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Abstract

Central limit theorems for Markov chains are considered, and in particular the relationships
between various expressions for asymptotic variance known from the literature. These turn
out to be equal under fairly general conditions, although not always. We also investigate the
existence of CLTs, and pose some open problems.

1 Introduction

The existence of central limit theorems (CLTs) for Markov chains is well studied, and is is
particularly important for Markov chain Monte Carlo (MCMC) algorithms, see e.g. [13], [23],
[8], [5], [6], [10], [12], and [9]. In particular, the asymptotic variance σ2 is very important in
applications, and various alternate expressions for it are available in terms of limits, autoco-
variances, and spectral theory.

This paper considers three such expressions, denoted A, B, and C, which are known to“usually”
equal σ2. These expressions arise in different applications in different ways. For example, it is
proved by Kipnis and Varadhan [13] that if C < ∞, then a

√
n-CLT exists for h, with σ2 = C.

In a different direction, it is proved by Roberts [17] that Metropolis algorithms satisfying a
certain condition must have A = ∞. Such disparate results indicate the importance of sorting
out the relationships between A, B, C, σ2, and the existence of Markov chain CLTs.

In Sections 3 and 6 below, we consider the relationships between the quantities A, B, and C.
In Section 4, we consider conditions under which the existence of a

√
n-CLT does or does not
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imply the finiteness of these quantities. And, in Section 5, we present a number of questions
that appear to be open.

2 Notation and Background

Let {Xn} be a stationary, time homogeneous Markov chain on the measurable space (X ,F),
with transition kernel P , reversible with respect to the probability measure π(·), so P[Xn ∈
S] = π(S) for all n ∈ N and S ∈ F . Let Pn(x, S) = P[Xn ∈ S |X0 = x] be the n-
step transitions. Say that P is ergodic if it is φ-irreducible and aperiodic, from which it
follows (cf. [23], [21], [19]) that limn→∞ supS∈F |Pn(x, S) − π(S)| = 0 for π-a.e. x ∈ X . Write
π(g) =

∫

X
g(x)π(dx), and (Pg)(x) =

∫

X
g(y)P (x, dy), and 〈f, g〉 =

∫

X
f(x) g(x)π(dx). By

reversibility, 〈f, Pg〉 = 〈Pf, g〉.
Let h : X → R be a fixed, measurable function, with π(h) = 0. Let γk = E[h(X0)h(Xk)] =
〈h, P kh〉 be the corresponding lag-k autocovariance. Say that a

√
n-CLT exists for h if

n−1/2
∑n

i=1
h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞:

n−1/2

n
∑

i=1

h(Xi) ⇒ Normal(0, σ2) , σ2 < ∞ , (1)

where we allow for the degenerate case σ2 = 0 corresponding to a point mass at 0.

Remark 1. Below we shall generally assume that the Markov chain is ergodic. However, the
convergence (1) does not necessarily require ergodicity; see e.g. Proposition 29 of [19].

Remark 2. The assumption of stationarity is not crucial. For example, it follows from [14]
that for Harris recurrent chains, if a CLT holds when started in stationarity, then it holds from
all initial distributions.

Remark 3. We note that (1), and the results below, are all specific to the n−1/2 normalisation
and the Normal limiting distribution. Other normalisations and limiting distributions may
sometimes hold, but we do not consider them here.

We shall also require spectral measures. Let E be the spectral decomposition measure (e.g.
[22], Theorem 12.23) associated with P , so that

f(P ) =

∫ 1

−1

f(λ) E(dλ)

for all bounded analytic functions f : [−1, 1] → R, and E(R) = E([−1, 1]) = I is the identity
operator. (Of course, here f(P ) is defined in terms of power series, so that e.g. sin(P ) =
∑∞

j=0
(−1)j P 2j+1.) Let Eh be the induced spectral measure for h (cf. [5], p. 1753), viz.

Eh(S) = 〈h, E(S)h〉 , S ⊆ [−1, 1] Borel

with Eh(R) = 〈h, E(R)h〉 = 〈h, h〉 = π(h2) < ∞.
There are a number of possible formulae in the literature (e.g. [13], [8], [5]) for the limiting
variance σ2 in (1), including:

A = lim
n→∞

n−1Var

(

n
∑

i=1

h(Xi)

)

;
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B = γ0 + 2

∞
∑

k=1

γk ;

C =

∫ 1

−1

1 + λ

1 − λ
Eh(dλ) .

We consider A, B, and C below. Of course, if π(h2) < ∞, then expanding the square gives

A = γ0 +2 limn→∞

∑n−1

k=1

(

n−k
n

)

γk. We shall also have occasion to consider versions of A and

B where the limit is taken over odd integers only:

A′ = lim
j→∞

(2j + 1)−1Var

(

2j+1
∑

i=1

h(Xi)

)

;

B′ = γ0 + 2 lim
j→∞

2j+1
∑

k=1

γk .

Obviously, A′ = A and B′ = B provided the limits in A and B exist. But it may be possible
that, say, A′ is well-defined even though A is not.

3 Relationships Between Variance Expressions

The following result is implicit in some earlier works (e.g. [13], [8], [5]), though it may not have
previously been written down precisely.

Theorem 4. If P is reversible and ergodic, and π(h2) < ∞, then A = B = C (though they
may all be infinite).

Theorem 4 is proved in Section 6. We first note that if ergodicity is not assumed, then we may
have A 6= B:

Example 5. Let X = {−1, 1}, with π{−1} = π{1} = 1/2, and P (1, {−1}) = P (−1, {1}) = 1,

so P is reversible with respect to π(·). Let h be the identity function. Then
∣

∣

∣

∑n
i=1

h(Xi)
∣

∣

∣
≤ 1,

so A = 0. On the other hand, γk = (−1)k, so γ0 + 2
∑2j+1

k=1
γk = 1 + 2(−1) = −1, so B′ = 0.

However, B is an oscillating sum and thus undefined. So A 6= B, but Theorem 4 is not violated
since the chain is periodic and hence not ergodic. And, a (degenerate)

√
n-CLT does hold,

with σ2 = A = 0.

Now, Kipnis and Varadhan [13] proved for reversible chains that if C < ∞, then a
√

n-CLT
exists for h, with σ2 = C. Combining this with Theorem 4, we have:

Corollary 6. If P is reversible and ergodic, and π(h2) < ∞, and any one of A, B, and C is
finite, then a

√
n-CLT exists for h, with σ2 = A = B = C < ∞.

(Furthermore, it is easily seen [20] that C < ∞ whenever π(h2) < ∞ and the spectrum of P
is bounded away from 1.)
In a different direction, Roberts [17] considered the quantity r(x) = P[X1 = x |X0 = x], the
probability of remaining at x, which is usually positive for Metropolis-Hastings algorithms.
He proved that if limn→∞ nE[h2(X0) r(X0)

n] = ∞, then A = ∞ (and used this to prove
that A = ∞ for some specific independence sampler examples). Combining his result with
Theorem 4, we have:
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Corollary 7. If P is reversible and ergodic, and limn→∞ nE[h2(X0) r(X0)
n] = ∞ where

π(h2) < ∞, then A = B = C = ∞.

Remark 8. If the Markov chain is not reversible, then the spectral measure required to
define C becomes much more complicated, and we do not pursue that here. However, it is still
possible to compare A and B. It follows immediately from the definitions and the dominated
convergence theorem (cf. [3], p. 172; [5]) that if

∑

k |γk| < ∞, then A = B < ∞ (though this
might not imply a

√
n-CLT for h). The condition

∑

k |γk| < ∞ is known to hold for uniformly
ergodic chains (see [3]), and for reversible geometrically ergodic chains (since that implies [18]
that |γk| ≤ ρk π(h2) for some ρ < 1), but it does not hold in general. For more about geometric
ergodicity and CLTs see e.g. [10], [19], [12], and [9].

4 Converse: What Does a CLT Imply about Variance?

The result from [13] raises the question of the converse. Suppose {Xn} is a stationary Markov
chain, and n−1

∑n
i=1

h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞. Does it
necessarily follow that any of A, B, and C are finite? An affirmative answer to this question
would, for example, allow a strengthening of Corollary 7 to conclude that no

√
n-CLT holds

for such h, and in particular a
√

n-CLT does not hold for the independence sampler examples
considered by Roberts [17].
Even in the i.i.d. case (where P (x, S) = π(S) for all x ∈ X and S ∈ F), this question is
non-trivial. However, classical results (cf. Sections IX.8 and XVII.5 of Feller [7]; for related
results see e.g. [4], [2]) provide an affirmative answer in this case:

Theorem 9. If {Xi} are i.i.d., and n−1/2
∑n

i=1
h(Xi) converges weakly to Normal(0, σ2),

where 0 < σ < ∞ and π(h) = 0, then A, B, and C are all finite, and σ2 = A = B = C.

Proof. Let Yi = h(Xi), and let U(z) = E[Y 2
1 1|Y1|≤z]. Then since the {Yi} are i.i.d. with

mean 0, Theorem 1a on p. 313 of [7] says that there are positive sequences {an} with a−1
n (Y1 +

. . . + Yn) ⇒ Normal(0, 1) if and only if limz→∞

[

U(sz)/U(z)
]

= 1 for all s > 0. Furthermore,
equation (8.12) on p. 314 of [7] (see also equation (5.23) on p. 579 of [7]) says that in this case,

lim
n→∞

na−2
n U(an) = 1 . (2)

Now, the hypotheses imply that a−1
n (Y1 + . . . + Yn) ⇒ Normal(0, 1) where an = c n1/2 with

c = σ. Thus, from (2), we have limn→∞ c−2 U(cn1/2) = 1. It follows that limz→∞ U(z) = c2 =
σ2 < ∞, i.e. E(Y 2

1 ) < ∞. We then compute that γk = 0 for k ≥ 1, so B = γ0 = E(Y 2
1 ) =

σ2 < ∞. Hence, by Corollary 6, σ2 = A = B = C = E(Y 2
1 ) < ∞.

Remark 10. In the above proof, if E(Y 2
1 ) = σ2 < ∞, then of course U(z) → σ2, implying that

U(sz)/U(z) → σ2/σ2 = 1, and the (classical) CLT applies. On the other hand, there are many
distributions for the {Yi} which have infinite variance, but for which the corresponding U is
still slowly varying in this sense. Examples include the density function |y|−31|y|≥1, and the
cumulative distribution function (1− (1 + y)−2)1y≥0. The results from [7] say that we cannot
have an = c n1/2 in such cases. (In the y−31|y|≥1 example, we instead have an = c (n log n)1/2.)

If {Xn} is not assumed to be i.i.d., then the question becomes more complicated. Of course, if
{n−1

∑n
i=1

h(Xi)
2}∞n=1 is uniformly integrable, then whenever a

√
n-CLT exists we must have
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A = σ2, which implies by Theorem 4 (assuming reversibility) that σ2 = A = B = C < ∞.
However, it is not clear when this uniform integrability condition will be satisfied, and we now
turn to some counter-examples.
If {Xn} is not even reversible, then it is possible for a

√
n-CLT to hold even though A is not

finite:

Example 11. Let the state space X be the integers, and let h be the identity function.
Consider the Markov chain on X with transition probabilities given (for j ≥ 1) by P (0, 0) =
1/2, P (j,−j) = P (−j, 0) = 1, and P (0, j) = c/j3 where c = 1

2
ζ(3)−1 with ζ(s) =

∑∞
n=1

n−s

the Riemann zeta function. (That is, whenever the chain leaves 0, it cycles to some positive
integer j, then to −j, and then back to 0.)
This Markov chain is irreducible and aperiodic, with stationary distribution given by π(0) =
1/2 and π(j) = π(−j) = c′/j3 where c′ = ζ(3)/4. Furthermore, π(h) = 0.
Since h(j) + h(−j) = 0 and h(0) = 0, it is easy to see that for n ≥ 2, we have

∑n
i=1

h(Xi) =
1X1<0 X1 + 1Xn>0 Xn. In particular,

∑n
i=1

h(Xi) ≤ |X1| + |Xn|, and since by stationarity
E|X1| = E|Xn| =

∑

x6=0
|x|c′|x|−3 < ∞, it follows immediately that n−1/2

∑n
i=1

h(Xi) con-
verges in distribution to 0, i.e. to N(0, 0). It also follows that for n ≥ 2,

Var

(

n
∑

i=1

h(Xi)

)

= 2E[X2
1 1X1>0] = 2

∞
∑

j=1

j2(c′/j3) = ∞ .

Hence, A = limn→∞ n−1Var (
∑n

i=1
h(Xi)) = ∞.

Remark 12. If we wish, we can modify Example 11 to achieve convergence to N(0, 1) instead
of N(0, 0), as follows. Replace the state space X by X ×{−1, 1}, let the first coordinate {Xn}
evolve as before, let the second coordinate {Yn} evolve independently of {Xn} such that each
Yn is i.i.d. equal to −1 or 1 with probability 1/2 each, and redefine h as h(x, y) = x + y. Then
n−1/2

∑n
i=1

h(Xi) will converge in distribution to N(0, 1).

Remark 13. If we wish, we can modify Example 11 to make the functional h bounded,
as follows. Instead of jumping from 0 to a value j, the chain instead jumps from 0 to a
deterministic path of length 2j + 1, where the first j states have h = +1, the next j states
have h = −1, and then the chain jumps back to 0.

We now show that even if {Xn} is reversible, the existence of a
√

n-CLT does not necessarily
imply that A is finite:

Example 14. We again let the state space X be the integers, with h the identity function.
Consider the Markov chain on X with transition probabilities given by P (0, 0) = 0, P (0, y) =
c |y|−4 for y 6= 0 (where c = 45/π4), and, for x 6= 0,

P (x, y) =







|x|−1 , y = 0
1 − |x|−1 , y = −x
0 , otherwise .

That is, the chain jumps from 0 to a random site x, and then oscillates between −x and x for
a geometric amount of time with mean |x|, before returning to 0. This chain is irreducible and
aperiodic, and is reversible with respect to the stationary distribution given by π(x) = c′|x|−3

and π(0) = c′/c, where c′ = [c−1 + 2 ζ(3)]−1.
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We prove the existence of a CLT by regeneration analysis (see e.g. [1]). We define each visit
to the state 0 as a regeneration time, and write these regeneration times as T1, T2, . . .. For
convenience, we set T0 = 0 (even though we usually will not have X0 = 0, i.e. we do not
impose a regeneration at time 0, unlike e.g. [15], [10]). These times break up the Markov
chain into a collection of random paths (“tours”), of the form {(XTj+1,XTj+2, . . . ,XTj+1

)}∞j=0.
The tours from T1 onwards each travel from 0 to 0, are all i.i.d. We note that for j ≥
1, the sum over a single tour,

∑Tj+1

i=Tj+1
Xi, is either XTj+1, −XTj+1, or 0. Furthermore,

P(XTj+1 = y) = P (0, y) = c|y|−4, so E(X2
Tj+1) =

∑

y 6=0
y2c|y|−4 < ∞. This implies that

∑Tj+1

i=Tj+1
Xi has finite variance, say V . It then follows from the classical central limit theorem

that as J → ∞, J−1/2
∑TJ+1

i=T1+1
Xi converges in distribution to N(0, V ). By the Law of

Large Numbers, as J → ∞, TJ/J → τ where τ = E[Tj+1 − Tj ]. Hence, asymptotically for

large n, if we find J with TJ < n ≤ TJ+1, then n−1/2
∑n

i=1
Xi ≈ (Jτ)−1/2

∑TJ+1

i=T1+1
Xi ≈

τ−1/2 N(0, V ) = N(0, V/τ). That is, a
√

n-CLT exists for h, with mean 0 and variance

σ2 = V/τ = Var
[

∑Tj+1

i=Tj+1
Xi

] /

E[Tj+1 − Tj ].

We now claim that Var[
∑n

i=0
Xi] is infinite for n even. Indeed, in the special case n = 0,

Var
[

n
∑

i=0

Xi

]

= Var[X0] =
∑

x∈X

P[X0 = x]x2 =
∑

x∈X

c′|x|−3 x2 =
∑

x∈X

c′|x|−1 = ∞ .

Assume now that n ≥ 2. Let Sn =
∑n

i=0
Xn, and let Dn be the event that Xi = 0 for some

0 ≤ i ≤ n (so that 0 < P(Dn) < 1). Since n is even, we have that Sn = X0 on the event DC
n

(because of cancellation), and so

E[S2
n 1DC

n
] = E[X2

0 1DC
n
] =

∑

x∈X

P[X0 = x , DC
n ] x2 =

∑

x∈X

c′ |x|−3 (1 − |x|−1)n x2

=
∑

x∈X

c′ |x|−1 (1 − |x|−1)n = ∞ .

Hence, Var[Sn] = E[S2
n] = ∞. (In fact, Cov[Xm,Xk] = +∞ for k − m even, and −∞ for

k − m odd, but we do not use that here.)
This proves the claim that Var[

∑n
i=0

Xi] is infinite for all even n. In particular, the limit in

the definition of A is either infinite or undefined, so A is certainly not finite.

Remark 15. We now show that in Example 14, in fact A is undefined rather than infinite.
(In particular, it is not true that A = C, thus showing that the condition π(h2) < ∞ cannot
be dropped from Theorem 4 above.)
To prove this, it suffices to show that Var(n−1/2Sn) remains bounded over all odd n (so that
the limit defining A oscillates between bounded and infinite values). But for n odd, we have
that Sn = 0 on DC

n (again because of cancellation), so the claim will follow from showing that
n−1 Var[Sn 1Dn

] remains bounded for all odd n.
Let {Tj} be the regeneration times as above, so XTj

= 0, and let Yj = XTj+1. Then v ≡
Var(Yj) =

∑

y 6=0
cy−4y2 < ∞. Now, on Dn, the sequence (XT1

, . . . ,Xn) breaks up into

some number 1 ≤ m ≤ n−1

2
of complete tours [say, (XT1

, . . . ,XT2−1), (XT2
, . . . ,XT3−1), . . .,

(XTm
, . . . ,XTm+1−1)], plus one possibly-incomplete final tour [say, (XTm+1

, . . . ,Xn)]. Now, for
j = 1, . . . ,m + 1, we have that XTj

+ . . . + Xmin{Tj+1−1,n} equals either Yj or 0, and it follows
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that V ar[XTj
+. . .+Xmin{Tj+1−1,n}] ≤ v. The contributions of different such blocks are clearly

uncorrelated, so Var[1Dn

∑n
i=T1

Xi] ≤ (n−1

2
+ 1)v ≤ nv.

Now let T−
n = max{i < n : Xi = 0} be the time of the last visit to 0 before time n. Then

arguing as before,

Var[1Dn

T−

n
∑

i=T1

Xi] ≤ Var[1Dn

n
∑

i=T1

Xi] ≤ nv .

But by time reversibility, the distribution of 1Dn

∑T−

n

i=0 Xi is identical to that of 1Dn

∑n
i=T1

Xi.

Hence, Var[1Dn

∑T−

n

i=0 Xi] = Var[1Dn

∑n
i=T1

Xi] ≤ nv.
Finally, we note that

Var[1Dn
Sn] = Var

[

1Dn

T−

n
∑

i=0

Xi + 1Dn

n
∑

i=T1

Xi − 1Dn

T−

n
∑

i=T1

Xi

]

.

We have shown that each of the three terms on the right-hand side has variance ≤ nv. It
follows by Cauchy-Schwarz that their covariances are also ≤ nv. Hence, expanding the square,
Var[1Dn

Sn] ≤ 9nv, so n−1 Var[Sn 1Dn
] ≤ 9v which is bounded independently of n.

5 Some Open Problems

The following questions are not answered by the above results, and appear (so far as we can
tell) to be open problems. Let {Xn} be a stationary Markov chain.

1. If the Markov chain is ergodic, but not necessarily reversible (cf. Theorem 4) nor geo-
metrically ergodic nor uniformly ergodic (cf. Remark 8), does it necessarily follow that
A = B (allowing that they may both be infinite)? What if we assume that P = P1P2

where each Pi is reversible (which holds if, say, P is a two-variable systematic-scan Gibbs
sampler, see e.g. [23])?

2. Is there a reversible, ergodic example where a
√

n-CLT exists, but A = ∞? (As discussed
in Remark 15, in Example 14 the limit in the definition of A is actually an undefined,
oscillating limit as opposed to equaling positive infinity.)

3. In particular, is there a reversible, ergodic example where a
√

n-CLT exists, but where
Roberts’ condition limn→∞ nE[h2(X0) r(X0)

n] = ∞ holds?

4. If the chain is reversible and ergodic and a
√

n-CLT exists, what further conditions
(weaker than i.i.d. or uniformly ergodic) still imply that A < ∞? (There are various
results in the stationary process literature, e.g. [11] and [16], that are somewhat related
to those from [7] used in the proof of Theorem 9, but their applicability to generalising
Theorem 9 is unclear.)

5. In particular, if the chain is reversible and a
√

n-CLT exists, and there is δ > 0 such that
r(x) ≥ δ for all x ∈ X , does this imply that A < ∞? (Note that the last condition fails
for Example 14.)
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6. In a different direction, if the chain is reversible and a
√

n-CLT exists, and π(h2) < ∞,
does this imply that A < ∞? (Of course, Example 14 has π(h2) = ∞. Also, Example 11
is not reversible, although as discussed in Remark 13 it is possible to make h bounded
and thus π(h2) < ∞ in that case.)

7. Related to this, can the condition π(h2) < ∞ be dropped from Corollaries 6 and 7? (It
cannot be dropped from Theorem 4, on account of Remark 15.)

6 Proof of Theorem 4

In this section, we prove Theorem 4. We assume throughout that P is a reversible and ergodic
Markov chain, and that π(h2) < ∞. We begin with a lemma (somewhat similar to Theorem 3.1
of [8]).

Lemma 16. γ2i ≥ 0, and |γ2i+1| ≤ γ2i, and |γ2i+2| ≤ γ2i.

Proof. By reversibility, γ2i = 〈f, P 2if〉 = 〈P if, P if〉 = ‖P if‖2 ≥ 0.
Also, |γ2i+1| = 〈f, P 2i+1f〉 = |〈P if, P (P if)〉| ≤ ‖P if‖2‖P‖ ≤ ‖P if‖2 = γ2i.
Similarly, |γ2i+2| = 〈f, P 2i+2f〉 = |〈P if, P 2(P if)〉| ≤ ‖P if‖2‖P 2‖ ≤ ‖P if‖2 = γ2i.

Lemma 17. limk→∞ γk = 0.

Proof. Since P is ergodic, it does not have an eigenvalue 1 or −1. Hence (cf. [22], Theo-
rem 12.29(b)) its spectral measure E does not have an atom at 1 or −1, i.e. E({−1, 1}) = 0, so
also Eh({−1, 1}) = 0 (cf. [8], Lemma 5). Hence, by the dominated convergence theorem (since

|λk| ≤ 1 for −1 ≤ λ ≤ 1, and
∫ 1

−1
1 Eh(dλ) = π(h2) < ∞), we have:

lim
k→∞

γk = lim
k→∞

〈h, P kh〉 = lim
k→∞

∫ 1

−1

λk Eh(dλ)

=

∫ 1

−1

(

lim
k→∞

λk

)

Eh(dλ) =

∫ 1

−1

0 Eh(dλ) = 0 .

Proposition 18. A′ = B′. (We allow for the possibility that A′ = B′ = ∞.)

Proof. We have that

(2j + 1)−1 Var

(

2j+1
∑

i=1

h(Xi)

)

= γ0 + 2γ1 + 2

j
∑

i=1

(

2j + 1 − 2i

2j + 1
γ2i +

2j + 1 − 2i − 1

2j + 1
γ2i+1

)

= γ0 +
4j

2j + 1
γ1 + 2

j
∑

i=1

γ2i

2j + 1
+ 2

j
∑

i=1

2j + 1 − 2i − 1

2j + 1
(γ2i + γ2i+1) . (3)

By Lemma 16, γ2i + γ2i+1 ≥ 0, so as j → ∞, for fixed i,

2j + 1 − 2i − 1

2j + 1
(γ2i + γ2i+1) ր γ2i + γ2i+1 ,
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i.e. the convergence is monotonic. Hence, by the monotone convergence theorem,

lim
j→∞

2

j
∑

i=1

2j + 1 − 2i − 1

2j + 1
(γ2i + γ2i+1) = lim

j→∞
2

j
∑

i=1

(γ2i + γ2i+1) .

By Lemma 17, γ2i → 0 as i → ∞, so
∑j

i=1

γ2i

2j+1
→ 0 as j → ∞. Finally, 4j

2j+1
→ 2. Putting

this all together, we conclude from (3) that

lim
j→∞

(2j + 1)−1 Var

(

2j+1
∑

i=1

h(Xi)

)

= γ0 + 2γ1 + 2 lim
j→∞

j
∑

i=1

(γ2i + γ2i+1) ,

i.e. A′ = B′.

Corollary 19. A = B. (We allow for the possibility that A = B = ∞.)

Proof. If P is ergodic, then by Lemma 17, γk → 0, so B = B′. Also,

(n + 1)−1Var

(

n+1
∑

i=1

h(Xi)

)

− n−1Var

(

n
∑

i=1

h(Xi)

)

(4)

= n−1

[

Var

(

n+1
∑

i=1

h(Xi)

)

− Var

(

n
∑

i=1

h(Xi)

)]

− [n(n + 1)]−1Var

(

n+1
∑

i=1

h(Xi)

)

Now, the first term above is equal to n−1
∑n

i=1
γi (which goes to 0 since γk → 0), plus

n−1E[h2(Xi+1)] (which goes to 0 since π(h2) < ∞). The second term is equal to

γ0

n
+ 2

n−1
∑

k=1

n + 1 − k

n(n + 1)
γk

which also goes to 0. We conclude that the difference in (4) goes to 0 as n → ∞, so that
A = A′. Hence, by Proposition 18, A = A′ = B′ = B.

Proposition 20. B = C. (We allow for the possibility that B = C = ∞.)

Proof. We compute that

B = lim
k→∞

(

〈h, h〉 + 2 〈h, Ph〉 + 2 〈h, P 2h〉 + . . . + 2 〈h, P kh〉
)

= lim
k→∞

〈

h, (I + 2P + 2P 2 + . . . + 2P k)h
〉

= lim
k→∞

∫ 1

−1

(1 + 2λ + 2λ2 + . . . + 2λk) Eh(dλ)

= lim
k→∞

∫ 1

−1

(

2
1 − λk+1

1 − λ
− 1

)

Eh(dλ)
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= lim
k→∞

∫ 1

−1

(1 + λ − 2λk+1

1 − λ

)

Eh(dλ)

= lim
k→∞

∫ 0

−1

(1 + λ − 2λk+1

1 − λ

)

Eh(dλ) + lim
k→∞

∫ 1

0

(1 + λ − 2λk+1

1 − λ

)

Eh(dλ)

=

∫ 0

−1

(1 + λ

1 − λ

)

Eh(dλ) +

∫ 1

0

(1 + λ

1 − λ

)

Eh(dλ)

= C ,

where the first limit follows from the dominated convergence theorem since | 1+λ−2λk+1

1−λ | ≤ 3
for λ ≤ 0, and the second limit (which may be infinite) follows from the monotone convergence

theorem since
{

1 + λ − 2λk+11 − λ
}∞

k=1
ր 1 + λ1 − λ for λ ≥ 0. (For definiteness, if Eh{0}

is non-zero, then we include the point λ = 0 in the integrals from −1 to 0, and not in the
integrals from 0 to 1.)

Theorem 4 then follows immediately from Corollary 19 and Proposition 20.
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