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Abstract

We give a simple probabilistic proof of the classical fact from complex analysis that the zeros of

a holomorphic function of several variables are never isolated and that they are not contained in

any compact set. No facts from complex analysis are assumed other than the Cauchy-Riemann

definition. From stochastic analysis only the Itô formula and the standard existence theorem for

stochastic differential equations are required.

1 Introduction

It is well known that numerous facts from complex analysis can be given probabilistic proofs

or interpretation, many of which stem from Paul Lévy’s striking observation that the image of a

complex Brownian motion is simply a time changed complex Brownian motion. Itô calculus in

particular seems to be well-suited for giving interesting insights into classical facts as well as being

a tool for deriving new or refined results. We refer the reader to [Bas95] and the bibliography

therein for some examples. In this article we give a probabilistic approach to analyzing the zero-set

of a holomorphic function on Cn (where n≥ 2).

Here we use a stochastic differential equation (SDE) which has a strong solution that remains on

the zero-set of a given holomorphic function of several variables. We then prove that the solution

reaches any given radius with a strictly positive probability by computing the radial process and

the gradient norm process. The novelty in this application of stochastic calculus seems to be the

use of the gradient norm process and the fact that this process happens to be a submartingale

along the solution to the equation (1).

In section 2 we introduce the notation and basic facts to be used. The formalism developed here

is tailored to the specific situation, but the notions should be recognizable to anyone familiar with

conformal martingales, see for instance [RY91]. In section 3 we state and prove the theorem.

The main claim is a well known fact from complex analysis of several variables (see for instance

[Kra92] or [Ran86]) and can be proved in several ways, but the probabilistic argument used here

has apparently not been observed. The proof here also shows how to construct semimartingales
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with desirable properties on analytic sets or complex manifolds without the use of local coordinates

which are common in most literature on stochastic analysis on manifolds. Conceivably these kinds

of SDE’s could be useful or interesting in other contexts. In the last section we conclude with a

numerical illustration and remarks.

2 Preliminaries and notation

LetA andM loc
c

denote the space of continuous real valued processes with bounded total variation

and the space of continuous real valued local martingales respectively. We use a complexification

of the space of R2 valued semimartingales.

Definition 1. A complex semimartingale S is a C-valued process of the form

S = S0 + X + iY = S0 + A+M + i(B+ N)

where A,B ∈A and M , N ∈M loc
c

are orthogonal local martingales with 〈M , N〉= 0 and 〈M〉= 〈N〉.

Let the space of complex semimartingales be denoted by Q.

Definition 2. The complex covariation of a pair S1,S2 ∈ Q is defined to be the C-bilinear form

〈S1,S2〉 := 〈X 1 + iY 1, X 2 + iY 2〉= 〈X 1, X 2〉 − 〈Y 1, Y 2〉+ i(〈X 1, Y 2〉+ 〈X 2, Y 1〉)

A pair S1,S2 ∈ Q of complex semimartingales are orthogonal iff their complex covariation is 〈S1,S2〉=

0.

For the process Z = B1 + iB2 where B1 and B2 are orthogonal Brownian motions we therefore

have 〈Z , Z〉= 2t.

Definition 3. The Itô integral of a complex valued process along a complex (Ft)-semimartingale is

∫ t

0

(us + ivs)d(Xs + iYs) :=

∫ t

0

(usdXs − vsdYs) + i

∫ t

0

(vsdXs + usdYs).

where u and v are (Ft)-adapted.

We note that complex orthogonality of two complex martingales does not require the orthogonal-

ity of the corresponding real valued coordinate martingales, indeed, 〈S,S〉 = 〈S,S〉 = 0 for any

complex semimartingale.

The bilinearity of the complex quadratic variation extends to complex integrals in the same way

as it does in the real case. In particular, we make use of the following statements which are easily

verified using the definitions above and basic properties for real semimartingales.

Proposition 1. Let f be an integrable (Ft)-adapted C-valued process and S ∈ Q a complex semi-

martingale (respectively martingale). Then

∫

f dS

is a complex semimartingale (respectively martingale).
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Let S1,S2 ∈ Q and let f and g be integrable (Ft)-adapted C-valued processes. Then

〈

∫

f dS1,

∫

gdS2〉=

∫

f gd〈S1,S2〉.

In particular,
∫

f dS and
∫

gdS are orthogonal semimartingales,

〈

∫

f dS,

∫

gdS〉=

∫

f gd〈S,S〉= 0.

Proof. Compute the quadratic variations and covariations of the real and imaginary parts of the

according functions and integrals.

Using the customary z = x + i y , ∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y), ∂x x + ∂y y = 4∂zz and i2 =−1,

the Itô formula takes the familiar form.

Theorem 1 (Itô formula). For a twice differentiable complex function

f : C→ C

and a complex semimartingale S ∈ Q we have

f (S,S)− f (S0,S0) =

∫

∂z f (S,S)dS+

∫

∂z f (S,S)dS +

∫

∂zz f (S,S)d〈S,S〉.

This generalizes to complex functions of severable variables. We need this generalization only for

the case of two complex variables and orthogonal martingales and we write it out explicitly for

the sake of clarity.

Theorem 2 (Itô formula). Let f be a C 2 complex function of two complex variables

f : C2→ C

and let Z ,W ∈ Q be orthogonal complex semimartingales. Then

f (Z ,W )− f (Z0,W0) =

∫

∂z f dZ +

∫

∂w f dW +

∫

∂z f dZ +

∫

∂w f dW +

+

∫

∂zz f d〈Z , Z〉+

∫

∂zw f d〈Z ,W 〉+

+

∫

∂wz f d〈W, Z〉+

∫

∂ww f d〈W,W 〉.

Proof. Complex orthogonality implies

〈Z , Z〉= 〈Z ,W 〉= 〈W,W 〉= 〈Z , Z〉= 〈Z ,W 〉= 〈W ,W 〉= 0.

In the case of a holomorphic function this simplifies still further by the Cauchy-Riemann equations

∂z f = ∂w f = 0.
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Theorem 3 (Itô formula). Let f be a holomorphic function of two variables and let Z ,W ∈ Q be

orthogonal complex semimartingales. Then

f (Z ,W )− f (Z0,W0) =

∫

∂z f dZ +

∫

∂w f dW.

We shall also use the existence theorem for SDE for the case of bounded and Lipschitz coefficients.

As a basic reference for all these facts we cite [RY91].

3 Statement and proof

In what follows we denote the complex derivative of a holomorphic function f by fz := ∂z f . Let

N := {z ∈ Cn : f = 0}

be the zero-set of f and let

D := {z ∈ Cn : | fz1 |2 + . . .+ | fz2 |2 = 0}

be the set of critical points of f .

Theorem 4. Let f be a holomorphic function of two complex variables

f : C2→ C.

Assuming the zero-set N is not empty, then the zeros are not isolated and N is not contained in any

compact subset of C2. Moreover, the same is true for any component of N \ D.

The proof is organized into three parts.

First we prove the statement for the non-degenerate case N ∩ D = ∅, in other words, when the

zero-set is a manifold by the implicit function theorem.

Secondly, we prove the second assertion, concerning the non-degenerate components of the zero-

set N . The argument is essentially equivalent to the maximum principle for a subharmonic func-

tion.

Strictly speaking, the distinction between the first part and second part is redundant, but it should

make the proof clearer.

Thirdly, we consider the completely degenerate case.

Proof. Part 1. Assuming N 6= ∅ and N ∩ D = ∅. We choose such a point (z0, w0) ∈ C
2 that

f (z0, w0) = 0. Denote the norm of the gradient of f as a function on C2

‖Ï f ‖ : C2→ R+

‖Ï f ‖ : (u, v) 7→
p

| fz(u, v)|2 + | fw(u, v)|2 = ( fz fz + fw fw)
1

2 ,

with slight abuse of notation. This function is used here as a measure of the distance from the set

of degenerate points D. Let

BR = {(z, w) : ‖(z, w)− (z0, w0)‖≤ R}

be the ball of radius R around (z0, w0). Since N and D are closed sets the norm‖Ï f ‖has a strictly

positive lower bound N ∩ BR, say‖Ï f ‖> 2ǫ. Denote

Dǫ = {(u, v) : ‖Ï f ‖(u, v)< ǫ}
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which we name the ǫ-neighborhood of D.

Let Q = B1 + iB2 where (B1, B2) is a standard Brownian motion so that 〈Q,Q〉 = 2t and 〈Q,Q〉 =

〈Q,Q〉= 0 and consider the following sde

dZ = −
fw

‖Ï f ‖
dQ (1)

dW =
fz

‖Ï f ‖
dQ

Z0 = z0

W0 = w0.

The map

g :=
1

‖Ï f ‖

�

− fw

fz

�

(2)

and the corresponding degenerate dispersion matrix σ = (g 0) for (1) are globally bounded and

Lipschitz continuous on an open (Euclidean) neighborhood of BR ∩ DC
ǫ

, and likewise for the 4-

dimensional real counterpart of the equation (1). Then the standard existence theorem for SDE

guarantees a unique local strong solution, local meaning for all 0 ≤ t ≤ τ, where τ := τBR
C ∧ τDǫ

and τA is the hitting time of an open set A.

The solutions Z and W are clearly complex martingales by Proposition 1. Their covariations are

〈Z , Z〉 = 2

∫

fw · fw

‖Ï f ‖2
d t (3)

〈W,W 〉 = 2

∫

fz · fz

‖Ï f ‖2
d t

〈Z ,W 〉 = −2

∫

fw · fz

‖Ï f ‖2
d t

〈W, Z〉 = −2

∫

fz · fw

‖Ï f ‖2
d t

〈Z ,W 〉 = 0.

Z and W are orthogonal in the complex sense, so Theorem 3 above applies:

f (Z ,W ) = f (z0, w0) +

∫

fzdZ +

∫

fwdW

= 0. (4)

The annihilation occurs at the path level for the pathwise local solution. The local solution of (1)

therefore stays on the zero-set. It cannot be constant since a real local martingale is constant iff

its quadratic variation is constant (see for instance [RY91]), which is never the case for all the

coordinate martingales of the local solution at the same time by the assumption N ∩ D =∅.

Clearly, τDǫ
=∞ since (Z ,W )t∧τ remains on N ∩ BR ⊂ DC

2ǫ
, so here we have τ= τBR

C .
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For the claim that τBR
C <∞, let us observe the square of the radial process of (Z ,W ):

Zt Zt +WtW t − z0z0 −w0w0 =

∫ t

0

Z sdZs +

∫ t

0

ZsdZ s + 〈Z , Z〉t

+

∫ t

0

W sdWs +

∫ t

0

WsdW s + 〈W,W 〉t

= a real valued local martingale+ 2t, (5)

where we write t instead of t ∧ τ for simplicity. Using optional stopping for this bounded local

submartingale at t ∧τ for a fixed t <∞ one gets

E‖(Zt∧τ,Wt∧τ)‖
2−‖(z0, w0)‖

2 = 2E(t ∧τ).

Since‖(Zt∧τ,Wt∧τ)‖
2 ≤ R2 for all t, we have the following inequality

R2 ≥ E‖(Zt∧τ,Wt∧τ)‖
2 ≥ E(t ∧τ)≥ 2tP(τ≥ t), (6)

from which

P(τ=∞) = lim
t→∞
P(τ≥ t) = 0

follows, proving the existence of continuous paths on the null-set that reach any distance R from

(z0, w0). In fact, the solution to equation (1) actually reaches R with probability 1 and 2E(τ) =

R2−‖(z0, w0)‖
2.

Part 2. Assuming N \ D 6= ∅. We can still start equation (1) at a zero-point (z0, w0) outside a 2ǫ

neighborhood D2ǫ of the set D by continuity of the norm ‖Ï f ‖ at (z0, w0). A unique local strong

solution for the equation (1) up to τ exists as before. The equations (4) and (5) still apply up to

τ and hence so does P(τ <∞) = 1 and (6), only we can no longer guarantee τDǫ
=∞. But we

need only to prove that P(τDǫ
<∞)< 1.

For this purpose we use the Itô formula for the squared gradient norm process

‖Ï f ‖2(Z , Z ,W,W )

along the local solution of (1). We get

fz fz + fw fw = ‖Ï f ‖2
0
+

∫

fzz fzdZ +

∫

fz fzzdZ +

∫

fzw fzdW +

∫

fz fzwdW

+

∫

fww fwdW +

∫

fw fwwdW +

∫

fwz fwdZ +

∫

fw fwzdZ

+

∫

fzz fzzd〈Z , Z〉+

∫

fzw fzwd〈W,W 〉

+

∫

fzw fzzd〈W, Z〉+

∫

fzz fzwd〈Z ,W 〉

+

∫

fwz fwzd〈Z , Z〉+

∫

fww fwwd〈W,W 〉

+

∫

fww fwzd〈W, Z〉+

∫

fwz fwwd〈Z ,W 〉

= a real local martingale+

∫

a real non-negative process d t. (7)
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In other words, the squared gradient norm process is a submartingale. That the integrand above

is indeed non-negative can be seen using the covariations (3) computed above and the elementary

inequality

αα+ ββ − 2Re(α · β)≥ 0 for α,β ∈ C

for the pairs α= fzz · fw ,β = fwz · fz and α= fww · fz ,β = fwz · fw .

Since the local submartingale ‖Ï f ‖ 2 is bounded as a function of a bounded martingale and the

stopping time τ is also bounded, this justifies the use of optional stopping for the squared gradient

norm process (7) at τ.

Now assume P(τDǫ
<∞) = 1, so the solution is almost always stopped at a point where‖Ï f ‖= ǫ.

At t = 0 we have

‖Ï f ‖0 > 2ǫ

so we get a contradiction

ǫ2 > 4ǫ2

when taking expectation at the stopping time τ of (7). Hence the solution to equation (1) hits BC
R

with a strictly positive probability.

Part 3. Assume a non-degenerate point of N cannot be found. Choose a point from (z0, w0) ∈

N ∩D. We cannot start a sensible SDE at this point because the function and derivative values of f

at this point are null. Rather, choose a non-degenerate point (z1, w1) ∈ C
2 of the gradient of f in a

δ neighborhood of (z0, w0), even though this means leaving the zero-set. Such a point must exist

for any δ > 0. Here we can use the elementary fact from complex analysis that a holomorphic

function of one variable is constant on an open set iff it is constant. Alternatively, one can use

a general topological argument: assuming all points on the zero-set have an open (Euclidean)

neighborhood where the gradient is null, the zero-set is both open and closed, implying N =∅ or

N = C2. Choosing a δ > 0 sufficiently small, one get can f (z1, w1) = ǫ for arbitrary ǫ > 0, since f

is continuous.

Now (z1, w1) is a non-degenerate point on the zero set of f − ǫ. Using the equation (1) for

(Z0,W0) = (z1, w1), one can get zeros of f − ǫ at any distance from (z0, w0). These are not zeros

of f , but they are close, measured by f itself.

The proof can now be concluded in several ways. To keep in line with the reasoning above, choose

such a sequence of non-degenerate points (zi , wi) ∈ C
2 of f that converge to (z0, w0). Then the

sequence ǫi := f (zi , wi) converges to 0. Applying part 2 to f − ǫi one obtains a sequence of

points (zi , wi) on the two-sphere S(R) such that f (zi , wi) = ǫi and by compactness this sequence

has a Cauchy subsequence. For the limit (z, w) of any such subsequence one has f (z, w) = 0 by

continuity of f .

4 Conclusions and remarks

We include a numerical illustration of the pair of processes Z and W of equation (1) on the zero-set

of the function

f (z, w) = 4z4 + 3z2 + 2wz+ w3 + sin(z + w)− 10− sin(2).

Obviously, the theorem can be extended to holomorphic functions f : D ⊂ Cn → C for n > 2

(simply by freezing n − 2 coordinates) and to arbitrary domains D ⊂ Cn. Namely, replacing
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Figure 1: The process f (Z ,W ) (red) and the square radial process Z Z + WW (blue) for the

example above

the balls BR with any compact exhaustion of a domain D that contains an initial point where

f (z0, w0) = 0 for the SDE is inconsequential to the proof.

In effect, equation(1) defines a Brownian-like martingale on a Euclidean submersion of a complex

manifold. The radial process‖(Zt ,Wt)‖behaves like the radial process of 2-dimensional Brownian

motion in the ambient space stopped at R in the sense that

2E(τ) = R2

when t →∞ and

E‖(Zt ,Wt)‖
2 = 2t,

when R→∞.

In the manifold case the zero-set N (viewed as an embedded manifold in C2) has a natural Rie-

mannian structure and hence there is a canonical Brownian motion induced by the Kähler metric,

see for instance [IW81]. In general, Brownian motion on an embedded manifold has non-zero

drift coefficients and is not a martingale. However, in the special case when the embedded man-

ifold has a holomorphic defining function, so there exist holomorphic local coordinates by the

implicit function theorem, the intrinsic Brownian motion also turns out to be a martingale and

the process defined by equation (1) is its time change. One can see this by using the implicit

holomorphic local coordinates to map both processes from the ambient space C2 onto a region of

C where they are both complex martingales and hence time changed Brownian motions by Lévy’s

theorem.

In the manifold case equation (1) can be generalized to dimensions n > 2 simply by choosing

any vector field with values in the kernel of the derivative of the defining function. It can also be

generalized to real manifolds (with non-holomorphic defining functions) by replacing Itô integrals

with Stratonovich integrals.
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