a normal approximation as well as a large deviation
principle.

1 Introduction

Let (Xn) be a sequence of independent and identically distributed random variables with
E[Xn] = 0 and E[X2

n] = 1 and denote

Sn =
1√
n

n∑

t=1

Xt.
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The almost sure central limit theorem (ASCLT) states that, for any x ∈ R,

lim
n→∞

1

log n

n∑

t=1

1

t
1{St≤x} = Φ(x)

with probability one, where Φ stands for the standard normal distribution [3], [7], [14], [21].
One can observe that the ASCLT does not hold for the Césaro averaging. Assume now that
(Xn) has all moments finite and consider the weighted sum

Sn,k =

√
2

n

n∑

t=1

Xt cos

(
πkt

n

)
. (1.1)

It was recently established by Massey, Miller and Sinsheimer [17] that, for any x ∈ R,

lim
n→∞

1

n

n∑

k=1

1{Sn,k≤x} = Φ(x) (1.2)

with probability one together with the uniform convergence. This result is closely related to the
limiting spectral distribution of random symmetric circulant matrices [6] since the eigenvalues
of theses matrices are exactly given by (1.1). The goal of this paper is to answer to several
natural questions.

(a) Is it possible to remove the assumption of identical distribution?

(b) Can the moment condition be relaxed?

(c) Can the trigonometric coefficients be replaced by other numbers?

(d) Can the multivariate version of convergence (1.2) be established?

(e) Is it possible to prove a CLT or a LDP associated with (1.2)?

We shall propose positive answers to these questions extending [17, Theorem 5.1] in various
directions. First of all, we shall show that it is possible to deal with a sequence (Xn) of inde-
pendent random variables defined on a common probability space (Ω,A, P) without assuming
that they share the same distribution. In addition, we shall only require that the third mo-
ments of (Xn) are uniformly bounded. Next, we shall allow more general weights and we will
prove the multivariate version of convergence (1.2). Finally, we shall provide a CLT as well as
a LDP.

2 Main results

Let (U(n)) be a family of real rectangular rn ×n matrices where (rn) is an increasing sequence
of integers which goes to infinity with 1 ≤ rn ≤ n. We shall assume that there exist some
constants C, δ > 0 which do not depend on n such that

(A1) max
1≤k≤rn, 1≤t≤n

|u(n)
k,t | ≤

C

(log(1 + rn))1+δ
,

(A2) max
1≤k, l≤rn

∣∣∣∣∣

n∑

t=1

u
(n)
k,t u

(n)
l,t − δk,l

∣∣∣∣∣ ≤
C

(log(1 + rn))1+δ
.
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For application to periodograms, we will also need to consider pairs (U(n),V(n)) of such
matrices and we shall assume that

(A3) max
1≤k, l≤rn

∣∣∣∣∣

n∑

t=1

u
(n)
k,t v

(n)
l,t

∣∣∣∣∣ ≤
C

(log(1 + rn))1+δ
.

These assumptions are not really restrictive and they are fulfilled in many situations. For
example, consider the sequence of real rectangular rn×n matrices (U(n),V(n)) with rn ≤ ⌊n−1

2 ⌋
given, for all 1 ≤ k ≤ rn and 1 ≤ t ≤ n, by

u
(n)
k,t =

√
2

n
cos

(
2πkt

n

)
, v

(n)
k,t =

√
2

n
sin

(
2πkt

n

)
. (2.1)

Then (A1) holds trivially while (A2) and (A3) follow from 2rn < n and the following well
known trigonometric identities where 1 ≤ k < l ≤ n.

n∑

t=1

cos

(
2πkt

n

)
cos

(
2πlt

n

)
=

{
0 if k + l 6= n,

n/2 if k + l = n,
(2.2)

n∑

t=1

sin

(
2πkt

n

)
sin

(
2πlt

n

)
=

{
0 if k + l 6= n,

−n/2 if k + l = n.
(2.3)

In addition,
n∑

t=1

cos

(
2πkt

n

)
sin

(
2πlt

n

)
= 0, (2.4)

n∑

t=1

cos2
(

2πkt

n

)
= n −

n∑

t=1

sin2

(
2πkt

n

)
=

{
n/2 if 2k 6= n,
n if 2k = n.

(2.5)

In order to avoid cumbersome notation, we only state our first result in the univariate and
bivariate cases. The d-variate extension requires introducing d sequences of matrices that
satisfy assumptions (A1) and (A2) with each pair from the n-th level satisfying condition (A3)
and the proof follows essentially the same lines.

Theorem 1 (ASCLT). Assume that (Xn) is a sequence of independent random variables such
that E[Xn] = 0, E[X2

n] = 1 and sup E[|Xn|3] < ∞. Let (Sn,k) be the sequence of weighted sums

Sn,k =

n∑

t=1

u
(n)
k,t Xt (2.6)

with k = 1, 2, . . . , rn where (U(n)) is a family of real rectangular rn × n matrices satisfying
(A1) and (A2). Then, we have the almost sure uniform convergence

lim
n→∞

sup
x∈R

∣∣∣∣∣
1

rn

rn∑

k=1

1{Sn,k≤x} − Φ(x)

∣∣∣∣∣ = 0. (2.7)

In addition, let (Tn,k) be the sequence of weighted sums

Tn,k =

n∑

t=1

v
(n)
k,t Xt (2.8)
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with k = 1, 2, . . . , rn where (V(n)) is a family of real rectangular rn × n matrices such that

(A1) and (A2) hold with v
(n)
k,t in place of u

(n)
k,t . Assume that the sequence of pairs (U(n),V(n))

satisfies (A3). Then there is a measurable set ∆ ⊂ Ω of probability one such that for all
x, y∈R, we have the almost sure convergence on ∆

lim
n→∞

1

rn

rn∑

k=1

1{Sn,k≤x,Tn,k≤y} = Φ(x)Φ(y). (2.9)

For the univariate case with trigonometric coefficients given by (2.1), we also have the com-
panion weak limit theorem and the large deviation principle under the restrictions on the rate
of growth of the sequence (rn). The most attractive case

rn = [(n − 1)/2]

which corresponds to the spectral measures of random circulant matrices, is unfortunately not
covered by our result. Some LDP for spectra of other random matrices can be found in [11,
Chapter 5].

Theorem 2 (CLT). Assume that (Xn) is a sequence of independent random variables such
that E[Xn] = 0, E[X2

n] = 1 and satisfying for some constant τ > 0,

sup
n≥1

E[|Xn|3 exp(|Xn|/τ)] ≤ τ. (2.10)

Consider the sequence of weighted sums (Sn,k) given by (2.6), where (U(n)) corresponds to the
trigonometric weights given by (2.1). If (rn) is such that

(log n)2

n
r3
n → 0, (2.11)

then for all x ∈ R,

1√
rn

rn∑

k=1

(
1{Sn,k≤x} − Φ(x)

) D−→
n→+∞

N (0, Φ(x)(1 − Φ(x))) . (2.12)

In addition, we also have

√
rn sup

x∈R

∣∣∣∣∣
1

rn

rn∑

k=1

1{Sn,k≤x} − Φ(x)

∣∣∣∣∣
D−→

n→+∞
L (2.13)

where L stands for the Kolmogorov-Smirnov distribution.

Remark 1. The conclusions (2.12), (2.13) also hold if conditions (2.10) and (2.11) are re-
placed by the assumption that there is p > 0 such that

sup
n≥1

E[|Xn|2+p] < ∞ as soon as r3
nn−p/(2+p) → 0.

This follows from our proof, using [20, Section 5, Corollary 5] instead of Lemma 3. For
example, if p = 1, it is necessary to assume that r9

n = o(n).
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Remark 2. The Kolmogorov-Smirnov distribution is the distribution of the supremum of the
absolute value of the Brownian bridge.

The large deviation principle was motivated by the LDP from the Brosamler-Schatte almost
sure CLT, see [16, Theorem 1]. To formulate the result, we need to introduce additional
notation. Let M1(R) denote the Polish space of probability measures on the Borel sets of R

with the topology of weak convergence. For the sequence of weighted sums (Sn,k) given by
(2.6), consider the empirical measures

µn =
1

rn

rn∑

k=1

δSn,k
(2.14)

The rate function I : M1(R) → [0,∞] in our LDP is the relative entropy with respect to
the standard normal law. More precisely, if φ(x) denotes the standard normal density and
ν ∈ M1(R), we have

I(ν) =

∫

R

log
f(x)

φ(x)
f(x) dx

if ν is absolutely continuous with respect to the Lebesgue measure of R with density f and
the integral exists and I(ν) = +∞ otherwise. It is well known that the level sets I−1[0, a] are
compact for a < ∞. The conclusion of our next result is the LDP for the empirical measures
µn with speed rn and good rate function I.

Theorem 3 (LDP). Assume that (Xn) shares the same assumptions as in Theorem 2. Con-
sider the sequence of weighted sums (Sn,k) given by (2.6), where (U(n)) corresponds to the
trigonometric weights given by (2.1). If (rn) is such that

r4
n

n
→ 0 and

log n

rn
→ 0,

then for all closed sets F and open sets G in M1(R),

lim sup
n→∞

1

rn
log P(µn ∈ F ) ≤ − inf

ν∈F
I(ν)

and

lim inf
n→∞

1

rn
log P(µn ∈ G) ≥ − inf

ν∈G
I(ν).

All technical proofs are postponed to section 4. We shall now provide several applications of
our results.

3 Applications

3.1 Application to periodograms

The empirical periodogram associated with the sequence (Xn) is defined, for all λ in the torus
T = [−π, π[, by

In(λ) =
1

n

∣∣∣∣∣

n∑

t=1

e−itλXt

∣∣∣∣∣

2

.
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The empirical distribution of the periodogram is the random CDF given, for all x ≥ 0, by

Fn(x) =
1

rn

rn∑

k=1

1{In(2πk/n)≤x}

where rn = ⌊n−1
2 ⌋. Theorem 1 strengthens the conclusion of [13, Proposition 4.1] to almost

sure convergence at the expense of the assumption that third moments are finite.

Corollary 4. Assume that (Xn) is a sequence of independent random variables such that
E[Xn] = 0, E[X2

n] = 1 and sup E[|Xn|3] < ∞. Then, we have the almost sure uniform
convergence

lim
n→∞

sup
x≥0

|Fn(x) − (1 − exp(−x))| = 0.

Proof. Following [13, (2.1)], we can rewrite Fn as the CDF of the empirical measure

µn =
1

rn

rn∑

k=1

δ 1

2
(S2

n,k
+T 2

n,k
)

where (Sn,k, Tn,k) are defined by (2.6) and (2.8) and (U(n),V(n)) are the trigonometric weights
given by (2.1). Consequently, Corollary 4 immediately follows from Theorem 1. As a matter
of fact, let h : E → F be a continuous mapping of Polish spaces. If a sequence of discrete
measure (νn) converges weakly to some probability measure ν on the Borel sigma-field of E,
then (νn ◦h−1) converge weakly to the probability measure ν ◦h−1, see e.g. [4, Theorem 29.2].
We apply it to

νn =
1

rn

rn∑

k=1

δ(Sn,k,Tn,k)

and to the continuous mapping h : R
2 → R given by

h(x, y) =
1

2
(x2 + y2).

On the one hand, we clearly have µn = νn ◦ h−1. On the other hand, as ν is the product of
two independent standard normal distributions, the limiting distribution µ = ν ◦h−1 is simply
the standard exponential distribution. Hence, for all x ≥ 0, F (x) = 1 − exp(−x). Finally, as
this limit is a continuous CDF, it is well known, see [4, Exercise 14.8], that the convergence is
uniform.

3.2 Application to symmetric circulant and reverse circulant matri-

ces

Corollary 5. The weak convergence in [5, Theorem 5] and in [6] holds with probability one.

Proof. One can find in [5, Theorem 5] and [6] the analysis of the limiting spectral distribution
of the n × n symmetric random matrices with typical eigenvalues of the form

±
√

(S2
n,k + T 2

n,k)/2

where (U(n),V(n)) are the trigonometric weights given by (2.1) and rn = ⌊n−1
2 ⌋ see [6, Lemma

1]. After omitting at most two eigenvalues which do not modify the convergence of the spectral
measure, Theorem 1 implies that the convergence holds with probability one by the same
arguments as in the proof of Corollary 4.
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Assume now that (An) is a family of symmetric random circulant matrix formed from the
sequence of independent random variables (Xn) by taking as the first row

[An]1,t = Xt

with t = 1, 2, . . . , [(n + 1)/2] and [An]1,t = [An]1,n−t for the other indices. The next corollary
strengthens [6, Remark 2] to almost sure convergence and removes the assumption of inte-
grability and identical distribution in [17, Theorem 1.5]. To justify the later claim, we note
that a “palindromic matrix” analyzed in [17] differs from An by the last row and column only.
Thus their ranks differ by at most one and asymptotically “palindromic matrices” and random
circulant matrices have the same spectrum, see [1, Lemma 2.2].

Corollary 6. Assume that (Xn) is a sequence of independent random variables with common
mean m = E[Xn] = 0, common variance σ2 = V ar(Xn) > 0 and uniformly bounded third
moments sup E[|Xn|3] < ∞. Then, the spectral distribution of the random matrix

1

σ
√

n
An

converges weakly with probability one to the standard normal distribution.

Proof. Subtracting the rank 1 matrix does not change the asymptotic of the spectral distri-
bution. Consequently, without loss of generality, we may assume that m = 0. Rescaling the
random variables by σ > 0 we can also assume that σ2 = 1. With the exception of at most
two eigenvalues, the remaining eigenvalues of An/

√
n are of multiplicity two and are given

by (2.6) with the trigonometric weights given by (2.1), see [6, Remark 2]. Finally, the weak
convergence with probability one of the spectral distribution of An/

√
n to N (0, 1) follows from

Theorem 1.

3.3 Application to random orthogonal matrices

A well known result of Poincaré says that if U(n) is a random orthogonal matrix uniformly dis-
tributed on O(n) and xn ∈ Rn is a sequence of vectors of norm

√
n then the first k coordinates

of U(n)xn are asymptotically normal and independent, see e.g. [4, Exercise 29.9].

Corollary 7. Assume that (Xn) is a sequence of independent random variables such that
E[Xn] = 0, E[X2

n] = 1 and sup E[|Xn|3] < ∞. Consider the sequence of weighted sums (Sn,k)
given by (2.6) where (U(n)) is a family of random orthogonal matrices uniformly distributed
on O(n) and independent of (Xn). Then, we have the almost sure uniform convergence

lim
n→∞

sup
x∈R

∣∣∣∣∣
1

n

n∑

k=1

1{Sn,k≤x} − Φ(x)

∣∣∣∣∣ = 0. (3.1)

Remark 3. This result has a direct elementary proof, which we learned from Jack Silverstein.
His proof shows that the result holds also for i.i.d. random variables with finite second moments.
Here we derive it as a corollary to Theorem 1.

Proof. Orthogonal matrices satisfy (A2) with rn = n. By [12, Theorem 1], (A1) holds with
probability 1. Therefore, redefining U(n) and (Xt) on the product probability space ΩU ×ΩX ,
by [12, Theorem 1], there is a subset ∆U of probability 1 such that for each ω1 ∈ ∆U , by
Theorem 1, one can find a measurable subset ΩX,ω1

⊂ ΩX of probability one such that (3.1)
holds. By Fubini’s Theorem, the set of all pairs (ω1, ω2) for which (3.1) holds has probability
one.
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4 Proofs

4.1 Proof of Theorem 1

In order to use the well known method of the characteristic function, let s, t ∈ R and consider
the random variable

Φn(s, t) =
1

rn

rn∑

k=1

exp(isSn,k + itTn,k).

Lemma 1. For all s, t ∈ R, one can find some constant C(s, t) > 0 which does not depend on
n such that for n large enough

E

[
|Φn(s, t) − Φ(s, t)|2

]
≤ C(s, t)

(log(1 + rn))1+δ
. (4.1)

Proof. For all s, t ∈ R, denote by Ln(s, t) the left hand side of (4.1). We have the decomposition

Ln(s, t) =
1

r2
n

rn∑

k=1

rn∑

l=1

ln(s, t, k, l)

where

ln(s, t, k, l) = E [(exp(isSn,k + itTn,k) − Φ(s, t)) (exp(−isSn,l − itTn,l) − Φ(s, t))] .

In addition, if

ϕn(t) = E[exp(itXn)],

we clearly have

ln(s, t, k, l) = an(s, t, k, l) − bn(s, t, k, l) (4.2)

where

an(s, t, k, l) = E[exp(isSn,k + itTn,k − isSn,l − itTn,l)] − Φ2(s, t)

=
n∏

j=1

ϕj

(
s(u

(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j )

)
− Φ2(s, t),

bn(s, t, k, l) = Φ(s, t) (E[exp(isSn,k + itTn,k)] + E[exp(−isSn,l − itTn,l)] − 2Φ(s, t))

= Φ(s, t)




n∏

j=1

ϕj(su
(n)
k,j + tv

(n)
k,j ) +

n∏

j=1

ϕj(−su
(n)
l,j − tv

(n)
l,j ) − 2Φ(s, t)



 .

We shall now proceed to bound ln(s, t, k, l) for all 1 ≤ k, l ≤ rn. First of all, we clearly have
ln(s, t, k, k) ≤ 2. Moreover, we will show how to bound an(s, t, k, l) inasmuch as the bound for
bn(s, t, k, l) can be handled similarly. We obviously have

max
k 6=l

|an(s, t, k, l)| ≤ An(s, t) + Bn(s, t), (4.3)
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where

An(s, t) = max
k6=l

∣∣∣
n∏

j=1

ϕj(s(u
(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j ))

−
n∏

j=1

exp(−1

2
(s(u

(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j ))2)

∣∣∣

and

Bn(s, t) = max
k 6=l

∣∣∣∣∣∣

n∏

j=1

exp(−1

2
(s(u

(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j ))2) − Φ2(s, t)

∣∣∣∣∣∣
.

It follows from (A1) that for n large enough

0 ≤ max
j,k,l

∣∣∣s(u
(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j )

∣∣∣ ≤ 1. (4.4)

Moreover, by use of the well known inequality (27.13) of [4], we deduce from (A2) and (4.4)
that

An(s, t) ≤ α max
k 6=l

n∑

j=1

∣∣∣s(u
(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j )

∣∣∣
3

≤ a(s, t)

(log(1 + rn))1+δ

(
max

k

n∑

j=1

(u
(n)
k,j )2 + max

l

n∑

j=1

(v
(n)
l,j )2

)

≤ A(s, t)

(log(1 + rn))1+δ
. (4.5)

In order to bound Bn(s, t), set

dn(k, l, s, t) =
n∑

j=1

(s(u
(n)
k,j − u

(n)
l,j ) + t(v

(n)
k,j − v

(n)
l,j ))2 − 2(s2 + t2).

Assumptions (A2) and (A3) imply that

|dn(k, l, s, t)| ≤ s2

∣∣∣∣∣∣

n∑

j=1

((u
(n)
k,j )2 + (u

(n)
l,j )2) − 2

∣∣∣∣∣∣
+ t2

∣∣∣∣∣∣

n∑

j=1

((v
(n)
k,j )2 + (v

(n)
l,j )2) − 2

∣∣∣∣∣∣

+ 2s2

∣∣∣∣∣∣

n∑

j=1

u
(n)
k,j u

(n)
l,j

∣∣∣∣∣∣
+ 2t2

∣∣∣∣∣∣

n∑

j=1

v
(n)
k,j v

(n)
l,j

∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣
st

n∑

j=1

u
(n)
k,j v

(n)
k,j − u

(n)
l,j v

(n)
k,j + u

(n)
l,j v

(n)
l,j − u

(n)
k,j v

(n)
l,j

∣∣∣∣∣∣
≤ D(s, t)

(log(1 + rn))1+δ
.

By the elementary fact that for all a, b > 0, | exp(−a) − exp(−b)| ≤ |a − b|, we obtain that

Bn(s, t) ≤ B(s, t)

(log(1 + rn))1+δ
. (4.6)
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Consequently, we deduce from (4.3), (4.5) and (4.6) that

max
k 6=l

|an(s, t, k, l)| ≤ C(s, t)

3(log(1 + rn))1+δ
.

One can verify that the same inequality holds for bn(s, t, k, l). Finally, we obtain from (4.2)
that

Ln(s, t) ≤ 2

rn
+

2C(s, t)

3(log(1 + rn))1+δ
,

which completes the proof of Lemma 1.

To prove almost sure convergence, we will use the following lemma.

Lemma 2 ([15, Theorem 1]). Assume that (Yn,k) is a sequence of uniformly bounded C-valued
and possibly dependent random variables. Let (rn) be an increasing sequence of integers which
goes to infinity. If

Zn =
1

rn

rn∑

k=1

Yn,k

and for some constant C > 0,

E[|Zn|2] ≤ C

(log(1 + rn))1+δ
, (4.7)

then (Zn) converges to zero almost surely.

Proof of Theorem 1. In order to prove the second part of Theorem 1, we apply Lemma 2 to
uniformly bounded random variables

Yn,k = exp(isSn,k + itTn,k) − Φ(s, t)

with Φ(s, t) = exp(−(s2 + t2)/2). It follows from Lemma 1 that the condition (4.7) of Lemma
2 is satisfied. Therefore, (Zn) converges to zero almost surely. Since Zn = Φn(s, t) − Φ(s, t),
this shows that Φn(s, t) → Φ(s, t) almost surely as n → ∞, and we immediately deduce (2.9)
from [18, Theorem 2.6]. The proof of the first part of Theorem 1 is similar, and essentially
consists of taking t = 0 in the above calculations. Once we establish the weak convergence on
a set ∆ of probability 1, due to continuity of Φ(x), the convergence is uniform in x for every
ω ∈ ∆, see [4, Exercise 14.8].

4.2 Proof of Theorems 2 and 3

The proofs rely on strong approximation of the partial sum processes indexed by the Lipschitz
functions fk(x) = cos(2πkx), compare [10, Theorems 2.1, 2.2]. We derive suitable approxima-
tion directly from the following result.

Lemma 3 (Sakhanenko [19, Theorem 1]). Consider a sequence (Xn) which satisfies the as-
sumptions of Theorem 2. Then, it exists some constant c > 0 such that for every n ≥ 1 one
can realize X1, X2, . . . , Xn on a probability space on which there are i.i.d. N (0, 1) random

variables X̃1, X̃2, . . . , X̃n such that the partial sums

St =

t∑

i=1

Xi and S̃t =

t∑

i=1

X̃i
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satisfy

E

[
exp

(
c

τ
max

1≤t≤n
|St − S̃t|

)]
≤ 1 +

n

τ
, (4.8)

where τ is given by (2.10).

We use this keystone Lemma 3 as follows. For every n ≥ 1, we redefine X1, X2, . . . , Xn onto
a new probability space (Ωn,An, Pn) on which we have the i.i.d. standard normal random

variables X̃1, X̃2, . . . , X̃n which satisfy (4.8). Then, we define the sequence of weighted sums
(Sn,k) by (2.6) and we also denote

S̃n,k =

√
2

n

n∑

t=1

X̃t cos

(
2πkt

n

)
(4.9)

with k = 1, 2, . . . , rn. The assumptions and the conclusions of Theorems 2 and 3 are not
affected by such a change. One can observe from the trigonometric identities (2.2 to 2.5) that

for every fixed n, the random variables S̃n,1, S̃n,2, . . . , S̃n,rn
are i.i.d with standard N (0, 1)

distribution. Therefore, for all x, y ∈ R, if xn = x + y/
√

rn, we have the CLT

1√
rn

rn∑

k=1

(
1{eSn,k≤xn} − Φ(xn)

)
D−→

n→+∞
N (0, Φ(x)(1 − Φ(x))) . (4.10)

This is just the normal approximation for the binomial random variable B(rn, pn) where the
probability of success pn = Φ(xn) converges to p = Φ(x). In addition, we also have from the
Kolmogorov-Smirnov Theorem

√
rn sup

x∈R

∣∣∣∣∣
1

rn

rn∑

k=1

1{eSn,k≤x} − Φ(x)

∣∣∣∣∣
D−→

n→+∞
L, (4.11)

where L stands for the Kolmogorov-Smirnov distribution. Furthermore, consider the corre-
sponding empirical measure

µ̃n =
1

rn

rn∑

k=1

δeSn,k
. (4.12)

By Sanov’s Theorem, see e.g. [8], we have for all closed sets F and for all open sets G in
M1(R),

lim sup
n→∞

1

rn
log P(µ̃n ∈ F ) ≤ − inf

ν∈F
I(ν)

and

lim inf
n→∞

1

rn
log P(µ̃n ∈ G) ≥ − inf

ν∈G
I(ν).

Our goal is to deduce Theorems 2 and 3 from these results.

Proof of Theorem 2. For all x ∈ R, denote

Zn(x) =
1√
rn

rn∑

k=1

1{Sn,k≤x} and Fn(x) =
1

rn

rn∑

k=1

1{Sn,k≤x}.
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Let Z̃n(x) and F̃n(x) be the corresponding sums associated with S̃n,k given by (4.9) from

Lemma 3. Fix ε > 0, and let εn = ε
√

2π/rn. If

An =
{

max
1≤k≤rn

|Sn,k − S̃n,k| > εn

}

and Rn =
√

rn 1An
, we clearly have

Z̃n(x − εn) − Rn ≤ Zn(x) ≤ Z̃n(x + εn) + Rn.

Hence, it follows from the trivial bound |Φ(x ± εn) − Φ(x)| ≤ εn/
√

2π that
{

Zn(x) −√
rnΦ(x) ≥ Z̃n(x − εn) −√

rnΦ(x − εn) − ε − Rn,

Zn(x) −√
rnΦ(x) ≤ Z̃n(x + εn) −√

rnΦ(x + εn) + ε + Rn.
(4.13)

In addition, we also have
{√

rn(Fn(x) − Φ(x)) ≥ √
rn(F̃n(x − εn) − Φ(x − εn)) − ε − Rn,

√
rn(Fn(x) − Φ(x)) ≤ √

rn(F̃n(x + εn) − Φ(x + εn)) + ε + Rn,

which gives ∣∣∣∣
√

rn sup
x

|Fn(x) − Φ(x)| − √
rn sup

x
|F̃n(x) − Φ(x)|

∣∣∣∣ ≤ ε + Rn (4.14)

We now claim that (Rn) goes to zero in probability. As a matter of fact, we have

max
1≤k≤rn

|Sn,k − S̃n,k| =

√
2

n
max

k

∣∣∣∣∣

n∑

t=1

(Xt − X̃t) cos

(
2πkt

n

)∣∣∣∣∣

≤
√

2

n
max

k

∣∣∣∣∣

n−1∑

t=1

(St − S̃t)

(
cos

(
2πkt

n

)
− cos

(
2πk(t + 1)

n

))∣∣∣∣∣+

√
2

n

∣∣∣Sn − S̃n

∣∣∣.

Since the cosine is a Lipschitz function, we obtain that

max
1≤k≤rn

|Sn,k − S̃n,k| ≤
√

2

n
max

k

n−1∑

t=1

|St − S̃t|
2πk

n
+

√
2

n
|Sn − S̃n|

≤
√

2

n
(1 + 2πrn) max

1≤t≤n
|St − S̃t|. (4.15)

From Lemma 3 together with Markov inequality, we obtain for large enough n so that rn/
√

n ≤
c/τ ,

P(An) ≤ P

(
max

1≤t≤n
|St − S̃t| ≥

ε
√

2πn√
rn(1 + 2πrn)

)

≤ exp

(
− cε

√
2πn

τ
√

rn(1 + 2πrn)

)
E

[
exp

(
c/τ max

1≤t≤n
|St − S̃t|

)]

≤ exp

(
log(1 +

n

τ
) − cε

√
2πn

τ
√

rn(1 + 2πrn)

)
→ 0.
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Consequently Rn → 0 in probability. Finally, as ε > 0 is arbitrary, we deduce (2.12) from (4.10)
and (4.13) while (2.13) follows from (4.11) and (4.14), which achieves the proof of Theorem
2.

Our proof of Theorem 3 is based on the following approximation lemma.

Lemma 4 ([2, Theorem 4.9]). Suppose that the sequence of random variables (Sn,k) and (S̃n,k)
are such that, for every θ > 0,

lim sup
n→∞

1

rn
log E

[
exp(θ

rn∑

k=1

|Sn,k − S̃n,k|)
]
≤ 1. (4.16)

If the sequence of empirical measures (µ̃n) given by (4.12) satisfies a LDP in M1(R) with
speed rn and good rate function I, then the sequence of empirical measures (µn) given by
(2.14) satisfies a LDP in M1(R) with the same speed rn and the same rate function I.

Proof of Theorem 3. The large deviation principle for the sequence (µ̃n) follows from Sanov’s
Theorem. In order to complete the proof, we only need to verify assumption (4.16) of Lemma
4. Inequality (4.15) implies that for n large enough, there is some constant C > 0 such that,
for every θ > 0,

E

[
exp(θ

rn∑

k=1

|Sn,k − S̃n,k|)
]

≤ E

[
exp(θrn max

1≤k≤rn

|Sn,k − S̃n,k|)
]

≤ E

[
exp(Cr2

nn−1/2 max
1≤t≤n

|St − S̃t|)
]
.

Since r4
n = o(n), we infer from (4.8) that for n large enough,

1

rn
log E

[
exp(θ

rn∑

k=1

|Sn,k − S̃n,k|)
]
≤ log(1 + n/τ)

rn
,

which completes the proof of Theorem 3 as log(n) = o(rn).
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