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Abstract

We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra,
i.e. of type X; = fot zx (t,s)dWs, t € [0,00), where zx is a deterministic kernel and W is a
standard Brownian motion.

1 Introduction

Let (Xt)ie[o,00) be a continuous Volterra Gaussian process on a complete probability space
(Q, F,P). This means that

t
X = / zx (t,8)dWy, a.s., t € [0, 00), (1.1)
0

where the kernel zx € L? ([0, 00)2) is Volterra, i.e. zx(t,s) =0, s > t, and (W);e[0,00) is a

loc
standard Brownian motion. Clearly, X is centered and

RX(s,t) := Covp (Xs, Xt) = / zx (s,u)zx (t,u)du, 0 < s <t < oco.
0

We assume that X is §-self-similar for some 8 > 0, i.e.
d
(Xat)te[o,oo) = (aﬁXt)te[o,oo)’ a>0, (1.2)

where 2 denotes equality of finite-dimensional distributions. Furthermore, we assume that zx
is non-degenerate in the sense that the family {zx (¢, )|t € (0,00)} is linearly independent
and generates a dense subspace of L? ([0,00)). Then

Iy(X) := span{X;|s € [0,t]} = T(W), t € (0,00), (1.3)
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where the closure is in L?(P), or equivalently,

FX = %

)

where FX := (F) denotes the completed natural filtration of X.

te(0,00)

We assume implicitly that (Q,F,P) is the coordinate space of X, which means that =
{w : [0,00) — R|w is continuous}, F = FX = o(X; |t € [0,00)) and P is the probability
measure with respect to which the coordinate process Xi(w) = w(t), w € Q, t € [0,00), is a
centered Gaussian process with covariance function RX. Recall that a measurable map

zZ:QF5P) - (QFP)
Xw) = Z(X(w)

is a measure-preserving transformation, or endomorphism, on (Q, F,P) if P = P, or equi-

valently, if Z(X) L X. If Z is also bijective and Z~! is measurable, then it is an automorphism.

Processes of the above type are a natural generalization of the nowadays in connection with
finance and telecommunications extensively studied fractional Brownian motion with Hurst
index H € (0,1), or H-fBm. The H-fBm, denoted by (BtH) , is the continuous, centered

Gaussian process with covariance function

te[0,00)

1
RBH(S,t) — 5(521'1 4 t2H _ |5—t|2H), S,te[0,00).
For H = %, fBm is standard Brownian motion. H-fBm is H-self-similar and has stationary
increments. The non-degenerate Volterra kernel is given by

1

1 1 t
oy |[-—HH—-—- H+-,1—-], 0<s<t<o00,
2 2 2 S

[N

zpn(t,s) = c(H)(t—s)""

1

2HT(8—H) 2
U(H+3)T(2—2H)

Gauss hypergeometric function. In 2003, Molchan (see [8]) showed that the transformation

where ¢(H) = < with I' denoting the Gamma function, and 2Fj is the

t BH
Z,(B") = B - 2H/ *ds, t € [0,00), (1.4)
0 S
is measure-preserving and satisfies
Iy (Z2(BM)) = Ir (Y?), T >0, (1.5)
where ;
Y;H = MtH - ff]lfa te [OaT] (16)

Here, M := /2 —2H fots%*HdWS, t € [0,00), is the fundamental martingale of BH and
el =21t [ ()7 et

S

In this work, we present a class of measure-preserving transformations (on the coordinate
space) of X, which generalizes this result. Moreover, we show that these measure-preserving
transformations are ergodic.
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2 Ergodic transformations

First, we introduce the class of measure-preserving transformations:

Theorem 2.1. Let a > _71 Then the transformation
1 t 1
ZXX) = Xy — 2o+ 1)tﬁ_o‘_5/ s P72 X ds, t €]0,00), (2.1)
0
is an automorphism on the coordinate space of X. The inverse is given by
oo P
ZoTHX) = Xy — Qo+ 1)ta+ﬁ+%/ X, P2"34ds, a.s., t €[0,00). (2.2)
t

The integrals on the right-hand sides are L*(P)-limits of Riemann sums.

Proof. First, note that R¥ is continuous. Furthermore, by combining Hoélder’s inequality and
[C2), we have that
|R¥(s,t)| < Ep(X1)%s°t", s,t € (0,00).

Hence, the double Riemann integrals

t gt
/ / (us)o‘_ﬁ_%RX(u, s)duds
0o Jo

/ / (us)*ﬁ*a*%RX(u, s)duds
¢ Je

are finite. Thus, the integrals in [Z1I) and (2)) are well-defined (see [5], section 1).
Second, we show that Z¢ is a measure-preserving transformation. Let Y; := exp(—/3t) Xexp(t)

and Y,* = exp(—ﬁt)Zg‘xp(t) (X), t € R, denote the Lamperti transforms of X and Z%(X),

respectively. Hence, the process (Y;)ier is stationary. By substituting v := In(s), we obtain

and

that
1 exp(t) N
Y = exp(—pt) | Xexpr) — (2a+1)exp ((ﬁ —a— 5) t) / s* P73 X ds
0
1 ¢ 1
= Y- (Q2a+1)exp a5 t 3 exp (v a76+§ Xexp(v)dv
1 ¢ 1
= Y:—(Q2a+1)exp —a-g t exp (v a+§ Y, dv
- —0o0
= / he(t —v)Y,dv, a.s., t € R,
—o0
where

he(x) = do(x) — (200+ 1)1(g,00)(x) exp < <a + %) z> , TR

Thus, Y¢ is a linear, non-anticipative, time-invariant transformation of Y. The spectral dis-
tribution function of Y'¢ is given by (see [I3], p. 151)

dF*(\) = [H*(W)[?dF(N), A€ R,
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where H*(\) := [, exp(—idz)h*(z)dx denotes the Fourier transform of h* and F is the
spectral distribution function of Y. We have that (see [B], p. 14 and p. 72)

1- (2a+1) <m>‘ —

|H ()‘)‘ = (%+a)2+)\2

L3

ie. F* = F. It follows from this that (Y;*), g < (Yi)ier, or equivalently, (Z£(X));¢(0, 0

(Xt)tG[O,oo)-
Third, by splitting integrals and using Fubini’s theorem, we obtain that
zr T (2ZYX) = Xy = 22 (27Y(X)), as., t€[0,00). O
Remark 2.2. Theorem BTl generalizes ([Cl). In fact, ZH-3 (BH) =Z (BH), H € (0,1).

Remark 2.3. Theorem Il holds true for general continuous centered (-self-similar Gaussian
processes.

Next, we present two auxiliary lemmas concerning the structure of zx:

Lemma 2.4. Let (Xt)te[o,oo) be a Volterra Gaussian process with a mon-degenerate Volterra
kernel zx. Then the following are equivalent:
1. X is B-self-similar, i.e.

S S
/ zx (at,au)zx (as,au)du = aQﬁfl/ zx (t,u)zx (s,u)du, 0 < s <t<oo, a>0.
0 0

2. It holds that )
zx(at,as) = a’"Zzx(t,s), 0<s<t<oo, a>D0.
3. There exists Fx € L* ((0,1), (1 — z)?°~dz) such that

zx(t,s) = (tfs)ﬁ*%FX (;), 0<s<t<oo.

Proof. 1 = 2: For a > 0, let 2y ((t, 5) := a%_ﬁzx(at,as), 0<s<t<oo,and let Yi(a) :=
fg 2y (a)(t,8)dWs, t € [0,00). Clearly, zy(q) is non-degenerate. From ([3), we obtain that
I'y(Y(a)) =T¢(W),t € (0,00). From part 1, it follows that X 4 Y (a). Thus, the process W} :=
fot z25 (t,s)dY5(a), t € [0,00), where z% is the reciprocal of zx and the integral is an abstract
Wiener integral, is a standard Brownian motion with T's(W') = T'+(Y(a)), t € (0,00). Hence,
(W) =Ty(W’), i.e. W and W' are indistinguishable. Therefore, Y;(a) = f(f zx (t, s)dWs,
s, t € (0,00), ie. Yi(a) = Xy, as., t € [0,00). In particular, 0 = Ep(Yi(a) — X;)? =
fg (2y ()t s) — 2x (¢, s))st, t € (0,00). Thus, zx(t,-) = 2y (a)(t,-), t € (0,00).
2 = 3: Let Gx(t,s) := (t —s)2 Pzx(t,s), 0 < s < t < oo. From part 2, it follows that
Gx(at,as) = Gx(t,8), 0 < s <t < 00, a > 0. Hence, for every (¢,s), s < t, the function
G x is constant on the line {(at,as)|a € (0,00)}, which depends only on the slope 7. Thus,
Gx(t,s) = Fx(£),0<s <t < oo, for some Fx € L*((0,1), (1 — z)?’~'dx).
3 = 1: This is trivial. (]

Lemma 2.5. Let oo > _71 Then we have that

t t
o=z / uafﬁfézx(u,s)du = sa/ zx (tu)u™* tdu, 0< s <t <o,
S S
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Proof. From Lemma B4l it follows that the Volterra kernel of X can be written as
zx(t,s) = (t— s)ﬁ*%FX (;) , 0<s <t <oo,

for some function Fx. By substituting first  := > and then v := tx, we obtain that

t t
th—o—3 / uo‘_ﬁ_%zx(u,s)du = (fa—3 / ua—ﬁ—%(u _ s)ﬁ_%FX (f) du
s s U

1
= tﬁ*a*%sa/ :c*a*l(lf:c)ﬁ*%FX(:c)d:c

¢
_ a . -1 VN —a-1
= s /s(t v) 2FX(t>v dv
¢
= so‘/ zx (t,v)o ™ tdov. O

The next lemma is the key result for deriving the ergodicity of the measure-preserving trans-
formations:

Lemma 2.6. Let o > _71 Then

ZMX) = /0 zx (t,8)dZ& (W), a.s., t €[0,00).

Proof. By combining (I and the stochastic Fubini theorem, using Lemma I again the
stochastic Fubini theorem, and finally using partial integration, we obtain that

¢ ¢
ZMX) = X¢ — (2a+1)/0 (tﬁaé/ saﬁézx(s,u)ds) aw,

¢ ¢
= X; — (2a+1)/ (ua/ zX(t,s)salds) aw,
0 u

t s
= X; — (2a+1)/ zX(t,s)sfafl/ udW,ds
0 0
t S
= Xy - (204+1)/ zx (t, ) <(a)sa1/ uO‘IWududerleSds)
0 0

t
= / zx(t,8)dZ& (W), a.s., t € (0,00). O
0

In the following, let Z*™ := (Z%)" denote the n-th iterate of Z*, n € Z. Also, let

Io(X) = span{X; | t € [0,00)}.
For o > f%, let

t
N = / s*dWs, t € [0, 00).
0

Clearly, N is an (a + %)—self—similar FX-martingale. From Lemma B8 it follows that

ZMX) = /Ot zx(t,8)sT“dZ2 (N®), a.s., t € (0,00). (2.3)
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The next lemma is an auxiliary result, which was obtained in [{], section 3.2 and Theorem
5.2. (The automorphism Z on the coordinate space of N* here corresponds to the (ergodic)
automorphism 7™ on the coordinate space of the martingale M with M := N in [1].)

Lemma 2.7. Let o > _71 and T > 0.
1. It holds that
Ir (2*(N®)) = I'p (N®T),

2041
where N{°T = Ng — (£)™

Lawp (N*7) = Lawg (N® | Ng = 0), and T'r (N*T) == span{N*" |t € [0,77]}.
2. We have that

N%, t € [0,T], is a bridge of N, i.e. a process satisfying

' (N%) = Luen, span{Z%’"(No‘)} (2.4)

and

oo (N¥) = Lpezspan{Z3"(N*)}. (2.5)
Here, 1 denotes the orthogonal direct sum.
By combining ([Z3) and part 1 of Lemma 7 we obtain the following:
Lemma 2.8. Let o > ’71 and T > 0. Then

Ir(2*(X)) = Ip (N*T).

Remark 2.9. Lemma is a generalization of identity ([CH)). Indeed, we have that Y, =
mg 51_2Hde_%’T, a.s., t € [0,7], where Y is the process defined in (CH). Y is a
bridge (of some process) if and only if H = 1.

The following generalizes part 2 of Lemma 27

Lemma 2.10. Let a > ’71 and T > 0. Then we have that

I'r (X) = @nen, span {27 (X)}

and

P (X) = @nezspan{Z7"(X)}.
Proof. We assume that X # N¢. By iterating 3) and Z4l), we obtain that

Z3M(X) € Tr(2°7 (X)) = T (2°"(N®)) = Lizn span {257 (V) }, nez.

Moreover, Xp £ N%, hence Z7"(X) £ Z7" (N®), n € Z, and therefore,

Zp"(X) ¢ Lisny1span {Z;” (Na)}, n € Z.

From [ZZ) and ), it follows that the systems {Z7"(X)}
and complete in I'r(X) and T's (X)), respectively.

and {Z77"(X)}, o, ave free

n€Ny

O

Remark 2.11. The process X is an FX-Markov process if and only if there exists o > %1
and a constant ¢(X), such that

¢
X: = ¢(X) -tﬁf%fa/ sYdWs, a.s., t € (0,00). (2.6)
0

The free complete system {Z;""(X)}, ., is orthogonal if and only if (ZH) is satisfied.
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From Lemma EZT0 we obtain the following:

Corollary 2.12. Let o > _71 and T > 0. Then

7=\ o(22"(X)).

n€eNy

Furthermore,
F=7Fi=\o(zg"X)
nez
Recall that an automorphism Z is a Kolmogorov automorphism, if there exists a o-algebra
A C F, such that Z7'A C A, VipezZ™A = F and Npen, 2~ "A = {Q,0}. A Kolmogorov
automorphism is strongly mixing and hence ergodic (see [L1], Propositions 5.11 and 5.9 on p.
63 and p. 62). The ergodicity of Z¢ is hence a consequence of the following:

Theorem 2.13. Let a > _71 and T > 0. The automorphisms Z% and Z%~1 are Kolmogorov
automorphisms with A = Vype_no(Z7"(X)) and A= F3, respectively.

Proof. Z% is a Kolmogorov automorphism with A = V,e_no (Z277"(X)):

First, 2" A = Ve no (20" H(X)) C A.

Second, VinezZ9™A = Vimez Vae—N U(Z%’er"(X)) =F.

Third, let {Y,}n,e—n denote the Hilbert basis of @,ec_nspan{Z:"(X)} which is obtained
from {Z7"(X)}, .y via Gram-Schmidt orthonormalization. By using Kolmogorov’s zero-
one law (see [Z], p. 381), we obtain that Mmeng 24 ™A = Nmeny (Vac—m—10 (27" (X)) =

MNmeN, (Vng—m—IU(Yn)) = {Q, @}
Similarly, one shows that Z%~1 is a Kolmogorov automorphism with A = F3X. O
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