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Abstract

In this article, we will explore why Karlin-McGregor method of using orthogonal polynomials in

the study of Markov processes was so successful for one dimensional nearest neighbor processes,

but failed beyond nearest neighbor transitions. We will proceed by suggesting and testing possible

fixtures.

1 Introduction

This paper was influenced by the approaches described in Deift [2] and questions considered in

Grünbaum [6].

The Karlin-McGreogor diagonalization can be used to answer recurrence/transience questions,

as well as those of probability harmonic functions, occupation times and hitting times, and a

large number of other quantities obtained by solving various recurrence relations, in the study of

Markov chains, see [8], [9], [10], [11], [7], [16], [15], [13]. However with some exceptions (see

[12]) those were nearest neighbor Markov chains on half-line. Grünbaum [6] mentions two main

drawbacks to the method as (a) “typically one cannot get either the polynomials or the measure

explicitly", and (b) “the method is restricted to ‘nearest neighbour’ transition probability chains

that give rise to tridiagonal matrices and thus to orthogonal polynomials". In this paper we attempt

to give possible answers to the second question of Grünbaum [6] for general reversible Markov

chains. In addition, we will consider possible applications of the newer methods in orthogonal

polynomials such as using Riemann-Hilbert approach, see [2], [3] and [14], and their probabilistic

interpretations.

In Section 2, we will give an overview of the Karlin-McGregor method from a naive college linear

algebra perspective. In 2.3, we will give a Markov chain interpretation to the result of Fokas , Its

and Kitaev, connecting orthogonal polynomials and Riemann-Hilbert problems. Section 3 deals

with one dimensional random walks with jumps of size ≤ m, the 2m + 1 diagonal operators.

There we consider diagonalizing with orthogonal functions. In 3.2, as an example we consider a

pentadiagonal operator and use Plemelj formula, and a two sided interval to obtain the respective

diagonalization. In Section 4, we use the constructive approach of Deift [2] to produce the Karlin-
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McGregor diagonalization for all irreducible reversible Markov chains. After that, we revisit the

example from Section 3.

2 Eigenvectors of probability operators

Suppose P is a tridiagonal operator of a one-dimensional Markov chain on {0,1, . . . } with forward

probabilities pk and backward probabilities qk. Suppose λ is an eigenvalue of P and qT (λ) =


Q0

Q1

Q2

...




is the corresponding right eigenvector such that Q0 = 1. So λqT = PqT generates the

recurrence relation for Q j . Then each Q j(λ) is a polynomial of j-th degree. The Karlin-McGregor

method derives the existence of a probability distribution ψ such that polynomials Q j(λ) are

orthogonal with respect to ψ. In other words, if π is stationary with π0 = 1 and < ·, · >ψ is the

inner product in L2(dψ), then

<Q i ,Q j >ψ=
δi, j

π j

Thus {
p
π jQ j(λ)} j=0,1,... are orthonormal polynomials, where π0 = 1 and π j =

p0...p j−1

q1...q j

( j = 1,2, . . . ). Also observe from the recurrence relation that the leading coefficient of Q j is
1

p0...p j−1

.

Now, λtqT = P tqT implies λtqi = (P
tqT )i for each i, and

< λtQ i ,Q j >ψ=< (P
tqT )i ,Q j >ψ=

pt(i, j)

π j

Therefore

pt(i, j) = π j < λ
tQ i ,Q j >ψ

Since the spectrum of P lies entirely inside (−1,1] interval, then so is the support of ψ. Hence,

for |z|> 1, the generating function

Gi, j(z) =

+∞∑

t=0

z−t pt(i, j) =−zπ j <
Q i

λ− z
,Q j >ψ= −zπ j

∫
Q i(λ)Q j(λ)

λ− z
dψ(λ)

2.1 Converting to a Jacobi operator

Let bk =
Æ

πk

πk+1

pk, then bk =
Æ
πk+1

πk

qk+1 due to reversibility condition. Thus the recurrence

relation for q,

λ
p
πkQk = qk

p
πkQk−1 + (1− qk − pk)

p
πkQk + pk

p
πkQk+1 ,

can be rewritten as

λ
p
πkQk = bk−1

p
πkQk−1 + ak

p
πkQk + bk

p
πkQk+1,
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where ak = 1− qk − pk. Therefore eq= (
p
π0Q0,

p
π1Q1, . . . ) solves ePeq= λeq, where

eP =




a0 b0 0 . . .

b0 a1 b1

. . .

0 b1 a2

. . .

...
. . .

. . .
. . .




is a Jacobi (symmetric triangular with bk > 0) operator. Observe that eP is self-adjoint.

The above approach extends to all reversible Markov chains. Thus every reversible Markov oper-

ator is equivalent to a self-adjoint operator, and therefore has an all real spectrum.

2.2 Karlin-McGregor: a simple picture

It is a basic fact from linear algebra that if λ1, . . . ,λn are distinct real eigenvalues of an n × n

matrix A, and if u1, . . . ,un and v1, . . . , vn are the corresponding left and right eigenvectors. Then A

diagonalizes as follows

At =
∑

j

λt vT
j
u j

u j v
T
j

=

∫

σ(A)

λt vT (λ)u(λ)dψ(λ) ,

where u(λ j) = u j , v(λ j) = v j , spectrum σ(A) = {λ1, . . . ,λn}, and

ψ(λ) =
∑

j

1

u(λ)vT (λ)
δλ j
(λ) =

n

u(λ)vT (λ)
Uσ(A)(λ)

Here Uσ(A)(λ) is the uniform distribution over the spectrum σ(A).

It is important to observe that the above integral representation is only possible if u(λ) and v(λ)

are well defined - each eigenvalue has multiplicity one, i.e. all distinct real eigenvalues. As we will

see later, this will become crucial for Karlin-McGregor diagonalization of reversible Markov chains.

The operator for a reversible Markov chain is bounded and is equivalent to a self-adjoint operator,

and as such has a real bounded spectrum. However the eigenvalue multiplicity will determine

whether the operator’s diagonalization can be expressed in a form of a spectral integral.

Since the spectrums σ(P) = σ(P∗), we will extend the above diagonalization identity to the

operator P in the separable Hilbert space l2(R). First, observe that u(λ) = (π0Q0,π1Q1, . . . )

satisfies

uP = λP

due to reversibility. Hence, extending from a finite case to an infinite dimensional space l2(R),

obtain

P t =

∫
λtqT (λ)u(λ)dψ(λ) =

∫
λt




π0Q0Q0 π1Q0Q1 · · ·
π0Q1Q0 π1Q1Q1 · · ·

...
...

. . .


 dψ(λ) ,

where

ψ(λ) = lim
n→+∞

ψn(λ)
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The above is the weak limit of

ψn(λ) =
n

u(λ)qT (λ)
Uσ(An)

(λ) ,

where An is the restriction of P to the first n coordinates, < e0, . . . , en−1 >

An =




1− p0 p0 0 · · · 0

q1 1− q1 − p1 p1

. . .
...

0 q2 1− q2

. . . 0
...

. . .
. . .

. . . pn−2

0 · · · 0 qn−1 1− qn−1 − pn−1




Observe that if Qn(λ) = 0 then (Q0(λ), . . . ,Qn−1(λ))
T is the corresponding right eigenvector of An.

Thus the spectrum of σ(An) is the roots of

Qn(λ) = 0

So

ψn(λ) =
n

u(λ)qT (λ)
UQn=0(λ) =

n
∑n−1

k=0
πkQ2

k
(λ)

UQn=0(λ) .

The orthogonality follows if we plug in t = 0. Since π0Q0Q0 = 1, ψ should integrate to one.

Example. Simple random walk and Chebyshev polynomials. The Chebyshev polynomials of the first

kind are the ones characterizing a one dimensional simple random walk on half line, i.e. the ones

with generator

Pch =




0 1 0 0 · · ·
1

2
0 1

2
0 · · ·

0 1

2
0 1

2

. . .

0 0 1

2
0

...

...
...

. . .
. . .

. . .




So, T0(λ) = 1, T1(λ) = λ and Tk+1(λ) = 2λTk(λ) − Tk−1(λ) for k = 2,3, . . . . The Chebyshev

polynomials satisfy the following trigonometric identity:

Tk(λ) = cos(k cos−1(λ))

Now,

ψn(λ) =
n

∑n−1

k=0
πk T 2

k
(λ)

U{cos(n cos−1(λ))=0}(λ) ,

where π(0) = 1 and π(1) = π(2) = · · ·= 2. Here

U{cos(n cos−1(λ))=0}(λ) = U{cos−1(λ))= π

2n
+ πk

n
, k=0,1,...,n−1}(λ)
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Thus if Xn ∼ U{cos(n cos−1(λ))=0}, then Yn = cos−1(Xn)∼ U{ π
2n
+ πk

n
, k=0,1,...,n−1} and Yn converges weakly

to Y ∼ U[0,π]. Hence Xn converges weakly to

X = cos(Y )∼
1

π
p

1−λ2
χ[−1,1](λ)dλ ,

i.e.

U{cos(n cos−1(λ))=0}(λ)→
1

π
p

1−λ2
χ[−1,1](λ)dλ

Also observe that if x = cos(λ), then

n−1∑

k=0

πk T 2
k
(λ) = −1+ 2

n−1∑

k=0

cos2(kx) = n−
1

2
+

sin((2n− 1)x)

2 sin(x)

Thus

dψn(λ)→ dψ(λ) =
1

π
p

1−λ2
χ[−1,1](λ)dλ

2.3 Riemann-Hilbert problem and a generating function of pt(i, j)

Let us write
p
π jQ j(λ) = k j Pj(λ), where k j =

1p
p0...p j−1

p
q1...q j

is the leading coefficient of
p
π jQ j(λ),

and Pj(λ) is therefore a monic polynomial.

In preparation for the next step, let w(λ) be the probability density function associated with the

spectral measure ψ: dψ(λ) = w(λ)dλ on the compact support, supp(ψ)⊂ [−1,1] = Σ. Also let

C( f )(z) =
1

2πi

∫

Σ

f (λ)

λ− z
dψ(λ)

denote the Cauchy transform w.r.t. measure ψ.

First let us quote the following theorem.

Theorem 1. [Fokas, Its and Kitaev, 1990] Let

v(z) =

�
1 w(z)

0 1

�

be the jump matrix. Then, for any n ∈ {0,1,2, . . . },

m(n)(z) =

�
Pn(z) C(Pnw)(z)

−2πik2
n−1

Pn−1(z) −2πik2
n−1

C(Pn−1w)(z)

�
, for all z ∈ C \Σ,

is the unique solution to the Riemann-Hilbert problem with the above jump matrix v(x) and Σ that

satisfies the following condition

m(n)(z)

�
z−n 0

0 zn

�
→ I as z→∞ . (1)
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The Riemann-Hilbert problem, for an oriented smooth curve Σ, is the problem of finding m(z),

analytic in C \Σ such that

m+(z) = m−(z)v(z), for all z ∈ Σ,

where m+ and m− denote respectively the limit from the left and the limit from the right of

function m as the increment approaches a point on Σ.

Suppose we are given the weight function w(λ) for the Karlin-McGregor orthogonal polynomials

q. If m(n)(z) is the solution of the Riemann-Hilbert problem as in the above theorem, then for

|z|> 1,

m(n)(z) =

 
1

kn
p
πn

Qn(z) − 1

2πikn
p
πnzn+1 G0,n

−2πi
kn−1p
πn−1

Qn−1(z)
kn−1p
πn−1zn G0,n−1(z)

!

=

�
q1 . . . qnQn(z) − q1...qn

2πizn+1 G0,n
−2πi

p0...pn−2

Qn−1(z)
1

p0...pn−2zn G0,n−1(z)

�

3 Beyond nearest neighbor transitions

Observe that the Chebyshev polynomials were used to diagonalize a simple one dimensional ran-

dom walk reflecting at the origin. Let us consider a random walk where jumps of sizes one and

two are equiprobable

P =




0 1

2

1

2
0 0 0 . . .

1

4

1

4

1

4

1

4
0 0 . . .

1

4

1

4
0 1

4

1

4
0 . . .

0 1

4

1

4
0 1

4

1

4

. . .

0 0 1

4

1

4
0 1

4

. . .

0 0 0 1

4

1

4
0

...

· · · · · · · · · . . .
. . .

. . .
. . .




The above random walk with the reflector at the origin is reversible with π0 = 1 and π1 = π2 =

· · · = 2. The Karlin-McGregor representation with orthogonal polynomials will not automatically

extend to this case. However this does not rule out obtaining a Karlin-McGregor diagonalization

with orthogonal functions.

In the case of the above pentadiagonal Chebyshev operator, some eigenvalues will be of geometric

multiplicity two as

P = P2
ch
+

1

2
Pch−

1

2
I ,

where Pch is the original tridiagonal Chebyshev operator.

3.1 2m+ 1 diagonal operators

Consider a 2m+1 diagonal reversible probability operator P. Suppose it is Karlin-McGregor diag-

onalizable. Then for a given λ ∈ σ(P), let qT (λ) =




Q0

Q1

Q2

...




once again denote the corresponding
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right eigenvector such that Q0 = 1. Since the operator is more than tridiagonal, we encounter

the problem of finding the next m− 1 functions, Q1(λ) = µ1(λ), Q2(λ) = µ2(λ), . . . ,Qm−1(λ) =

µm−1(λ).

Observe that q = q0 + q1µ1 + · · ·+ qm−1µm−1, where each qT
j
(λ) =




Q0, j

Q1, j

Q2, j

...




solves PqT
j
= λqT

j

recurrence relation with the initial conditions

Q0, j(λ) = 0, . . . , Q j−1, j(λ) = 0, Q j, j(λ) = 1, Q j+1, j(λ) = 0, . . . , Qm−1, j(λ) = 0

In other words, qT (λ) = Q(λ)µT , where Q(λ) =




| | |
qT

0
qT

1
· · · qT

m−1

| | |




and

µT =




1

µ1(λ)
...

µm−1(λ)




is such that q(λ) ∈ l2(R) for each λ ∈ σ(P).

Let An denote the restriction of P to the first n coordinates, < e0, . . . , en−1 >. Observe that if

Qn(λ) = · · · = Qn+m−1(λ) = 0 then (Q0(λ), . . . ,Qn−1(λ))
T is the corresponding right eigenvector

of An. Thus the spectrum of σ(An) consists of the roots of

det




Qn,0(λ) Qn,1(λ) Qn,m−1(λ)

Qn+1,0(λ) Qn+1,1(λ) Qn+1,m−1(λ)
...

... · · ·
...

Qn+m−1,0(λ) Qn+m−1,1(λ) Qn+m−1,m−1(λ)



= 0

3.2 Chebyshev operators

Let us now return to the example generalizing the simple random walk reflecting at the origin.

There one step and two step jumps were equally likely. The characteristic equation z4+z3−4λz3+

z2 + z = 0 for the recurrence relation

cn+2 + cn+1 − 4λcn + cn−1 + cn−2 = 0

can be easily solved by observing that if z is a solution then so are z̄ and 1

z
. The solution in

radicals is expressed as z1,2 = r1 ± i
p

1− r2
1 and z3,4 = d2 ± i

p
1− r2

2 , where r1 =
−1+
p

9+16λ

4

and r2 =
−1−
p

9+16λ

4
.

Observe that r1 and r2 are the two roots of s(x) = λ, where s(x) = x2 + 1

2
x − 1

2
is the polynomial

for which

P = s(Pch)

In general, the following is true for all operators P that represent symmetric random walks re-

flecting at the origin, and that allow jumps of up to m flights: there is a polynomial s(x) such that
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P = s(Pch) and the roots z j of the characteristic relation in λc = Pc will lie on a unit circle with

their real parts Re(z j) solving s(x) = λ. The reason for the latter is the symmetry of the corre-

sponding characteristic equation of order 2m, implying 1

z j

= z̄ j , and therefore the characteristic

equation for λc= Pc can be rewritten as

s

�
1

2

�
z +

1

z

��
= λ ,

where 1

2

�
z + 1

z

�
is the Zhukovskiy function.

In our case, s(x) =
�

x + 1

4

�2

− 9

16
, and for λ ∈

�
− 9

16
, 0
�

, there will be two candidates for µ1(λ),

µ+(λ) = r1 =
−1+

p
9+ 16λ

4
and µ−(λ) = r2 =

−1−
p

9+ 16λ

4

Taking 0 ≤ arg z < 2π branch of the logarithm log z, and applying Plemelj formula, one would

obtain

µ1(z) =−
1

4
+ z

1

2 exp





1

2

∫ 0

− 9

16

ds

s− z



 ,

where µ+(λ) = limz→λ, Im(z)>0 µ1(z) and µ−(λ) = limz→λ, Im(z)<0µ1(z).

Now, as we defined µ1(z), we can propose the limits of integration to be a contour in C con-

sisting of the [0,1] segment,
�
− 9

16
, 0
�
+
= limǫ↓0

¦
z = x + iǫ : x ∈

�
− 9

16
, 0
�©

, and
�
− 9

16
, 0
�
− =

limǫ↓0
¦

z = x − iǫ : x ∈
�
− 9

16
, 0
�©

. Then

P t =

∫

�
− 9

16
,0
�
−∪
�
− 9

16
,0
�
+
∪[0,1]

λtqT (λ)u(λ)dψ(λ),

where u(λ) is defined as before, and

dψ(λ) =
1

2π
Æ
λ+ 9

16




χ[− 9

16
,0)−
(λ)

Ç
1−
�Æ
λ+ 9

16
+ 1

4

�2
+
χ[− 9

16
,0)+
(λ) +χ[0,1](λ)

Ç
1−
�Æ
λ+ 9

16
− 1

4

�2


 dλ

Let us summarize this section as follows. If the structure of the spectrum does not allow Karlin-

McGregor diagonalization with orthogonal functions over (−1,1], say when there are two values

of µT (λ) for some λ, then one may use Plemelj formula to obtain an integral diagonalization of P

over the corresponding two sided interval.

4 Spectral Theorem and why orthogonal polynomials work

The constructive proofs in the second chapter of Deift [2] suggest the reason why Karlin-McGregor

theory of diagonalizing with orthogonal polynomials works for all time reversible Markov chains.

The approach goes back to the works of M.Krein and N.I.Akhiezer, see [1] and [5]. Using the same
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logical steps as in [2], we can construct a mapM which assigns a probability measure dψ to a

reversible transition operator P on a countable state space {0,1,2, . . . }. W.l.o.g. we can assume P

is symmetric as one can instead consider




p
π0 0 · · ·

0
p
π1

. . .

...
. . .

. . .


 P




1p
π0

0 · · ·

0 1p
π1

. . .

...
. . .

. . .




which is symmetric, and its spectrum coinciding with spectrum σ(P)⊂ (−1,1].

Now, for z ∈ C \R let G(z) = (e0, (P − zI)−1e0). Then

ImG(z) =
1

2i

�
(e0, (P − zI)−1e0)− (e0, (P − z̄ I)−1e0)

�
= (Im(z))|(P − zI)−1e0|2

and therefore G(z) is a Herglotz function, i.e. G(z) is an analytic map from {Im(z) > 0} into

{Im(z)> 0}, and as all such functions, it can be represented as

G(z) = az + b+

∫ +∞

−∞

�
1

s− z
−

s

s2 + 1

�
dψ(s), Im(z)> 0

In the above representation a ≥ 0 and b are real constants and dψ is a Borel measure such that

∫ +∞

−∞

1

s2 + 1
dψ(s)<∞

Deift [2] uses G(z) = (e0, (P − zI)−1e0) =− 1

z
+O(z−2) to show a = 0 in our case, and

b =

∫ +∞

−∞

s

s2 + 1
dψ(s)

as well as the uniqueness of dψ. Hence

G(z) =

∫
dψ(s)

s− z
, Im(z)> 0

The point of all these is to construct the spectral map

M : {reversible Markov operators P} → {probability measures ψ on [−1,1] with compact supp(ψ)}

The asymptotic evaluation of both sides in

(e0, (P − zI)−1e0) =

∫
dψ(s)

s− z
, Im(z)> 0

implies

(e0, Pke0) =

∫
skdψ(s)



Orthogonality and probability 99

Until now we were reapplying the logical steps in Deift [2] for the case of reversible Markov

chains. However, in the original, the second chapter of Deift [2] gives a constructive proof of the

following spectral theorem, that summarizes as

U : {bounded Jacobi operators on l2}⇋ {probability measures ψ on R with compact supp(ψ)},

where U is one-to-one onto.

Theorem 2. [Spectral Theorem] For every bounded Jacobi operatorA there exists a unique prob-

ability measure ψ with compact support such that

G(z) =
�

e0, (A − zI)−1e0

�
=

∫ +∞

−∞

dψ(x)

x − z

The spectral map U :A → dψ is one-to-one onto, and for every f ∈ L2(dψ),

(UAU −1 f )(s) = s f (s)

in the following sense

(e0,A f (A )e0) =

∫
s f (s)dψ(s)

So suppose P is a reversible Markov chain, then

M : P → dψ and U −1 : dψ→ P△ ,

where P△ is a unique Jacobi operator such that

(e0, Pke0) =

∫
skdψ(s) = (e0, Pk

△e0)

Now, if Q j(λ) are the orthogonal polynomials w.r.t. dψ associated with P△, then Q j(P△)e0 = e j

and

δi, j = (ei , e j) = (Q i(P△)e0,Q j(P△)e0) = (Q i(P)e0,Q j(P)e0)

Thus, if P is irreducible, then f j = Q j(P)e0 is an orthonormal basis for Karlin-McGregor diagonal-

ization. If we let F =



| |
f0 f1 · · ·
| |


, then

P t =


 (P t ei , e j)


 = F




∫ 1

−1
stQ i(s)Q j(s)dψ(s)


 F T ,

where F T = F−1. Also Deift [2] provides a way for constructing

U −1M : P → P△
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Since P△ is a Jacobi operator, it can be represented as

P△ =




a0 b0 0 · · ·

b0 a1 b1

. . .

0 b1 a2

. . .

...
. . .

. . .
. . .




b j > 0

Now,

(e0, Pe0) = (e0, P△e0) = a0, (e0, P2e0) = (e0, P2
△e0) = a2

0
+ b2

0

(e0, P3e0) = (e0, P3
△e0) = (a

2
0
+ b2

0
)a0 + (a0 + a1)b

2
0

and (e0, P4e0) = (e0, P4
△e0) = (a

2
0
+ b2

0
)2 + (a0 + a1)

2 b2
0
+ b2

0
b2

1

thus providing us with the coefficients of the Jacobi operator, a0, b0, a1, . . . , and therefore the

orthogonal polynomials Q j .

Example. Pentadiagonal Chebyshev operator. For the pentadiagonal P that represents the symmet-

ric random walk with equiprobable jumps of sizes one and two,

(e0, Pe0) = 0, (e0, P2e0) =
1

4
, (e0, P3e0) =

3

32
, (e0, P4e0) =

9

64
, . . .

Thus

a0 = 0, b0 =
1

2
, a1 =

3

8
, b1 =

p
11

8
, etc.

So

P△ =




0 1

2
0 · · ·

1

2

3

8

p
11

8

. . .

0
p

11

8

. . .
. . .

...
. . .

. . .
. . .




and

Q0(λ) = 1, Q1(λ) = 2λ, Q2(λ) =
32
p

11
λ2 −

6
p

11
λ−

4
p

11
, . . .

Then applying classical Fourier analysis, one would obtain

�
e0, (P − zI)−1e0

�
=

1

2π

∫ 2π

0

dθ
1

2
[cos(θ) + cos(2θ)]− z

=

∫ 1

− 9

16

dψ(s)

s− z
,

where

dψ(s) =
1

2π
Æ

s+ 9

16




χ[− 9

16
,1](s)

Ç
1−
�Æ

s+ 9

16
− 1

4

�2
+

χ[− 9

16
,0)(s)

Ç
1−
�Æ

s+ 9

16
+ 1

4

�2


 ds

To obtain the above expression for dψ we used the fact that
�

e0, (P − zI)−1e0

�
would be the same

if there were no reflector at zero.
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4.1 Applications of Karlin-McGregor diagonalization

Let us list some of the possible applications of the diagonalization. First, the diagonalization can

be used to extract the rate of convergence to a stationary probability distribution, if there is one.

If we consider a nearest-neighbor Markov chain on a half-line with finite π, i.e.

ρ =
∑

k

πk <∞,

then the spectral measure ψ will contain a point mass
δ1(λ)∑∞

k=0 πkQ2
k
(λ)
=
δ1(λ)

ρ
at 1 (and naturally no

point mass at −1).

In order to measure the rate of convergence to a stationary distribution, the following distance is

used.

Definition 1. If µ and ν are two probability distributions over a sample space Ω, then the total

variation distance is

‖ν −µ‖T V =
1

2

∑

x∈Ω
|ν(x)−µ(x)|= sup

A⊂Ω
|ν(A)−µ(A)|

Observe that the total variation distance measures the coincidence between the distributions on a scale

from zero to one.

In our case, ν = 1

ρ
π is the stationary probability distribution. Now, suppose the process com-

mences at site µ0 = i, then the total variation distance between the distribution µt = µ0P t and ν

is given by



ν −µt




T V

=
1

2

∑

j

¯̄
¯̄
¯
π j

ρ
−π j

∫

(−1,1]

λtQ i(λ)Q j(λ)dψ(λ)

¯̄
¯̄
¯

=
1

2

∑

j

π j

¯̄
¯̄
¯

∫

(−1,1)

λtQ i(λ)Q j(λ)dψ(λ)

¯̄
¯̄
¯

The rates of convergence are quantified via mixing times.

Definition 2. Suppose P is an irreducible and aperiodic Markov chain with stationary probability

distribution ν . Given an ε > 0, the mixing time tmix(ε) is defined as

tmix(ε) =min
�

t : ‖ν −µt‖T V ≤ ε
	

Thus, in the case of a nearest-neighbor process commencing at µ0 = i, the corresponding mixing

time has the following simple expression

tmix(ε) =min



t :

∑

j

π j

¯̄
¯̄
¯

∫

(−1,1)

λtQ i(λ)Q j(λ)dψ(λ)

¯̄
¯̄
¯≤ 2ε




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Observe that the above expression is simplified when µ0 = 0. In general, if P is an irreducible

aperiodic reversible Markov chain with a stationary distribution ν , that commences at µ0 = 0,

then its mixing time is given by

tmix(ε) =min



t :








ei F




∫
(−1,1)

stQ j(s)Qk(s)dψ(s)


 F T








ℓ1

≤ 2ε



 ,

where Q j , F and ψ are as described earlier in the section.

Now, if µ0 = 0, then e0F = ((e0, f0), (e0, f1), . . . ) = e0 by construction, and therefore

tmix(ε) = min



t :








 ∫

(−1,1)

stQ0(s)dψ(s),

∫

(−1,1)

stQ1(s)dψ(s), . . .

!
F T







ℓ1

≤ 2ε





= min



t :






e0



∑

j



∫

(−1,1)

stQ j(s)dψ(s)


 Q j(P)









ℓ1

≤ 2ε





in this case.

For example, if we estimate the rate of convergence of
∑

j

¯̄
¯
∫
(−1,1)

stQ j(s)dψ(s)

¯̄
¯


e0Q j(P)




ℓ1

, we

would obtain an upper bound on the mixing time. The estimate can be simplified if we use the ℓ2

distance instead of the total variation norm in the definition of the mixing time.

We conclude by listing some other important applications of the method.

• The generator

G(z) =


 Gi, j(z)


 = F


 −z

∫ 1

−1

Q i(λ)Q j(λ)

λ−z
dψ(λ)


 F T

• One can use the Fokas, Its and Kitaev results, and benefit from the connection between

orthogonal polynomials and Riemann-Hilbert problems.

• One can interpret random walks in random environment as a random spectral measure.

References

[1] N.I.Aheizer and M.Krein, Some Questions in the Theory of Moments. Translations of Math

Monographs, Vol.2, Amer. Math. Soc., Providance, RI, (1962) (translation of the 1938 Rus-

sian edition) MR0167806

[2] P.Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Amer.

Math. Soc., Providance, RI, (2000) MR1677884

http://www.ams.org/mathscinet-getitem?mr=0167806
http://www.ams.org/mathscinet-getitem?mr=1677884


Orthogonality and probability 103

[3] P.Deift, Riemann-Hilbert Methods in the Theory of Orthogonal Polynomials Spectral Theory

and Mathematical Physics, Vol. 76, Amer. Math. Soc., Providance, RI, (2006) pp.715-740

MR2307753

[4] H.Dym and H.P.McKean, Gaussian processes, function theory, and the inverse spectral prob-

lem Probability and Mathematical Statistics, 31, Academic, New York - London (1976)

MR0448523

[5] M.L.Gorbachuk and V.I.Gorbachuk, M.G.Krein’s Lectures on Entire Operators Birkhäuser Ver-

lag (1997)

[6] F.A. Grünbaum, Random walks and orthogonal polynomials: some challenges Probabil-

ity, Geometry and Integrable Systems - MSRI Publications, Vol. 55, (2007), pp.241-260.

MR2407600

[7] S.Karlin, Total Positivity Stanford University Press, Stanford, CA (1968) MR0230102

[8] S.Karlin and J.L.McGregor, The differential equations of birth and death processes, and the

Stieltjes moment problem Transactions of AMS, 85, (1957), pp.489-546. MR0091566

[9] S.Karlin and J.L.McGregor, The classification of birth and death processes Transactions of AMS,

86, (1957), pp.366-400. MR0094854

[10] S.Karlin and J.L.McGregor, Random Walks Illinois Journal of Math., 3, No. 1, (1959), pp.417-

431. MR0100927

[11] S.Karlin and J.L.McGregor, Occupation time laws for birth and death processes Proc. 4th Berke-

ley Symp. Math. Statist. Prob., 2, (1962), pp.249-272. MR0137180

[12] S.Karlin and J.L.McGregor, Linear Growth Models with Many Types and Multidimensional

Hahn Polynomials In: R.A. Askey, Editor, Theory and Applications of Special Functions, Aca-

demic Press, New York (1975), pp. 261-288. MR0406574

[13] Y.Kovchegov, N.Meredith and E.Nir Occupation times via Bessel functions preprint

[14] A.B.J.Kuijlaarsr, Riemann-Hilbert Analysis for Orthogonal Polynomials Orthogonal Polynomi-

als and Special Functions (Springer-Verlag), Vol. 1817, (2003) MR2022855

[15] W.Schoutens, Stochastic Processes and Orthogonal Polynomials. Lecture notes in statistics

(Springer-Verlag), Vol. 146, (2000) MR1761401

[16] G.Szegö, Orthogonal Polynomials. Fourth edition. AMS Colloquium Publications, Vol. 23,

(1975) MR0372517

http://www.ams.org/mathscinet-getitem?mr=2307753
http://www.ams.org/mathscinet-getitem?mr=0448523
http://www.ams.org/mathscinet-getitem?mr=2407600
http://www.ams.org/mathscinet-getitem?mr=0230102
http://www.ams.org/mathscinet-getitem?mr=0091566
http://www.ams.org/mathscinet-getitem?mr=0094854
http://www.ams.org/mathscinet-getitem?mr=0100927
http://www.ams.org/mathscinet-getitem?mr=0137180
http://www.ams.org/mathscinet-getitem?mr=0406574
http://www.ams.org/mathscinet-getitem?mr=2022855
http://www.ams.org/mathscinet-getitem?mr=1761401
http://www.ams.org/mathscinet-getitem?mr=0372517

	Introduction
	Eigenvectors of probability operators
	Converting to a Jacobi operator
	Karlin-McGregor: a simple picture
	Riemann-Hilbert problem and a generating function of pt(i,j)

	Beyond nearest neighbor transitions
	2m+1 diagonal operators
	Chebyshev operators

	Spectral Theorem and why orthogonal polynomials work
	Applications of Karlin-McGregor diagonalization

	References

