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Abstract

It is well known that a simple, supercritical Bienaymé-Galton-Watson process turns into a subcriti-
cal such process, if conditioned to die out. We prove that the corresponding holds true for general,
multi-type branching, where child-bearing may occur at different ages, life span may depend upon
reproduction, and the whole course of events is thus affected by conditioning upon extinction.

1 Introduction

The theory of branching processes was born out of Galton’s famous family extinction problem.
Later, interest turned to populations not dying out and their growth and stabilisation. In more
recent years, extinction has retaken a place in the foreground, for reasons from both conserva-
tion and evolutionary biology. The time and path to extinction of subcritical general populations
was studied in [4]. Here, time structure is crucial, and life spans and varying bearing ages can-
not be condensed into simple, generation counting Bienaymé-Galton-Watson processes. Thus,
the question arises whether (non-critical) general branching populations (also known as Crump-
Mode-Jagers, or CMJ, processes) bound for extinction must behave like subcritical populations.
We answer this in the affirmative: a general, multi-type branching process conditioned to die
out, remains a branching process, but one almost surely dying out. If the original process was
supercritical but with a strictly positive risk of extinction, the new process is subcritical.
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Formulated in such a loose manner, this fact belongs to the folklore of branching, but actually it has
been proved only for Bienaymé-Galton-Watson processes, [1], p. 52. A moment’s afterthought tells
us that it remains true for age-dependent branching processes of the Bellman-Harris type, where
individuals have i.i.d. life spans, and split into i.i.d. random numbers of children, independently
of life span, the time structure thus not being affected by the conditioning.
But what if the flow of time is no longer independent of reproduction? Even the simplest case, that
of a splitting reproduction at death, but not independently of age at death/splitting, would seem
to offer difficulties, and the same certainly applies to the more realistic general processes where
reproduction occurs as a point process during life, thus mimicking the yearly births of wildlife, or
the even more erratic reproduction pattern of humans.
The conceptual framework is intuitive. Starting from an Eve, individuals live and give birth inde-
pendently of one another. At birth each individual inherits a type from her mother. The type, in
its turn determines the probability measure over all possible life careers, including a life span and
a marked point process which reports the successive ages at bearing, and the types of children at
the various bearings. Note that multiple births are not excluded. The branching property can be
summarised into the fact that given her type and birth time, the daughter process of any individual
born is independent of all individuals not in her progeny (into which she herself is included).
We set out to prove that this branching property also holds for processes conditioned to die out.
Initially, we shall not mention supercriticality, and only ask that the probability of extinction is non-
zero for any starting type. (If that probability is one, the conditioning does not change anything!)
Largely, the proof is a matter of conceptual clarity or discipline, which unfortunately forces us
into the somewhat burdensome notation of probabilities on tree spaces, obscuring the essential
simplicity of the matter.
The main idea behind the proof is, however, easily outlined. Indeed, consider an individual, and
condition upon her progeny ultimately dying out. Her own life career is then affected precisely
through her only being able to have daughters whose progeny in their turn must ultimately face
extinction. In all other respects her life is independent of all others, once her type is given. This
reestablishes the branching character, but with a suitably amended probability measure over her
life career, which clearly is non-supercritical in the sense that the probability of ultimate extinction
is one, from any starting type that can be realised.

2 Notation

Throughout this paper we use the notation of [3], which may also serve as a reference for the
reader interested in further properties of general multi-type branching processes.

2.1 The Ulam-Harris family space

We choose to work within the classical Ulam-Harris framework identifying individuals with se-
quences of natural numbers so that x = (x1, x2, . . . , xn) denotes the xnth child of the . . . of the
x2th child of the x1th child of the ancestor. The ancestor is denoted by an “empty” sequence e

(mnemonic for “empty” or “Eve”), and the set of all possible individuals is

T= e ∪
⋃

n∈N
N

n.

The concatenation of x , y ∈ T is x y , and thus ex = xe = x for all x ∈ T.
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For any e 6= x = (x1, x2, . . . , xn) x ’s mother is mx = (x1, . . . , xn−1), her rank in the sibship is
r x = xn, and x ’s generation g(x) = n. We agree that me = re = e and g(e) = 0. Hence, mx r x = x

for x ∈ T, and m can be iterated so that mn x is x ’s nth grandmother, provided g(x)> n.
Clearly x stems from y , usually written x º y , if mn x = y for some n ∈ N ∪ {0}, or equivalently
if there exists a z ∈ T : x = yz. In this terminology, x stems from herself, x ¹ x . In other words,
(T,¹) is a partially ordered set (a semilattice). We define

x ∼ y if x º y or x ¹ y ,

i.e. x and y are in direct line of descent. (∼ is not an equivalence relation.)
For A, B ⊆ T, x ∈ T, we write x º A if there exists a y ∈ A such that x º y , and A¹ B if x º A for
all x ∈ B. The progeny of A⊆ T is defined as Pr A= {x ∈ T : x º A}.
We call a set L ⊂ T a stopping line, or line for short, if no two members of L are in direct line of
descent:

x , y ∈ L, x 6= y ⇒ x 6∼ y.

We say that a line L is a covering line if for all x ∈ T there exists a y ∈ L such that x ∼ y .

2.2 Life space and population space

Let (Ωℓ,Aℓ) be a life space so that ω ∈ Ωℓ is a possible life career of individuals. Any individual
property, such as mass at a certain age or life span, is viewed as a measurable function (with
respect to the σ-algebraAℓ) on the life space. This should be rich enough to support, at least, the
functions τ(k),σ(k) for k ∈ N. Here τ(k) : Ωℓ → R+ ∪ {∞} is the mother’s age at the kth child’s
birth, 0 ≤ τ(1) ≤ τ(2) ≤ · · · ≤ ∞. If τ(k) =∞, then the kth child is never born. σ(k) : Ωℓ → S
is the child’s type, obtained at birth. The type space S has a (countably generated) σ-algebra S .
The whole reproduction process is then the marked point process ξ with

ξ(A× B) = #{k : σ(k) ∈ A,τ(k) ∈ B}

for A∈ S , B ∈B , the Borel algebra on R+.
The population space is defined as (Ω,A ) = (S ×ΩT

ℓ
,S ⊗A T

ℓ
). UM is the projection Ω→ ΩM

ℓ
,

for M ⊆ T. For simplicity Ux = U{x} and similarly Pr x = Pr{x}. The following σ-algebras are
important:

FL = S ⊗σ(Ux : x 6º L) = S ⊗σ(Ux : x /∈ Pr L),

for L ⊆ T. If L ¹ M then Pr L ⊇ Pr M and thus FL ⊆ FM . Therefore (FL : L ⊆ T) is a filtration
under ¹. In the usual manner, the definition of the σ-algebras FL can be extended to σ-algebras
of events preceding random lines L which are optional in the sense that events {L ¹ L} ∈ FL

[3].
Functions ξ,τ(k) and σ(k) were defined on the life space but we want to be able to speak about
these quantities pertaining to a given x ∈ T. We write

ξx = ξ ◦ Ux (x ’s reproduction process),

τx = τ(r x) ◦ Umx (x ’s mother’s age at x ’s birth),

σx = σ(r x) ◦ Umx (x ’s type).

Note the difference between τ(k) and τk, σ(k) and σk, for k ∈ N ⊂ T.
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Finally, the process is anchored in real time by taking Eve to be born at time 0, and letting later
birth times t x , x ∈ T be recursively determined by te = 0 and t x = tmx + τx for e 6= x ∈ T. The
meaning of t x =∞ is that x is never born, so that

R = {x ∈ T : t x <∞}

is the set of realised individuals. This set is optional, FL∩R is well defined [3], and so is the σ-
algebra FR of events pertaining only to realised individuals. The probability space restricted to
such events is that where a branching processes really lives, cf. [5], [2].

2.3 The probability measure and branching property

The setup is that for each s ∈ S there is a probability measure P(s, ·) on the life space (Ωℓ,Aℓ),
such that the function s → P(s,A) is measurable with A ∈ Aℓ. For any s ∈ S this kernel (the life

kernel) defines a population probability measure Ps on (Ω,A ) with an ancestor of type σe = s and
such that given σx , x ’s life will follow the law P(σx , ·) independently of the rest of the process,
see [3].
Indeed, the basic branching property of the whole process can be characterised by a generalisation
of this in terms of the mappings

Sx = (σx , UPr x) : S ×T→S ×T,

which renders x the new Eve. Let Tx = S−1
x

and {Ax : x ∈ L} ⊆A . Then,

Ps

�

⋂

x∈L

TxAx

¯

¯

¯

¯

FL

�

=
∏

x∈L

Pσx
(Ax) (Ps-a.s.),

for lines L. This remains true for optional lines and in particular

Ps

�

⋂

x∈L∩R
TxAx

¯

¯

¯

¯

FL∩R

�

=
∏

x∈L∩R
Pσx
(Ax) (Ps-a.s.), (1)

where the intersection over the empty set is taken to be Ω and the empty product is ascribed the
value one. The interpretation is that the daughter processes of all realised individuals x in a line
are independent given the prehistory of the line with the population probability measure Pσx

, the
only dependence upon the past thus being channelled through the type σx and the placing in time
t x . This is the branching property. We shall see that it remains true for processes which are bound
to die out.

3 Conditioning on extinction

Denote by E the event that the branching process starting from Eve dies out, i.e. thatR has only a
finite number of elements. Let qs = Ps(E) and Ex be the event that the branching process starting
from x dies out, Ex = Tx E. Write P̃s(·) = Ps(·|E), which clearly only makes sense for s ∈ S such
that qs > 0, and let Ẽs denote expectation with respect to P̃s.
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3.1 Main result

Theorem 1. Any branching process conditioned on extinction remains a branching process, but with

extinction probability one. Its life kernel is P̃(s,A) := P̃s(S × A×ΩT\{e}
ℓ
) for A ∈ Aℓ. Thus, for any

covering lines L and {Ax : x ∈ L} ⊆A

P̃s

�

⋂

x∈L∩R
TxAx

¯

¯

¯

¯

FL∩R

�

=
∏

x∈L∩R
P̃σx
(Ax) (Ps-a.s.). (2)

Furthermore, the Radon-Nikodym derivative dP̃s/dPs with respect to the σ-algebra FL∩R is given by

dP̃s

dPs

¯

¯

¯

¯

FL∩R

=
1

qs

∏

x∈L∩R
qσx

. (3)

Proof. First, note that

E =
⋂

x∈L∩R
Tx E, (4)

for covering lines L. Indeed, since {L∩R = ;} ⊆ E and intersection over an empty index set yields
the full space,

E = (E ∩ {L ∩R = ;})∪ (E ∩ {L ∩R 6= ;})

=

�

{L ∩R = ;} ∩
⋂

x∈L∩R
Tx E

�

∪
�

{L ∩R 6= ;} ∩
⋂

x∈L∩R
Tx E

�

=
⋂

x∈L∩R
Tx E.

The branching property (1) implies that

Ps(E|FL) =
∏

x∈L∩R
qσx
= Ps(E|FL∩R). (5)

Hence, for any covering line L and A∈ FL

P̃s(A) = Es

�

Ps(E|FL); A

�

/qs = Es

�

∏

x∈L∩R
qσx

; A

�

/qs,

and thus (3) holds. Equations (4), (1) and (5) yield

Ps

�

E ∩
⋂

x∈L∩R
TxAx

¯

¯

¯

¯

FL∩R

�

= Ps

�

⋂

x∈L∩R
Tx(Ax ∩ E)

¯

¯

¯

¯

FL∩R

�

=
∏

x∈L∩R
qσx
P̃σx
(Ax)

= Ps(E|FL∩R)
∏

x∈L∩R
P̃σx
(Ax),

and (2) follows.
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Remark 1. With X := ξe(S ×R+) being Eve’s total offspring and L = N, the first generation,

dP̃s

dPs

¯

¯

¯

¯

FN∩R
=

1

qs

∏

k∈N:k≤X

qσk
, (6)

We thus obtain the conditioned life kernel

P̃(s,A) =
1

qs

∫

A

∏

k∈N:k≤X (ω)

qσk(ω)
P(s, dω),

showing both that the number of children under the conditioning tends to be lower, and that the
children tend to have types with higher extinction probabilities, which is quite reasonable.
For single-type processes with extinction probability q, equation (6) simplifies to

dP̃

dP

¯

¯

¯

¯

FN∩R
= qX−1, (7)

and in the Bienaymé-Galton-Watson case the conditioned offspring distribution is thus

P̃(X = k) = E[qX−1; X = k] = P(X = k)qk−1,

in perfect agreement with [1, Theorem I.12.3].

Remark 2. As was pointed out to us by a referee, general multi-type branching processes are
introduced in [3] as Markov fields on the set T, and in this context P̃s may be seen as an h-
transform of Ps, since the product in the right hand side of (3) is a harmonic function defined on
lines L ⊆ T.
Example 1. (Sevastyanov processes) Consider single-type Sevastyanov splitting processes, where
individuals have a life span distribution G and at death split into k particles with probability
pk(u), if the life span L = u. By (7) we conclude that

P̃(X = k, L ∈ du) = E[qX−1; X = k, L ∈ du] = pk(u)q
k−1G(du).

Hence

G̃(du) = P̃(L ∈ du) =

∞
∑

k=0

pk(u)q
k−1G(du)

and P̃(X = k, L ∈ du) = p̃k(u)G̃(du), with

p̃k(u) =
pk(u)q

k

∑∞
i=0 pi(u)q

i
,

and the conditioned Sevastyanov process remains a Sevastyanov process with life span distribution
G̃ and splitting probabilities p̃k(u).

Example 2. (A two-type general branching process) Consider a two-type process where life spans
are exponentially distributed with expected value 1. Individuals of type 1 bear children of type
1 according to a Poisson process with intensity 3. Individuals of type 2 bear children according
to a Poisson process with intensity 5 and each child is of type 1 or type 2 with equal probability
independently of each other.
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This process can also be reformulated due to the memorylessness of the exponential distribution.
We interpret the birth of a child as the splitting of the mother into two new individuals (or parti-
cles), one being the child and one being the mother. Particles of type 1 have exponential life spans
with expected value 1

3
and at death either split into two new particles of type 1 with probability

p11 =
2
3

or leave no offspring with probability p10 =
1
3
. Particles of type 2 have exponential life

spans with expected value 1
5

and split into two particles of type 2 with probability p22 =
2
5
, two

particles — one of either type — with probability p21 =
2
5
, or leave no offspring with probability

p20 =
1
5
.

The extinction probabilities solve (taking expected values in (5) with L = N)

q1 = p11q2
1 + p10

q2 = p22q2
2 + p21q2q1 + p20,

so

q1 =
1

2

q2 =
2−
p

2

2
.
= 0.293

and by (6) the conditional probabilities are

p̃11 =
1

q1
p11q2

1 =
1

3

p̃10 =
1

q1
p10 =

2

3

p̃22 =
1

q2
p22q2

2 =
2−
p

2

5

p̃21 =
1

q2
p21q2q1 =

1

5

p̃20 =
1

q2
p20 =

2

2−
p

2
·

1

5
=

2+
p

2

5
.

In terms of the original process, the new, conditioned process will have individuals of type 1 whose
life spans are exponential with expectation 1

3
· 1

p̃10
= q1 =

1
2
, and it will have individuals of type

2, with life spans also exponential, but the expected value 1
5
· 1

p̃20
= 1

2+
p

2
= q2

.
= 0.293. Children

are still born according to Poisson processes with intensities 3 and 5, respectively. However, the
proportion of types born by individuals of type 2 is changed: the probability of a child being of
type 1 is now p̃21

p̃21+p̃22
= 1

3−
p

2

.
= 0.631.

3.2 Super- and subcriticality

Finally, we address the question of whether a supercritical process conditioned on extinction is
subcritical. In this section we leave the full generality of Theorem 1. This is partly because the
notions of super- and subcriticality for general multi-type branching processes are quite involved:
Several conditions on the life kernel are required in order to ascertain that the process is Malthu-

sian, meaning roughly that the population grows or declines in an asymptotically exponential
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manner. The asymptotic growth rate is then given by the Malthusian parameter, and the process
is called supercritical if this rate is positive, and subcritical if it is negative. We refer to [3] for
details.
Let us consider a supercritical process such that also the conditioned process is Malthusian. Such
processes clearly exist, e.g. single-type Bienaymé-Galton-Watson processes, see [1], but here we
do not delve into what conditions are necessary for this to hold for general processes.
It is clear that the conditioned branching process has extinction probability one for any starting
type but this would also be the case if the process were nontrivially critical, i.e. with zero growth
rate.
In the single-type case it follows from (7) that the expected total number of children per individual
in the conditioned process satisfies

Ẽ[X ] = E[XqX−1] = f ′(q),

in terms of the offspring generating function f of the embedded Bienaymé-Galton-Watson process.
It is well known that f ′(q) < 1 if the original process was supercritical, see [1], and we conclude
that the conditioned process is subcritical.
For the multi-type case, besides requiring the unconditioned and conditioned processes to be
Malthusian, we also need q := supS qs < 1. As in the single-type case we will consider the embed-
ded generation counting process. Let Xn(A) = card{x ∈ Nn ∩R : σx ∈ A} denote the number of
individuals of type A in nth generation. Then

Ẽs[Xn(S )] = Es

�

Xn(S )e
∫

S log qr Xn(dr)

�

/qs ≤ Es

�

Xn(S )qXn(S )
�

/qs→ 0,

as n → ∞ (by dominated convergence, since Xn(S ) must either tend to zero or to infinity).
But the expected size of the embedded process tending to zero means exactly that the process is
subcritical.

References

[1] ATHREYA, K. B. AND NEY, P. E. (1972). Branching Processes. Springer-Verlag, New York. Die
Grundlehren der mathematischen Wissenschaften, Band 196. MR0373040

[2] CHAUVIN, B. (1986) Sur la propriété de branchement Annales de l’Institut H. Poincaré. Proba-

bilités et Statistiques 22, 2, 233–236. MR0850758

[3] JAGERS, P. (1989). General branching processes as Markov fields. Stochastic Processes and their

Applications 32, 2, 183–212. MR1014449

[4] JAGERS, P., KLEBANER F. C., AND SAGITOV, S. (2007). On the path to extinction. Proceedings of

the National Academy of Science 104, 15, 6107–6111. DOI: 10.1073/pnas.0610816104

[5] NEVEU, J. (1986). Arbres et processus de Galton-Watson. Annales de l’Institut H. Poincaré.

Probabilités et Statistiques 22, 2, 199–207. MR0850765

http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=0850758
http://www.ams.org/mathscinet-getitem?mr=1014449
http://dx.doi.org/10.1073/pnas.0610816104
http://www.ams.org/mathscinet-getitem?mr=0850765

	Introduction
	Notation
	The Ulam-Harris family space
	Life space and population space
	The probability measure and branching property

	Conditioning on extinction
	Main result
	Super- and subcriticality

	References

