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Abstract

We show that the Bernoulli conjecture holds for sets with small one-dimensional projections,
i.e. any bounded Bernoulli process indexed by such set may be represented as a sum of a
uniformly bounded process and a process dominated by a bounded Gaussian process.

1 Introduction

Let I be a countable set and (εi)i∈I be a Bernoulli sequence i.e. a sequence of indepen-
dent symmetric variables taking values ±1. For T ⊂ l2(I) we consider the Bernoulli process
(
∑

i∈I εiti)t∈T . The problem we treat in this paper concerns the conditions we need to impose
on the set T to guarantee that the Bernoulli process is almost surely bounded. By the con-
centration property of Bernoulli processes (cf. Theorem 2 below) it is enough to consider the
boundedness of the mean.
For a nonempty set T ⊂ l2(I) we define

b(T ) := E sup
t∈T

∑

i∈I

εiti.

(More precisely, to avoid measurability problems one defines b(T ) := supF E supt∈F

∑

i∈I εiti,
where the supremum is taken over all finite subsets of T .) In a similar way we put

g(T ) := E sup
t∈T

∑

i∈I

giti,

where (gi)i∈I is a sequence of i.i.d. Gaussian N (0, 1) r.v.’s. The fundamental majorizing
measure theorem of Fernique [1] and Talagrand [4] states that g(T ) < ∞ if and only if γ2(T ) <
∞ – for precise definition of γ2 cf. [7, Definition 1.2.5].
It is easy to see that g(T ) ≥ E|g1|b(T ) =

√

π
2 b(T ). Moreover, obviously b(T ) ≤ supt∈T

∑

i∈I |ti|
and b(T1 + T2) ≤ b(T1) + b(T2).
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The Bernoulli conjecture (cf. [3, Problem 12] or [7, Conjecture 4.1.3]) states that for any set
T with b(T ) < ∞ we may find a decomposition T ⊂ T1 + T2 with supt∈T1

∑

i |ti| < ∞ and
g(T2) < ∞.
The aim of this note is to show that the Bernoulli conjecture holds under some additional
restrictions on the set T – namely, that all one dimensional projections of T (i.e. the sets
{ti : t ∈ T}) are small. In particular, we answer the question posed by M. Talagrand [7, p. 144]
– concerning the case when ti may take only two values 0 and 2−ki (see Example 1 in section
4).
In the paper we use letter L to denote universal positive constants that may change from line
to line, and Li to denote positive universal constants that are the same at each occurence.

2 Partitioning Scheme

In this section we slightly modify some of Talagrand’s results concerning partitioning scheme
for a family of distances (gathered in sections 2.6 and 5.1 of [7]) to get the statement expressed
in the language that will be suitable for our purposes. The only new point of our approach is
Definition 1 below.
Let r = 2ν for some integer ν ≥ 2. Suppose that T ⊂ l2(I) and we have a family of metrics
(dj)j∈Z on l2(I) and nonnegative functions Fj defined on all subsets of T such that for all
s, t ∈ T , ∅ 6= A ⊂ T and j ∈ Z,

dj+1(s, t) ≥ r−1dj(s, t), (1)

Fj+1(A) ≤ Fj(A), (2)

Fj(A) ≥ Fj(B) for ∅ 6= B ⊂ A, (3)

∃j0∈Z dj0−1(s, t) ≤ r−j0+1/2 for all s, t ∈ T, (4)

∃θ>0 d2
j (s, t) ≥ θ2

∑

i∈I

min
{

r−2j , (si − ti)
2
}

for all s, t ∈ T, j ∈ Z. (5)

We define for t ∈ T , a ≥ 0
B̃j(t, a) := {s ∈ T : dj(s, t) ≤ a}

and as in [7] we set Nn := 22n

, n = 0, 1, . . ..

Definition 1. Let Γ > 0 and n0 ∈ Z+. We say that functionals Fj are (Γ, n0)- decomposable
on T if the following holds. Suppose that C ⊂ T , t ∈ T , j ∈ Z and n ≥ n0 satisfy

∅ 6= C ⊂ B̃j−1(t, 2
n/2r−j+1). (6)

Then we can split C into m disjoint nonempty sets C1, . . . , Cm with m ≤ Nn such that for all
i ≤ m either

Ci ⊂ B̃j(ti, 2
n/2r−j) for some ti ∈ C (7)

or

∀t∈Ci
Fj+1

(

Ci ∩ B̃j+1(t, 2
n/2+2r−j−1/2)

)

≤ Fj(C) − 1

Γ
2nr−j . (8)

Conditions (1)-(4) are just reformulations of Talagrand’s assumptions for a family of distances
from [7, Section 5.1]. Condition (5) gives a connection between distances dj and ”cut” l2-
distances induced by the Bernoulli process. A minor change with respect to [7] is present in
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Definition 1 – Talagrand’s approach yielded the splitting of C with only one set Ci satisfying
(8).

Theorem 1. If 0 ∈ T , conditions (1)-(5) hold and functionals Fj are (Γ, n0) decomposable on
T , then we may find decomposition T ⊂ T1 + T2 with

γ2(T1) ≤ Lθ−1r(ΓFj0+1(T ) + 2n0r−j0)

and

‖t‖1 ≤ Lθ−2r(ΓFj0+1(T ) + 2n0r−j0) + 20θ−1 sup
s∈T

‖s‖2 for t ∈ T2.

Proof. First we will follow the proof of [7, Theorem 5.1.2] with Fn,j := ΓFj , ϕj := r2jd2
j

(notice that r = 2κ−4 for κ := ν + 4 ≥ 6). We have ϕj+1 ≥ ϕj by (1) and the condition (5.7)
is obviously implied by (4). Let Bj(t, c) := {s ∈ T : ϕj(s, t) ≤ c} as in [7], then Bj(t, 2

n) =

B̃j(t, 2
n/2r−j).

We will not prove the growth conditon in the sense of [7, Definition 5.1.1], but instead we will
show that the place, where it was used can be obtained by our assumptions on decomposability.
The main point in the proof of Theorem 5.1.2 was the inductive construction of the partitions
An and numbers j(C), q(C), b0(C), b1(C), b2(C) for C ∈ An satisfying (5.11)-(5.17) given on
p.147 of [7]. Let us take C ∈ An and put j = j(C). Then, by (5.11) the condition (6) holds,
so we may split C into m ≤ Nn disjoint sets C1, . . . , Cm satisfying (7) or (8). Let A = Ci for
some i. If (8) holds, then for all t ∈ A,

Fn+1,j+1

(

A ∩ Bj+1(t, 2
n+κ)

)

= ΓFj+1

(

A ∩ B̃j+1(t, 2
n/2+2r−j−1/2)

)

≤ ΓFj(C) − 2nr−j

= Fn,j(C) − 2nr−j

(compare with the estimate at the top of page 149 in [7]). So we may put j(A) = j(C), q(A) =
q(C) + 1, b0(A) = b0(C), b1(A) = b1(C) and b2(A) = b0(C) − 2nr−j and check all conditions
as on pp.148-149 of [7].

If (7) holds for Ci = A then A ⊂ Bj(ti, 2
n) and we can follow the definitions and arguments

for the case A = Dl−1 ∩ Bj(ti, 2
n) given on pp. 149-150 of [7].

Hence following the proof of Theorem 5.1.2 we construct an increasing sequence (An)n≥0 of
partitions of T with A0 = {T}, #An ≤ Nn and for each A ∈ An an integer j(A) satisfying
the following conditions (for the sake of convienience from now on our j(A) is j(A) − 1 from
[7], we also put An := {T} for n < n0): j(T ) = j0 − 1,

A ∈ An, B ∈ An−1, A ⊂ B ⇒ j(B) ≤ j(A) ≤ j(B) + 1, (9)

∀t∈T

∑

n≥0

2nr−j(An(t)) ≤ Lr(ΓFj0+1(T ) + 2n0r−j0) (10)

and

∀A∈An
∃t(A)∈T A ⊂ B̃j(A)(t(A), r−j(A)2n/2), (11)

where An(t) denotes the unique set in An such that t ∈ An(t).

Now we apply Theorem 2.6.3 of [7] with the constructed partition and numbers j(A). Let
V := r, δ(A) := θ−12n/2+1r−j(A) and µ be a counting measure on Ω = I. Conditions (2.98)
and (2.99) are implied by (10) and (9) respectively. If A ⊂ B, A ∈ An, B ∈ An′ , n′ ≤ n and if
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additionally j(A) = j(B) then δ(B) ≤ δ(A) so (2.100) holds. To verify the assumption (2.101)
take s, t ∈ A, then by (5) and (11),

(

∑

i∈I

min
{

(si − ti)
2, r−2j(A)

}

)1/2

≤
(

∑

i∈I

min
{

(si − t(A)i)
2, r−2j(A)

}

)1/2

+
(

∑

i∈I

min
{

(ti − t(A)i)
2, r−2j(A)

}

)1/2

≤ θ−1(dj(A)(s, t(A)) + dj(A)(t, t(A))) ≤ δ(A).

Thus all assumptions of Theorem 2.6.3 are satisfied and hence we may find a decomposition
T ⊂ T1 + T2 + T3 satisfying (2.102)-(2.105). By (2.102) and (10) we have

γ2(T1) ≤ L sup
t∈T

∑

n≥0

2n/2δ(An(t)) ≤ Lθ−1 sup
t∈T

∑

n≥0

2nr−j(An(t)) ≤ Lθ−1r(ΓFj0+1(T ) + 2n0r−j0).

Using (2.104) with p = 1 and the definition of δ we get by (10) for any t ∈ T2,

‖t‖1 ≤ Lθ−2 sup
t∈T

∑

n≥0

2nr−j(An(t)) ≤ Lθ−2r(ΓFj0+1(T ) + 2n0r−j0).

Finally since 0 ∈ T and T ∈ A0 we get by (11) for any s ∈ T ,

(

∑

i∈I

min
{

s2
i ,r

−2j(T )
}

)1/2

≤
(

∑

i∈I

min
{

(si − t(T )i)
2, r−2j(T )

}

)1/2

+
(

∑

i∈I

min
{

t(T )2i , r
−2j(T )

}

)1/2

≤ θ−1(dj(T )(s, t(T )) + dj(T )(0, t(T ))) ≤ 2θ−1r−j(T ).

In particular #{i : |si| ≥ r−j(T )/2} ≤ 16θ−2 and by (2.105) for any t ∈ T3 we can find s ∈ T
such that

‖t‖1 ≤ 5
N

∑

i=1

|si|I{2|si|≥r−j(T )} ≤ 20θ−1‖s‖2.

Thus we may take T2 +T3 from [7, Theorem 2.6.3] for T2 in the statement of our theorem.

3 Estimates for Bernoulli processes

We begin this section with recalling several well known estimates for suprema of Bernoulli
processes and deriving their simple consequences. First result is the concentration property of
Bernoulli processes (cf. [5] or [2, Corollary 4.10]).

Theorem 2. Let (at)t ∈ T be a sequence of real numbers indexed by a set T and S :=
supt∈T (at +

∑

i∈I tiεi) be such that |S| < ∞ a.s. Then

P(|S − Med(S)| ≥ u) ≤ 4 exp
(

− u2

16σ2

)

for u > 0,

where σ := supt∈T ‖t‖2. In particular E|S| < ∞, |ES − Med(S)| ≤ Lσ and

P(|S − E(S)| ≥ u) ≤ L exp
(

− u2

Lσ2

)

for u > 0. (12)
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Corollary 1. Let (Y k
t )t∈T , 1 ≤ k ≤ m be i.i.d. Bernoulli processes and σ := supt∈T ‖Y 1

t ‖2.
Then for any process (Zt)t∈T independent of (Y k

t : t ∈ T, k ≤ m) we have

E max
1≤k≤m

sup
t∈T

(Y k
t + Zt) ≤ E sup

t∈T
(Y 1

t + Zt) + L1σ
√

log m. (13)

Proof. By the Fubini Theorem it is enough to consider the case when P(∀t Zt = zt) = 1 for
some deterministic sequence (zt)t∈T . By (12) we have for all u > 0, k ≤ N ,

P
(

sup
t∈T

(Y k
t + zt) ≥ E sup

t∈T
(Y k

t + zt) + u
)

≤ L exp
(

− u2

Lσ2

)

.

Thus

P
(

max
k≤m

sup
t∈T

(Y k
t + zt) ≥ E sup

t∈T
(Y 1

t + zt) + u
)

≤ min
{

1,mL exp
(

− u2

Lσ2

)}

and (13) follows by integration by parts.

In the same way (using b(T − s) = b(T )) we show

Corollary 2. If t0 ∈ l2(I) and T =
⋃m

k=1 Tk ⊂ l2(I), then

b(T ) ≤ max
k

b(Tk) + L1σ
√

log m,

where σ := supt∈T ‖t − t0‖2.

Theorem 3 ([7, Theorem 4.2.4]). Suppose that vectors t1, . . . , tm ∈ l2(I) and numbers a, b > 0
satisfy

∀l 6=l′ ‖tl − tl′‖2 ≥ a and ∀l ‖tl‖∞ ≤ b. (14)

Then

E sup
l≤m

∑

i∈I

tl,iεi ≥
1

L2
min

{

a
√

log m,
a2

b

}

.

Corollary 3 ([7, Proposition 4.2.2]). Consider vectors t1, . . . , tm ∈ l2(I) and numbers a, b > 0
such that (14) holds. Then for any σ > 0 and any sets Hl ⊂ Bl2(I)(tl, σ),

b
(

⋃

l≤m

Hl

)

≥ 1

L2
min

{

a
√

log m,
a2

b

}

− L3σ
√

log m + min
l≤m

b(Hl).

Before stating the last result, which is the main new observation of this section, let us introduce
some additional notation. For ∅ 6= J ⊂ I, t ∈ l2(I), T ⊂ l2(I) we define tJ := (ti)i∈J ∈ l2(J)
and

bJ(T ) := E sup
t∈T

∑

i∈J

εiti.

We also set
dJ (t, s) := ‖tJ − sJ‖2, t, s ∈ l2(I)

and
BJ(t, a) := {s ∈ l2(I) : dJ(s, t) ≤ a}, t ∈ l2(I), a ≥ 0.
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Proposition 1. Suppose that m is a positive integer, numbers b, σ > 0 satisfy b
√

log m ≤ σ
and T ⊂ l2(I) is such that for constants c, c̃ > 0,

∀t,s∈T dI(t, s) ≤ c, dJ(t, s) ≤ c̃, ‖t − s‖∞ ≤ b. (15)

Then there exist t1, . . . , tm ∈ T such that either T ⊂ ⋃

l≤m BI(tl, σ) or

bJ

(

T \
⋃

l≤m

BI(tl, σ)
)

≤ bI(T ) −
( 1

L4
σ − 2L1c̃

)

√

log m + L5c. (16)

Proof. Since bJ(T ) = bJ(T−t) for any t ∈ l2(I), we may and will assume that 0 ∈ T . Moreover
to show (16) it is enough to consider the case m ≥ 2, c̃ ≤ min(c, σ/4) and N(T, dI , σ) > m
(where N(T, d, a) denotes the minimal number of balls in metric d with radius a that cover
T ).
We set

α := inf
t1,...,tm∈T

bJ

(

T \
⋃

l≤m

BI(tl, σ)
)

.

Let ε
(k)
i , i ∈ J, k = 1, . . . , 4m be independent Bernoulli r.v.’s, independent of (εi)i∈I . Let

Y
(k)
t :=

∑

i∈J

tiε
(k)
i , Zt :=

∑

i∈I\J

tiεi

and
Sk := {t ∈ T : Y

(k)
t > α − Lc̃}.

First we will show that if L is sufficiently large then

p := P
(

N
(

⋃

l≤4m

Sl, dI ,
σ

2

)

≥ m
)

≥ 1

4
. (17)

Suppose that p ≤ 1/4 and put

S̃ :=
{

t ∈ T : dI(t, s) ≤
σ

2
for some s ∈

⋃

l≤4m−1

Sl

}

,

then

P(N(S̃, dI , σ) > m) ≤ P
(

N
(

⋃

l≤4m−1

Sl, dI ,
σ

2

)

> m
)

≤ p ≤ 1

4
.

Let us fix (ε
(k)
i )k≤4m−1 such that N(S̃, dI , σ) ≤ m, then bJ(T \ S̃) ≥ α. Denote by P4m the

probability with respect to variables (ε
(4m)
i ). We have

P4m(S4m ⊂ S̃) = P4m

(

sup
t∈T\S̃

∑

i∈J

tiε
(4m)
i ≤ α − Lc̃

)

≤ P4m

(

sup
t∈T\S̃

∑

i∈J

tiε
(4m)
i ≤ bJ (T \ S̃) − Lc̃

)

≤ 1

4

for sufficiently large L by Theorem 2. Hence

P(S4m ⊂ S̃) ≤ P(N(S̃, dI , σ) > m) +
1

4
P(N(S̃, dI , σ) ≤ m) ≤ p +

1 − p

4
≤ 1

2
,
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i.e.

P
(

∃t∈S4m
dI

(

t,
⋃

l≤4m−1

Sl

)

≥ σ

2

)

≥ 1/2.

By the symmetry we have for any 1 ≤ k ≤ 4m,

P
(

∃t∈Sk
dI

(

t,
⋃

l≤4m,l 6=k

Sl

)

≥ σ

2

)

≥ 1/2.

Define

A := card
{

k ≤ 4m : ∃t∈Sk
dI

(

t,
⋃

l≤4m,l 6=k

Sl

)

≥ σ

2

}

,

then EA ≥ 2m and thus (since 0 ≤ A ≤ 4m) P(A ≥ m) ≥ 1/4. However if A ≥ m, then
N(

⋃

l≤4m Sl, dI , σ/2) ≥ m, so (17) holds.

Let us fix (ε
(k)
i )k≤4m such that N(

⋃

l≤4m Sl, dI , σ/2) ≥ m. Then there exist tl ∈ T and
1 ≤ kl ≤ 4m, l = 1, . . . ,m such that tl ∈ Skl

and dI(ti, tj) ≥ σ/2 for i 6= j. We have
dI\J(ti, tj) ≥ dI(ti, tj) − dJ(ti, tj) ≥ σ/2 − c̃ ≥ σ/4 for i 6= j. Let EI\J (PI\J) denote the
integration (resp. probability) with respect to (εi)i∈I\J , then by Theorem 3,

EI\J max
1≤k≤4m

sup
t∈T

(Y
(k)
t + Zt) ≥ EI\J max

1≤l≤m
(Y

(kl)
tl

+ Ztl
) ≥ α − Lc̃ + E max

1≤l≤m
Ztl

≥ α − Lc̃ +
1

L2
min

{σ

4

√

log m,
σ2

16b

}

≥ α − Lc̃ +
1

16L2
σ
√

log m.

Since 0 ∈ T , we have supt∈T ‖tI\J‖2 ≤ c by (15), hence by (12) (recall that c̃ ≤ c and according
to our convention L may differ at each occurence),

PI\J

(

max
1≤k≤4m

sup
t∈T

(Y
(k)
t + Zt) ≥ α +

1

16L2
σ
√

log m − Lc
)

≥ 1

2
,

therefore

P
(

max
1≤k≤4m

sup
t∈T

(Y
(k)
t + Zt) ≥ α +

1

16L2
σ
√

log m − Lc
)

≥ 1

2
p ≥ 1

8
.

This implies (using again (12))

E max
1≤k≤4m

sup
t∈T

(Y
(k)
t + Zt) ≥ α +

1

16L2
σ
√

log m − L5c.

Corollary 1 yields

E max
1≤k≤4m

sup
t∈T

(Y
(k)
t + Zt) ≤ bI(T ) + L1c̃

√

log 4m ≤ bI(T ) +
√

3L1c̃
√

log m,

hence

α ≤ bI(T ) −
( 1

16L2
σ −

√
3L1c̃

)

√

log m + L5c,

which yields (16) provided L4 ≥ 16L2.
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4 Thin sets

Definition 2. We say that a set A ⊂ R is θ-thin for some θ > 0 if there exists a sequence of
functions (fk,l)k∈Z,l∈Ik

satisfying the following conditions
i) fk,l : R → [−2−k, 2−k], fk,l(0) = 0,
ii)

∑

k,l |fk,l(x) − fk,l(y)| ≤ |x − y| for all x, y ∈ R,

iii)
∑

k≥j,l∈Ik
|fk,l(x) − fk,l(y)|2 ≥ θ2 min{2−2j , |x − y|2} for all j ∈ Z, x, y ∈ A.

Example 1. T = {0, a} is 1/2-thin.

Indeed let Ik = {1} and fk,1(x) = fk(x) := min{(|x| − 2−k)+, 2−k}. Suppose that 2−i ≤
|a| < 2−i+1, then for j > i,

∑

k≥j |fk(a) − fk(0)|2 =
∑

k≥j 2−2k = 22−2j/3 and for j ≤ i,
∑

k≥j |fk(a) − fk(0)|2 =
∑

k≥i+1 2−2k + (|a| − 2−i)2 = 2−2i/3 + (|a| − 2−i)2 ≥ a2/4.

Example 2. T = {2k : k ∈ Z} ∪ {0} is 1/4-thin.

Let Ik = Z and fk,l(x) := min{(x−2l−1−2−k)+, (2l−1−2−k)+, 2−k}. Then if x = 2i1 > y = 2i2 ,

∑

k≥j,l

|fk,l(x) − fk,l(y)|2 ≥
∑

k≥j

|fk,i1(2
i1) − fk,i1(2

i1−1)|2 ≥ 1

4
min

{

2−2j , |2i1−1|2
}

≥ 1

16
min

{

2−2j , |x − y|2
}

,

where the first inequality follows by the monotonicity of fk,i1 and the second one by the same
calculation as in Example 1.

Example 3. Suppose that T is a ”Cantor-like set” such that 0 ∈ T and for some α > 0,

∀s,t∈T,s<t ∃s̃,t̃∈[s,t],s̃<t̃ (s̃, t̃) ∩ T = ∅ and t̃ − s̃ ≥ α(t − s).

Then T is α/2-thin.

Let R \ T =
⋃N

n=1(an, bn), N ≤ ∞. We put Ik := {1, . . . , N} and

fk,l(x) := min
{

(x − al − 2−k)+, (bl − al − 2−k)+, 2−k
}

if bl > al ≥ 0,

fk,l(x) := min
{

(bl − x − 2−k)+, (bl − al − 2−k)+, 2−k
}

if al < bl ≤ 0.

If x, y ∈ T , x < y, then x < an < bn < y for some n ≤ N with (bn − an) ≥ α(y − x) and

∑

k≥j,l

|fk,l(x) − fk,l(y)|2 ≥
∑

k≥j

|fk,n(bn) − fk,n(an)|2 ≥ 4−1 min
{

2−2j , |bn − an|2
}

≥
(α

2

)2

min
{

2−2j , |x − y|2
}

,

where the first inequality follows by the monotonicity of fk,n and the second one by the same
calculation as in Example 1.

Example 4. If T contains some nonempty open interval (a, b) then T is not θ-thin for any
θ > 0.
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Suppose on the contrary that T is θ-thin and functions (fk,l)k∈Z,l∈Ik
satisfy conditions i)-iii)

of Definition 2. By condition ii) the functions fk,l are a.e. differentiable and
∑

k,l |f ′
k,l(z)| ≤ 1

for a.e. z ∈ R. Hence there exists j0 such that
∫ b

a

∑

k≥j0,l

|f ′
k,l(z)|dz < θ(b − a).

Thus for any n ∈ Z+ we can find x, y ∈ (a, b) with y − x = (b − a)/n such that

∑

k≥j0,l

|fk,l(y) − fk,l(x)| ≤
∫ y

x

∑

k≥j0,l

|f ′
k,l(z)|dz < θ(y − x).

Hence
∑

k≥j0,l

|fk,l(y) − fk,l(x)|2 < θ2|y − x|2 = θ2 min
{

2−2j0 , |y − x|2
}

if n is sufficiently large, and this contradicts condition iii).

In a similar way one can show that a θ-thin set cannot have positive Lebesgue measure.

Lemma 1. Suppose that A is a θ-thin subset of R and r = 2ν for some positive integer ν.
Then there exist functions (f̃k,l)k∈Z,l∈Ĩk

such that

i) f̃k,l : R → [−r−k, r−k], f̃k,l(0) = 0,

ii)
∑

k,l |f̃k,l(x) − f̃k,l(y)| ≤ 2|x − y| for all x, y ∈ R,

iii) ρ2
j (x, y) :=

∑

k≥j,l∈Ĩk
|f̃k,l(x) − f̃k,l(y)|2 ≥ θ2 min{r−2j , |x − y|2} for all j ∈ Z, x, y ∈ A.

iv) ρj+1(x, y) ≥ r−1ρj(x, y) for all x, y ∈ A.

Proof. Let (fk,l)k∈Z,l∈Ik
be as in Definition 2. Let us put

Ĩk := {(l1, l2, l3) : 0 ≤ l1 ≤ ν − 1, l2 ≥ 0, l3 ∈ Iν(k−l2)+l1},
f̃k,(l1,l2,l3) := r−l2fν(k−l2)+l1,l3 for (l1, l2, l3) ∈ Ĩk.

Notice that
‖f̃k,(l1,l2,l3)‖∞ ≤ r−l22−ν(k−l2)−l1 = r−k2−l1 ≤ r−k,

∑

k,(l1,l2,l3)∈Ĩk

|f̃k,(l1,l2,l3)(x) − f̃k,(l1,l2,l3)(y)| ≤
∑

l2≥0

r−l2
∑

k,l∈Ik

|fk,l(x) − fk,l(y)| ≤ r

r − 1
|x − y|

≤ 2|x − y|.
We also have for x, y ∈ A,

∑

k≥j,(l1,l2,l3)∈Ĩk

|f̃k,(l1,l2,l3)(x) − f̃k,(l1,l2,l3)(y)|2 ≥
∑

k≥νj,l∈Ik

|fk,l(x) − fk,l(y)|2

≥ θ2 min
{

2−2νj , |x − y|2
}

= θ2 min
{

r−2j , |x − y|2
}

.

Moreover,
∑

k≥j+1,(l1,l2,l3)∈Ĩk

|f̃k,(l1,l2,l3)(x) − f̃k,(l1,l2,l3)(y)|2

≥r−2
∑

k≥j,(l1,l2,l3)∈Ĩk

|f̃k,(l1,l2,l3)(x) − f̃k,(l1,l2,l3)(y)|2,

since f̃k+1,(l1,l2+1,l3) = r−1f̃k,(l1,l2,l3) for k ∈ Z, (l1, l2, l3) ∈ Ĩk.
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5 Main Result

In this section we prove the main result of this note, which is the following theorem.

Theorem 4. Suppose that T ⊂ l2(I) is such that 0 ∈ T , b(T ) < ∞ and all one dimensional
projections of T , ({ti : t ∈ T})i∈I are θ-thin. Then T ⊂ T1 + T2 with supt∈T2

‖t‖1 ≤ Lθ−2b(T )
and g(T1) ≤ Lθ−1b(T ).

To prove the theorem we will first construct distances dj and functionals Fj satisfying (1)-(5).
Let r = 2ν with ν ≥ 2 to be chosen later.
By Lemma 1 there exist functions fi,k,l such that

fi,k,l : R → [−r−k, r−k], fi,k,l(0) = 0, (18)

∀i∈I∀x,y∈R

∑

k,l

|fi,k,l(x) − fi,k,l(y)| ≤ 2|x − y| (19)

and a decreasing family of metrics (dj)j∈Z on l2(I) defined by

dj(s, t) :=
(

∑

i,k≥j,l

|fi,k,l(ti) − fi,k,l(si)|2
)1/2

satisfies (1) and (5).
For ∅ 6= A ⊂ T let

Fj(A) := E sup
t∈T

∑

i,k≥j,l

fi,k,l(ti)εi,k,l,

where (εi,k,l) is a multiindexed Bernoulli sequence. Obviously Fj satisfies (2) and (3). Moreover
(19) and the comparison theorem for Bernoulli processes [6, Theorem 2.1] (cf. the proof of [7,
Proposition 4.3.7]) implies

∀j∈Z Fj(T ) ≤ 2b(T ). (20)

Notice that by (19),

sup
s,t∈T

dj(t, s) ≤ 2 sup
t,s∈T

‖t − s‖2 ≤ 8b(T ),

hence the condition (4) holds if r1−j0 ≥ 16b(T ).
In the next few lemmas we are going to show that functional Fj are (Γ, n0)-decomposable for
large r and sufficiently chosen Γ and n0.

Lemma 2. If C is a nonempty subset of T , then there exist vectors t1, . . . , tm−1 ∈ C such
that the set D := C \ ⋃m−1

i=1 B̃j+1(ti, a) is empty or for all t ∈ D,

Fj+1(D ∩ B̃j+1(t, σ)) ≤ Fj+1(C) − 1

L2
min

{

a
√

log m,a2rj+1
}

+ 2L3σ
√

log m.

Proof. We follow the standard greedy algorithm based on Corollary 3. We may obviously
assume that m ≥ 2 and N(C, dj+1, a) ≥ m. Let us take any 0 < δ < L3σ

√
log m, we will

inductively choose vectors ti. Let D1 = C and t1 ∈ C be such that

Fj+1(C ∩ B̃j+1(t1, σ)) ≥ sup
t∈C

Fj+1(C ∩ B̃j+1(t, σ)) − δ.
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If t1, . . . , tk, 1 ≤ k < m − 1 are already chosen, we set Dk+1 := C \ ⋃k
i=1 B̃j+1(ti, a) and take

tk+1 ∈ Dk+1 such that

Fj+1(Dk+1 ∩ B̃j+1(tk+1, σ)) ≥ sup
t∈Dk+1

Fj+1(Dk+1 ∩ B̃j+1(t, σ)) − δ.

Let t = tm be an arbitrary point in D = Dm = C \ ⋃m−1
i=1 B̃j+1(ti, a) and let Hl := Dl ∩

B̃j+1(tl, σ), 1 ≤ l ≤ m. Then dj+1(tk, tl) ≥ a for all 1 ≤ k 6= l ≤ m and Hl ⊂ B̃j+1(tl, σ), so
we may apply Corollary 3 with b = r−j−1 and get

Fj+1(C) ≥ Fj+1

(

m
⋃

i=1

Hi

)

≥ 1

L2
min

{

a
√

log m,a2rj+1
}

− L3σ
√

log m + min
i

Fj+1(Hi).

But the construction of ti yields

min
i

Fj+1(Hi) ≥ Fj+1(D ∩ B̃j+1(t, σ)) − δ ≥ Fj+1(D ∩ B̃j+1(t, σ)) − L3σ
√

log m.

Lemma 3. If ∅ 6= C ⊂ T then we may decompose C =
⋃m

i=1 Di into m ≤ Nn−1 disjoint sets

such that for i ≤ m − 1, Di ⊂ B̃j+1(ti, L62
n/2r−j−1/2) for some ti ∈ C and

∀t∈Dm
Fj+1(Dm ∩ B̃j+1(t, 2

n/2+2r−j−1/2)) ≤ Fj+1(C) − 2nr−j−1/2.

Proof. We use Lemma 2 with m := Nn−1, σ := 2n/2+2r−j−1/2 and a := L62
n/2r−j−1/2. Then

1

L2
min

{

a
√

log m,a2rj+1
}

− 2L3σ
√

log m =
(L6

L2
− 8L3

)

2n−1/2r−j−1/2 ≥ 2nr−j−1/2

if L6 ≥ L2(2
1/2 + 8L3).

Lemma 4. If r ≥ L7 and 2n0/2 ≥ L8r, then functionals Fj are (r1/2, n0)-decomposable.

Proof. Let us take C ⊂ B̃j−1(t0, 2
n/2r−j+1) ⊂ B̃j(t0, 2

n/2r−j+1) for some t0 ∈ T and n ≥ n0.
We apply Lemma 3 to C and get a decomposition C =

⋃

i≤m Di, m ≤ Nn−1. The set Dm

satisfies the condition (8) (with Ci = Dm and Γ = r1/2) and (Nn−1 − 1)(Nn−2 + 1) + 1 ≤ Nn,
so it is enough to show that each of the sets Dl, l ≤ m − 1, may be decomposed into at most
Nn−2 + 1 sets Ci satisfying (7) or (8). Let us fix l ≤ m − 1, then

Dl ⊂ B̃j(t0, 2
n/2r−j+1) ∩ B̃j+1(tl, L62

n/2r−j−1/2)

for some t0, tl ∈ T . Thus

dj(t, s) ≤ 2n/2+1r−j+1, dj+1(t, s) ≤ L62
n/2+1r−j−1/2 for all t, s ∈ Dl.

Hence we may apply Proposition 1 with c = 2n/2+1r−j+1, c̃ = L62
n/2+1r−j−1/2, b = 2r−j ,

m = Nn−2 and σ = 2n/2r−j and get that Dl =
⋃m+1

i=1 Ci with Ci satisfying (7) for i ≤ m and

Fj+1(Cm+1) ≤ Fj(Dl) −
( 1

L4
σ − 2L1c̃

)

√

log m + L5c.
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Notice that

( 1

L4
σ − 2L1c̃

)

√

log m − L5c = 2nr−j−1/2
( 1

2L4
r1/2 − 2L1L6 − 2L5r

3/22−n/2
)

≥ 2nr−j−1/2

if L7 and L8 are large enough, so Cm+1 satisfies (8).

Proof of Theorem 4. Let us choose r = 2ν ∈ [L7, 2L7) and n0 ≥ 1 such that 2n0/2 ∈
[L8r, 2

1/2L8r), then by Lemma 4 functionals Fj are (Γ, n0) decomposable with Γ = r1/2. Let
j0 ∈ Z be such that r−j0 ≤ 16b(T ) ≤ r1−j0 . Then all assumptions of Theorem 1 are satisfied.
Notice that θ ≤ 1, sups∈T ‖s‖2 ≤ 4b(T ),

ΓFj0+1(T ) + 2n0r−j0 ≤ 2r1/2b(T ) + 32L2
8r

2b(T ) ≤ Lb(T ).

Hence by Theorem 1 we get T ⊂ T1 + T2 with

g(T1) ≤ Lγ2(T1) ≤ Lθ−1b(T )

and
sup
t∈T2

‖t‖1 ≤ Lθ−2rb(T ) + Lθ−1b(T ) ≤ Lθ−2b(T ).
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