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Abstract

We prove that the density fluctuations for a zero-range process evolving on the d-dimensional su-
percritical percolation cluster, with d ≥ 3, are given by a generalized Ornstein-Uhlenbeck process
in the space of distributions S ′(Rd).

1 Introduction

Consider the infinite cluster of a supercritical bond percolation model. On this random graph, we
define a zero-range process, which can be defined as a system of symmetric, simple random walks
on which the hopping time of particles at a given site depends only on the number of particles
at that site. It has been recently proved that the scaling limit of a simple random walk on the
percolation cluster is given by a Brownian motion with a diffusion coefficient that does not depend
on the particular realization of the percolation cluster [3], [10], [11]. With this result in mind, it
is natural to raise the question about the collective behavior of a system of random walks evolving
on the percolation cluster, possibly with some interaction. More precisely, we want to study the
density fluctuations of this model. Scale the lattice by 1/n and give a mass 1/n to each particle.
In this way we obtain a measure in Rd , which we call the empirical density of particles. Under
a diffusive time scaling, it has been proved for a simple exclusion process [5] that the empirical
measure converges in a proper sense, to a solution of the heat equation ∂tu = D∆u, where D is
the diffusion coefficient of the underlying random walk.
This result can be interpreted as a law of large numbers for the density of particles, and there-
fore the question about the central limit theorem arises. For the simple exclusion process, duality
techniques reduce the law of large numbers and the central limit theorem for the density to suit-
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able problems for simple random walks. In order to treat a more general case, in these notes we
discuss the density fluctuations for the zero-range process. Due to the inhomogeneity introduced
by the randomness of the percolation cluster, the model turns out to be non-gradient. Following
our previous work [6], a functional transformation of the empirical density puts the model back
into the setup of gradient systems. The main tool allowing to make this functional transformation
is a form of the compensated compactness lemma of Tartar [12], which is obtained in [5] using
two-scale convergence. Therefore, the proof of a central limit theorem for the density fluctuations
is reduced to the so-called Boltzmann-Gibbs principle, which roughly states that fluctuations of
non-conserved quantities are faster than fluctuations of conserved quantities. In the right scaling
limit, only fluctuations of the density of particles survive, allowing to obtain a martingale charac-
terization of the scaling limit. In this way we prove that the limiting density field is given by a
generalized Ornstein-Uhlenbeck process, as predicted by the fluctuation-dissipation principle. In
dimension d = 2, our method requires regularity of solutions of an associated elliptic problem
which, up to our knowledge, have not been obtained for this model .
The main technical innovation in this paper is what we call the connectivity lemma. In [6], an
ellipticity condition makes it possible to compare the relaxation properties of our system with the
relaxation properties of a zero-range process in the absence of the random environment. But the
percolation cluster does not satisfy this ellipticity condition, since by construction the jump rate
through a closed bond is 0. Moreover, the percolation cluster is locally non connected, since for a
typical box of fixed side, the part of the percolation cluster lying inside this box is not connected.
The connectivity lemma says that enlarging a bit the box we obtain a connected graph with good
ergodic properties, allowing to get bounds on the relaxation to equilibrium.
We point out that our results are still true in a more general context. We have chosen the zero-
range process on the percolation cluster for simplicity and to capture the essential difficulties. Take
for example a random barrier model on Zd on which the conductances are not bounded below (see
[5] for a more detailed definition), and take an interacting particle system satisfying the gradient
condition (before randomizing the lattice). Our results apply as well for these models, leading to
the same results.
These notes are organized as follows. In Section 2 we introduce the model and we state the main
results. In Section 3 we introduce the corrected density field and we show how to obtain the main
results from the compensated compactness lemma and the Boltzmann-Gibbs principle. In Section
4 we state and prove the connectivity lemma and we obtain the Boltzmann-Gibbs principle starting
from it.

2 Definitions and main results

2.1 The supercritical percolation cluster

Let E = {e = 〈x y〉; x , y ∈ Zd , |x− y|= 1} be the set of nearest-neighbor, non oriented bonds in Zd .
Let ω = {ω(e); e ∈ E} be a sequence of i.i.d. random variables with P(ω(e) = 1) = 1− P(ω(e) =

0) = p. Let us fix a realization of the sequence ω. Whenever ω(e) = 1, we say that the bond e is
open. Otherwise we say that the bond e is closed. We say that two sites x , y in Zd are connected,
which we denote by x ↔ y , if there is a finite sequence of points {x0 = x , x1, . . . , xn = y} such
that for any i ∈ {0, . . . , n− 1}, |x i+1 − x i | = 1 and the bond 〈x i x i+1〉 is open. For each x ∈ Zd , we
define C (ω, x) = {y ∈ Zd ; x ↔ y}. We call C (ω, x) the cluster containing x . It is well known
[7] that the probability of C (ω, x) being infinite is an increasing function of p, and that there
exists pc ∈ (0,1) such that this probability is strictly positive for p > pc and equal to 0 for p < pc .
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It is also well known that for p > pc , with probability one, there exists a unique cluster of infinite
cardinality. We denote this cluster by C (ω). We call C (ω) the supercritical percolation cluster.
From now on, we fix a number p ∈ (pc , 1] and a sequence ω for which C (ω) is well defined. We
also define θ (p) = P(0 ∈ C (ω)).

2.2 The zero-range process in C (ω)

For x , y in Zd , we say that x ∼ y if |x − y| = 1 and 〈x y〉 is open. Let g : N0 = {0,1, ...} → [0,∞)
be a function with g(0) = 0. The zero-range process in C (ω) with interaction rate g(·) is the
Markov process ξt in Ω = NC (ω)0 generated by the operator L given by

L f (ξ) =
∑

x ,y∈Zd

x∼y

g(ξ(x))
�

f (ξx ,y)− f (ξ)
�

,

where f : Ω → R is a local function, that is, it depends on ξ(x) only for a finite number of sites
x ∈ C (ω), and ξx ,y is given by

ξx ,y(z) =







ξ(x)− 1, z = x

ξ(y) + 1, z = y

ξ(z), z 6= x , y.

The dynamics of this process is easy to understand. At each time, a particle jumps from a site
x ∈ C (ω) to a neighbor y ∼ x with exponential rate g(k), where k is the number of particles at
site x at that time. When the initial number of particles is finite, the process ξt is a continuous-time
Markov chain in Ω.
In order to have a well defined family of ergodic, invariant measures for the process ξt , we assume
that g(n)> 0 for any n> 0 and that

sup
n
|g(n+ 1)− g(n)|<+∞. (2.1)

Under these conditions, g(·) is bounded by a linear function: there exists c0 such that g(n) ≤ c0n

for any n. Let us define the product probability measures ν̄ϕ in Ω by the relation

ν̄ϕ{ξ(x) = k}=
1

Z(ϕ)

ϕk

g(k)!
,

where g(k)! = g(1) · · · g(k) for k ≥ 1, g(0)! = 1, ϕ ∈ [0,∞) and Z(ϕ) is the normalization con-
stant. Due to (2.1), these measures are well defined up to some critical value ϕc > 0. Notice that
the parameter ϕ has an interpretation as the strength of the interaction, since

∫

g(ξ(x))ν̄ϕ(dξ) =

ϕ. It has been proved [1] that the measures {ν̄ϕ;ϕ ∈ [0,ϕc)} are ergodic and invariant under the
evolution of ξt . Since we are interested in density fluctuations, we will reparametrize this family
of measures by its density of particles. For that purpose, define ρ(ϕ) =

∫

ξ(x)ν̄ϕ(dξ). It is not
hard to see that ϕ 7→ ρ(ϕ) is a diffeomorphism from [0,ϕc) to [0,ρc), where ρc = limϕ→ϕc

ρ(ϕ).
In particular, the inverse function ρ 7→ ϕ(ρ) is well defined. We define νρ = ν̄ϕ(ρ), measure for

which now
∫

ξ(x)νρ(dξ) = ρ.
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2.3 The density fluctuations

Let ρ ∈ (0,ρc) be fixed and consider the process ξn
t
= ξtn2 starting from the measure νρ. We

denote by Pn the distribution of the process ξn
·

in the Skorohod space D([0,∞),Ω) of càdlàg
trajectories in Ω, and by En the expectation with respect to Pn.
Denote by Cc(R

d) the set of continuous functions G : Rd → R with compact support. By the
ergodic theorem, it is not hard to see that

lim
n→∞

1

nd

∑

x∈C (ω)

G(x/n)ξ(x) = θ (p)ρ

∫

R
d

G(x)d x ,

almost surely with respect to the probability measure P ⊗ νρ. In the previous result, the ergodic
theorem is invoked twice: first to state that the density of points belonging to C (ω) when properly
rescaled is equal to θ (p), and then to state that the density of particles is equal to ρ. Since the
measure νρ is invariant under the dynamics of ξt , the same result is also valid if we replace ξ by
ξn

t
in the previous expression. We are interested on a version of the central limit theorem for this

quantity. Let us define, for each test function G, the density fluctuation field Y n
t
(G) by

Y n
t
(G) =

1

nd/2

∑

x∈C (ω)

G(x/n)
�

ξn
t
(x)−ρ
�

.

For topological reasons, it will be convenient to restrict the previous definition to functions G ∈

S (Rd), the Schwartz space of test functions, although Y n
t
(G) makes sense for more general test

functions. The process Y n
t

defined in this way corresponds to a process on the Skorohod space
D([0,∞),S ′(Rd)), where S ′(Rd) is the space of distributions on Rd . Now we are ready to state
our main result:

Theorem 2.1. Fix a particle density ρ ∈ (0,ρc). In dimension d > 2, for almost all ω, the sequence

of processes {Y n
t
}n converges in the sense of finite-dimensional distributions to a Gaussian process Yt

with mean zero and covariance given by

E[Yt+s(H)Ys(G)] = χ(ρ)θ (p)

∫

R
d

G(y)St H(y)d y,

where we define χ(ρ) = Var(ξ(0);νρ), St denotes the semigroup generated by the operator ϕ′(ρ)D∆,

s, t ≥ 0 and G, H ∈ S (Rd) and D is the limiting variance of a symmetric random walk in C (ω).

We call the process Yt the generalized Ornstein-Uhlenbeck process of characteristics ϕ′(ρ)D∆ and
p

2θ (p)ϕ(ρ)D∇. Notice that this theorem implies in particular a central limit theorem for the
sequence {Y n

t
(G)}n for any G ∈ S (Rd).

3 The corrected fluctuation field

3.1 The corrected fluctuation field

The proof of Theorem 2.1 is based on Holley-Stroock’s characterization of generalized Ornstein-
Uhlenbeck processes [8]. For each t ≥ 0, let Ft be the σ-algebra on D([0,∞),S ′(Rd)) generated
by the projections {Ys(H); s ≤ t, H ∈ S (Rd)}. The process Yt admits the following characteriza-
tion:
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Proposition 3.1. There exists a unique process Yt in C ([0,∞),S ′(Rd)) such that:

i) For every function G ∈ S (Rd),

Mt(G) = Yt(G)−Y0(G)−ϕ
′(ρ)D

∫ t

0

Ys(∆G)ds

and
�

Mt(G)
�2
− 2θ (p)ϕ(ρ)Dt

∫

R
d

�

∇G(x)
�2

d x

are Ft -martingales.

ii) Y0 is a Gaussian field of mean zero and covariance given by

E
�

Y0(G)Y0(H)
�

= θ (p)χ(ρ)

∫

R
d

G(x)H(x)d x ,

where G, H are test functions in S (Rd). The process Yt is called the generalized Ornstein-

Uhlenbeck process of mean zero and characteristics ϕ′(ρ)D∆ and
p

2θ (p)ϕ(ρ)D∇.

Now the idea behind the proof of Theorem 2.1 is simple. We will prove that the sequence of pro-
cesses {Y n

t
}n is tight and that every limit point satisfies the martingale problem stated in Proposi-

tion 3.1. With these two elements in hand, we will be able to conclude Theorem 2.1.
By Dynkin’s formula, for each G ∈ S (Rd),

M n
t
(G) = Y n

t
(G)−Y n

0 (G)−

∫ t

0

n2 LY n
s
(G)ds

is a martingale with respect to F n
t
= σ{ξn

s
; s ≤ t}. The quadratic variation of M n

t
(G) is given by

∫ t

0

n2�LY n
s
(G)2 − 2Y n

s
(G)LY n

s
(G)
	

ds.

Notice that the second step (that is, that the limit points satisfy the martingale problem) requires to
replace, in some sense, n2 LY n

s
(G) by ϕ′(ρ)DY n

s
(∆G), and to replace LY n

s
(G)2−2Y n

s
(G)LY n

s
(G)

by θ (p)ϕ(ρ)D
∫

R
d

�

∇G(x)
�2

d x . Let us take a more careful look at these two terms. We start with
the second one. Simple computations show that

n2
n

LY n
s
(G)2 − 2Y n

s
(G)LY n

s
(G)
o

=
1

nd

∑

x∈C (ω)
y:x∼y

g
�

ξn
s
(x)
�

n2�G(y/n)− G(x/n)
�2.

By the ergodic theorem, when integrated in time this quantity should converge to

2θ (p)ϕ(ρ)t

∫

R
d

�

∇G(x)
�2

d x .

Notice that we have missed the factor D in the previous computation. We will return to this point
later. Now let us take a look at the first term:

n2 LY n
s
(G) =

1

nd/2

∑

x∈C (ω)

�

g(ξn
s
(x))−ϕ(ρ)
�

LnG(x/n),
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where g(·) is the interaction rate and Ln is the generator of the associated symmetric random
walk in C (ω). For a function F : Rd → R and x ∈ C (ω), LnF(x/n) is defined by

LnF(x/n) = n2
∑

y∈C (ω)
y∼x

F(y/n)− F(x/n).

The so-called Boltzmann-Gibbs principle guarantees the replacement, when integrated in time, of
the expression g(ξn

s
(x)) − ϕ(ρ) by ϕ′(ρ)

�

ξn
s
(x) − ρ
�

in the sum above, allowing us to write
n2 LY n

t
(G) as ϕ′(ρ)Yt(LnG) plus a term that is negligible as n→∞. Now we can see what the

problem is. Assume that {Y n
t
}n is tight. Take a limit point Y ∞

t
of {Y n

t
}n. We want to say that

Y n
t
(LnG) converges to Y ∞

t
(D∆G) along the corresponding subsequence. But Y n

t
converges to

Y ∞
t

only in a weak sense. Therefore, we should need strong convergence of LnG, which is easily
checked not to hold.
The way to overcome this problem is to use the compensated compactness lemma. The idea is to
choose, for each n, a test function Gn in such a way that LnGn converges strongly to D∆G as
n → ∞. We therefore define the corrected fluctuation field as in [6]. Fix some λ > 0. For each
G ∈ S (Rd), define Gn :C (ω)→ Rd as the solution of the resolvent equation

λGn(x)−LnGn(x) = λG(x/n)− D∆G(x/n). (3.1)

Then the corrected fluctuation field Y n,λ
t is given by

Y n,λ
t
(G) =

1

nd/2

∑

x∈C (ω)

�

ξn
t
(x)−ρ
�

Gn(x).

Notice that LnGn = λ(Gn−G)+D∆G. In particular, strong convergence of LnGn to D∆G follows
from strong convergence of Gn to G. The following proposition tells us that this is, indeed, the
case.

Proposition 3.2 (Faggionato [5]). There is a set of P-total probability such that for any G ∈ S (Rd),

the sequence {Gn}n converges to G in the following strong sense:

lim
n→∞

1

nd

∑

x∈C (ω)

�

�Gn(x)− G(x/n)
�

�

2
= 0.

In particular, since the invariant measure νρ is of product form, we conclude that Y n,λ
t (Gn) −

Y n
t
(G) vanishes in L 2(Pn) as n → ∞. We will see that the standard scheme, tightness plus

uniqueness of limit points via martingale characterization, can be accomplished for Y n,λ
t .

3.2 The martingale problem for the corrected fluctuation field

When considering the corrected fluctuation field Y n,λ
t instead of Y n

t
, the martingale representa-

tion gives

M n,λ
t
(G) = Y n,λ

t
(G)−Y

n,λ
0 (G)−

∫ t

0

Θn
s
(λ(Gn − G) + D∆G)ds.

In this formula, we have defined

Θn
t
(F) =

1

nd/2

∑

x∈C (ω)

�

g(ξn
t
(x))−ϕ(ρ)
�

F(x/n).
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The quadratic variation of M
n,λ
t is given by

〈M n,λ
t
〉=

∫ t

0

1

nd

∑

x∈C (ω)
y:x∼y

n2 g
�

ξn
s
(x)
��

Gn(y)− Gn(x)
�2

ds.

Multiplying the resolvent equation (3.1) by 1
nd Gn(x) and summing over x ∈ C (ω) we see that

lim
n→∞

1

nd

∑

x∈C (ω)
y:x∼y

n2

2

�

Gn(y)− Gn(x)
�2
= θ (p)D

∫

R
d

�

∇G(x)
�2

d x . (3.2)

Let us denote by Qλ
n

the distribution of the process Y n,λ
t in D([0,∞),S ′(Rd)). Following [6], it is

not hard to prove that the sequence {Qλ
n
}n is tight. In the same way, for d ≥ 3, we can prove that

lim
n→∞
〈M n,λ

t
〉= 2ϕ(ρ)θ (p)D

∫

R
d

�

∇G(x)
�2

d x . (3.3)

The arguments in [6], and only in dimension d = 2, require some regularity of Gn that is missing
in our situation. This is the only point in this article where we require d ≥ 3, otherwise the proofs
do not depend on the dimension. Now we will state in a more precise way the Boltzmann-Gibbs
principle.

Theorem 3.3 (Boltzmann-Gibbs principle). For any t > 0 and any F ∈ Cc(R
d),

lim
n→∞
En

h�

∫ t

0

�

Θn
s
(F)−ϕ′(ρ)Y n

s
(F)
	

ds
�2i

= 0.

As in [6], tightness of {Qλ
n
}n, Theorem 3.3 and expression (3.2) permit to conclude the following

result:

Theorem 3.4. Fix a particle density ρ ∈ (0,ρc). In dimension d > 2, for almost all ω, the

sequence of processes {Y
n,λ

t }n converges in distribution with respect to the Skorohod topology in

D([0,∞),S ′(Rd)) to a generalized Ornstein-Uhlenbeck process Yt of mean zero and characteristics

ϕ′(ρ)D∆ and
p

2θ (p)ϕ(ρ)D∇.

Theorem 2.1 is an immediate consequence of this Theorem and Proposition 3.2.

4 The Boltzmann-Gibbs principle

In this section we prove Theorem 3.3. The main point that makes the proof of this theorem dif-
ferent from the proof in [6] is the lack of ellipticity: by construction, the jump rate between two
neighboring sites x , y is equal to 0 when the bond 〈x y〉 is not open. In [6], due to the ellipticity
condition we could compare the generator of the process with the generator of a zero-range pro-
cess without the random environment, but with a slower jump rate. Since the Boltzmann-Gibbs
principle holds for the latter process, it should hold for the former, since the dynamics is faster. In
our case, we do not have a proper slower process to compare with.
Let us explain better the intuition behind Theorem 3.3. The idea is that non-conserved quantities
fluctuate faster than conserved ones. Since the only conserved quantity for the zero-range process
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is the number of particles, it is reasonable that at the right scale, the only part of the fluctuation
field Θn

t
that is seen at a macroscopic level is its projection over the conservative field Y n

t
. We

can think that non-conserved quantities equilibrate locally, while conserved quantities need to be
transported in order to equilibrate. In particular, we will see that the form of the graph is not
really important in Theorem 3.3. What is really important is the connectivity of the graph: if a
graph has more than one connected component, then there is more than one conserved quantity:
the number of particles on each connected component.
For n ∈ N0, define V (n) = g(n)−ϕ(ρ)−ϕ′(ρ)(n−ρ). The strategy of the proof of Theorem 3.3
is the following. Fix a positive integer k. Divide the support of the test function F into small boxes
of side k/n. Since F is continuous, we can average the function V (ξ(x)) over the corresponding
boxes on the lattice. Then we use some sort of ergodic theorem to reduce the sum over many
blocks integrated in time, into a sum over a single block. This last problem is a static one. A new
ergodicity argument, now with respect to the invariant measure νρ is enough to conclude.
An important property of the lattice is that it is locally connected, in the sense that the restriction of
the lattice to any box is still a connected graph. This is no longer true for the percolation cluster:
the restriction of the percolation cluster to a box is, in general, not connected. Although most of it
belongs to a big single component, the rest is spread over many small connected components. Of
course, all these connected components are connected by paths that pass outside the initial box.
The point is that these paths can be chosen is such a way that they do not go too far from the
original box. We will develop these ideas in the next paragraphs.

4.1 A connectivity lemma

In this section we will state a result that we call the connectivity lemma and we will prove Theorem
3.3 starting from it. The proof of this connectivity lemma is postponed to the next section.
Let k, l be fixed positive integers. We will send k and l to infinity after n. We introduce two
intermediate scales in our problem as follows. For simplicity we assume n/k ∈ N, and pasting a
sufficient number of cubes, we can assume that the support of F is contained in the cube (δ, 1−δ)d

for some δ > 0. We can split the cube Λn = {1,2, . . . , n}d into (n/k)d non-overlapping cubes of
side k. Let {B̄0

j
, j = 1, . . . , (n/k)d} be an enumeration of those cubes. Define B̄ j as the box of side

(2l + 1)k, centered at B̄0
j
. In particular, the cubes B̄ j are the union of (2l + 1)d cubes in {B̄0

i
}i ,

except for the ones near the border of Λn. Now define

B0
j
= B̄0

j
∩C (ω),

B j = {x ∈ B̄ j; x↔ B0
j

inside B̄ j}.

In other words, B0
j

is the portion of the cluster C (ω) inside the box B̄0
j
, and B j is the portion of

the cluster C (ω) inside B̄ j and connected to the box B̄0
j
. We say that a cube B̄0

j
is good if B j is

connected. In other words, B̄0
j

is good if the connected components of B0
j

are connected between

them by paths that lie entirely in B̄ j . We will denote by B̄n the union of good cubes, and by Bn

the set B̄n ∩ C (ω). The numbers k and l will be fixed most of the time. Therefore, in order to
keep notation simple we do not make explicit the dependence ofBn in k and l. A cube that is not
in Bn will be called bad. We will call B j indistinctely the set of points already defined, and the
subgraph of C (ω) corresponding to these points.
Define Cn(ω) = C (ω)∩Λn. Theorem 3.3 is a consequence of the following lemma:
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Lemma 4.1 (Connectivity lemma). For each ε > 0 there exists l > 0 such that

i) lim
k→∞

lim sup
n→∞
En

h�

∫ t

0

1

nd/2

∑

x∈Bn

V (ξn
s
(x))F(x/n)ds
�2i

= 0 (4.1)

ii) lim sup
k→∞

lim sup
n→∞

|Cn(ω) \Bn|

nd
≤ ε, (4.2)

where |Cn(ω) \Bn| denotes the cardinality of the set Cn(ω) \Bn.

The first part of the lemma says, roughly speaking, that Theorem 3.3 is true if the considered
graph is locally connected. The second part says that C (ω) is not locally connected only on a
small portion of the lattice.
Now let us prove Theorem 3.3 assuming Lemma 4.1. The expectation appearing in the statement
of Theorem 3.3 is bounded by

2En

h�

∫ t

0

1

nd/2

∑

x∈Bn

V (ξn
s
(x))F(x/n)ds
�2i

+ 2En

h�

∫ t

0

1

nd/2

∑

x∈Cn(ω)\Bn

V (ξn
s
(x))F(x/n)ds
�2i

.

The first expectation goes to 0 as n → ∞ and then k → ∞ by Lemma 4.1, part i). By Schwartz
inequality, the second expectation is bounded by

t2

nd

∑

x∈Cn(ω)\Bn

F(x/n)2Eρ[V (ξ(x))
2],

which turns out to be bounded by C(t, F,ρ)|Cn(ω) \ Bn|/n
d . This last expression vanishes as

n→∞ and then k→∞ by Lemma 4.1, part ii), which proves Theorem 3.3.

4.2 Proof of the connectivity lemma, part i)

In order to simplify the notation, we also denote by Bn the set of indices j in {1, . . . , (n/k)d} for
which B̄0

j
is a good cube. Let us start with part i). We will manipulate the term

En

h�

∫ t

0

1

nd/2

∑

x∈Bn

V (ξn
s
(x))F(x/n)ds
�2i

(4.3)

until we arrive to an expression that does not depend on t. Taking the positive and negative parts
of F , we can assume, without loss of generality, that F is non-negative. For each j, take a point y j

in B̄0
j
. Since the function F is uniformly continuous, we can rewrite the integrand in (4.3) as

1

nd/2

∑

j∈Bn

F(y j/n)
∑

x∈B0
j

V (ξn
s
(x)) (4.4)

plus a rest that vanishes in L 2(Pn) as n → ∞ and then k → ∞. Notice that now we have
introduced an averaging of the function V (ξ(x)) over boxes of side k.
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Now we explain the point where we make use of the time average in (4.3). For each j, denote by
LB j

the restriction of the generator L to the set B j . Observe that the zero-range process restricted

to N
B j

0 is ergodic on the set of configurations with a fixed number of particles, exactly due to the
fact that B̄0

j
is a good cube. For any two functions f ,h : Ω→ R, denote by 〈 f ,h〉ρ the inner product

with respect to νρ. We define by
|| f ||21 = 〈 f ,−L f 〉ρ,

|| f ||2
−1 = sup

h

{2〈 f ,h〉ρ − ||h||
2
1}

the Sobolev norms associated to L. Here the supremum is taken over functions h ∈ L 2(νρ). Take

an arbitrary (by now) family of functions { f j; j ∈ Bn} with f j : N
B j

0 → R. We have the following
Sobolev inequality (Prop. A1.6.1 of [9]):

En

h�

∫ t

0

1

nd/2

∑

j∈Bn

F(y j/n)LB j
f j(ξ

n
s
)ds
�2i

≤
20t

n2

�

�

�

�

1

nd/2

∑

j∈Bn

F(y j/n)LB j
f j

�

�

�

�

2

−1.

Let us call Wn the term inside the norm. We will bound ||Wn||
2
−1 using the variational formula

of || · ||2
−1 introduced above. Then, we need to estimate 〈h,Wn〉ρ for h given. By the weighted

Schwartz inequality,
∫

hLB j
f jdνρ ≤

1

2γ j

〈 f j ,−LB j
f j〉ρ +

γ j

2
〈h,−LB j

h〉ρ.

Choose γ j = nd/2/F(y j/n) and observe that
∑

j〈h,−LB j
h〉ρ ≤ 〈h,−Lh〉ρ. Plug this estimate into

the variational formula for ||Wn||
2
−1 to discover that

En

h�

∫ t

0

1

nd/2

∑

j∈Bn

F(y j/n)LB j
f j(ξ

n
s
)ds
�2i

≤
20t

nd+2

∑

j∈Bn

F(y j/n)
2〈 f j ,−LB j

f j〉ρ.

Notice that, for f j fixed, the right-hand side of this inequality is of order 1/n2. Notice also that
we can not take the same function f j for different j, since the clusters B j are different for each j.
However, k and l are fixed. In particular, the possibilities for the cluster B j are many, but finite.
Let Ξ be the set of connected graphs contained in a box of side (2l + 1)k. Let us denote by η a
generic element (that is, a graph) in Ξ. Take now a family of functions { f η;η ∈ Ξ} and define
f j = f η if B j = η. With this notation, we can bound the right-hand side of the previous inequality
by

20t||F ||2
∞

nd+2

∑

η∈Ξ

qn(η)〈 f η,−Lη f η〉ρ,

where qn(η) is the number of boxes in Bn with graph η, and Lη is the generator L restricted to
the graph η. Since qn(η)/nd is bounded, the functions { f η}η are fixed and also Ξ is fixed, this last
quantity goes to 0 as n → ∞. In particular, this means that we can discount a sum of the form
n−d/2
∑

j F(y j/n)LB j
f j in (4.4). We can also take the infimum over the families { f η}η, although

only after n→∞. In other words, we have reduced (4.3) to the verification of

lim
k→∞

sup
η∈Ξ

inf
{ f η}η

lim sup
n→∞
En

h�

∫ t

0

1

nd/2

∑

j∈Bn

F(y j/n)
∑

x∈B0
j

�

V (ξn
s
(x))− LB j

f j(ξ
n
s
)
	

ds
�2i

.
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The good point is that in this sum the time integral has already played its part, allowing the
introduction of the functions f j . Bound the expectation using Schwarz inequality twice, once
to get rid of the time integral, and once more to make use of the product form of the measure
νρ. Notice that the boxes B j at a distance greater than (2l + 1)k are independent. Then, the
expectation in the previous limit is bounded by

t2(2l + 1)d ||F ||2
∞

nd

∑

η∈Ξ

qn(η)Eρ

h�∑

x∈η∗

V (ξ(x))− Lη f η
�2i

,

where η∗ is the set of points in the intersection between η and the central box of side k. Remark
that the sum above depends on n only through the number qn(η)/nd . By the ergodic theorem,
qn(η)/(n/k)d converges, as n → ∞, to q(η), which is the probability of a given subgraph B j of
C (ω) be (good and) equal to η. Therefore, we are left to prove that

lim
k→∞

sup
η∈Ξ

inf
{ f η}η

t2(2l + 1)d ||F ||2
∞

kd

∑

η∈Ξ

q(η)Eρ

h�∑

x∈η∗

V (ξ(x))− Lη f η
�2i

= 0. (4.5)

Here we remark that the whole construction we have done has as purpose to get a connected graph
in the sum above. For each graph η fixed, and due to the ergodicity of the zero-range process on
sets with fixed number of particles,

inf
{ f η}η

Eρ

h�∑

x∈η

V (ξ(x))− Lη f η
�2i

= Eρ

h

Eρ

�∑

x∈η

V (ξ(x))

�

�

�ξη
�2i

,

where ξη denotes the number of particles of the configuration ξ on the graph η. Recall the
definition of V (ξ(x)) and note that by the equivalence of ensembles (see Sect. 11.1 of [9]) it
holds that

sup Eρ

h

Eρ

�∑

x∈η

V (ξ(x))

�

�

�ξη
�i2

<+∞,

where the supremum is over k > 0 and η ∈ Ξ. Therefore, we have proved that the supremum on
the left-hand side of expression (4.5) is bounded by

C(g)t2(2l + 1)d‖F‖2
∞

kd

∑

η∈Ξ

q(η),

which goes to 0 as k→∞, since the sum in η is bounded by 1 (remember that q(η) is a probabil-
ity).

4.3 Proof of the connectivity lemma, part ii)

We will use a result of [2], which roughly states that the percolation cluster has good connectivity
properties.
For any two points x , y ∈ C (ω), we define the distance D(x , y) as the length of the minimal path
connecting x and y:

D(x , y) = inf{n;∃x = x0, . . . , xn = y with 〈x i−1 x i〉 open}.

We have the following result:
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Proposition 4.2 (Antal-Pisztora [2]). There exists a constant γ= γ(p, d) ∈ [1,∞) such that

lim sup
|z|→∞

1

|z|
log P
�

0↔ z, D(0, z)> γ|z|
�

< 0,

where |z|=
∑d

i=1 |zi |.

This Proposition is telling us that, with high probability, two points that belong to C (ω), both
inside a box of side k, are connected through a path contained on the box of side (γ + δ)k,
centered on the original box. This means that for l > γ, (4.2) should hold. Now we will make this
point more precise.
Since all the norms in Rd are equivalent, changing the constant γ(p, d) if needed we can assume
that Proposition 4.2 also holds for the supremum norm. For simplicity, we assume k odd and we
use the supremum norm instead of the sum norm. Fix ε > 0. Let Γ0

k
be the box of side k, centered

at the origin. Define Γk = Γ
0
k
∩C (ω), the intersection of Γ0

k
with the infinite cluster. By the ergodic

theorem, |Γk|/k
d → θ (p) a.s. and therefore in probability. Fix k0 such that Γk0

6= ; with probability
bigger that 1− ε/2. By Proposition 4.2, there is δ > 0 such that

P(0↔ z, D(0, z)> γ|z|)≤ exp{−δ|z|} (4.6)

if |z| is big enough. Taking a bigger k0 if necessary, we can assume that this inequality holds for
any z such that |z| > k0. Fix x ∈ Γ0

k0
and consider for a moment the measure P(·|x ∈ C (ω)),

which is well defined since P(x ∈ C (ω)) = θ (p) > 0. Fix l > 0. In analogy with our previous
definitions, we say that the box Γk is good if each connected component of Γk is connected to x

through a path contained in Γ0
(2l+1)k. This is the case if and only if each point of C (ω) ∩ ∂ Γ0

k
is

connected to x by a path contained in Γ0
(2l+1)k. When we do not fix a point x ∈ Γ0

k0
, we say that

Γk is good if any two connected components of Γk are connected by a path contained in Γ0
(2l+1)k.

For k > k0, each one of the points in C (ω) ∩ ∂ Γ0
k

are at distance at least (k− k0)/2 and at most
(k + k0)/2 from x . By (4.6), the probability (with respect to P(·|x ∈ C (ω))) of all these points
being connected to x by a path contained in Γ0

(2l+1)k is bigger than

1− 2dkd−1 exp{−δ(k− k0)/2} (4.7)

as soon as l ≥ γ(k+ k0)/(4k) and (k− k0)/2 > k0. This is the case if, for example, l ≥ γ/4. The
quantity in (4.7) goes to 1 as k → ∞. Since this estimate is independent of the choice of site
x ∈ Γ0

k0
, we conclude that

lim sup
k→∞

P(Γk is not good )≤ ε/2.

Notice that the definition of goodness of a given box is translation invariant. In particular, with the
B j ’s notation,

lim sup
k→∞

P(B j is not good )≤ ε/2.

By the ergodic theorem,

lim
n→∞

|Cn(ω) \Bn|

nd
= P(B j is not good)

in probability and a.s. We conclude that for l ≥ γ/4,

lim sup
k→∞

lim sup
n→∞

|Cn(ω) \Bn|

nd
≤
ε

2
,

which ends the proof of (4.2).
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