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Abstract

We will formulate a type of Gauss’ divergence formula on sets of functions which are greater

than a specific value of which boundaries are not regular. Such formula was first established by

L. Zambotti in 2002 with a profound study of stochastic processes. In this paper we will give

a much shorter and simpler proof for his formula in a framework of the Malliavin calculus and

give alternate expressions. Our approach also enables to show that such formulae hold in other

Gaussian spaces.

1 Introduction

Gauss’ divergence formula plays a fundamental role in a wide range of fields in mathematics and

other sciences. The formula is simply stated in the case of Euclidian space and Lebesgue measure;

∫

D

div f (x) d x =

∫

∂ D




f (x), n(x)
�

σD(d x),

where D is a smooth domain, div f (x) is a divergence of the vector field f (x), n(x) denotes the

exterior normal vector at x ∈ ∂ D, and σD(d x) denotes the surface measure on ∂ D. In the case

that f is a scalar field and the vector field is given by, using a vector h, f (x)h, and if the measure

has a Gaussian density g(x) = 1

ZQ

exp{− 1

2

¬

Q−1 x , x
¶

}, then the divergence formula leads to

∫

D




∇ f (x),h
�

g(x) d x =

∫

D

f (x)
¬

Q−1 x ,h
¶

g(x) d x +

∫

∂ D

f (x) 〈n(x),h〉 g(d x | ∂ D),

where g(d x | ∂ D) is a surface measure on ∂ D induced by the Gaussian measure g(x) d x . It is

well known that, in infinite dimensional spaces, there is no Lebesgue measure but we can execute

some analysis based on Gaussian measures instead. Hence it is natural to expect that a similar
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divergence formula still holds in the infinite dimensional spaces. To our knowledge, such formulae

were first studied by Goodman [6], and, among others, recently by Shigekawa [15] to establish

a Hodge–Kodaira vanishing theorem in infinite dimensional spaces. They, however, assume that

the domains on which divergence formulae are stated have a regular boundary in the sense of

Malliavin calculus.

In this paper we are concerned with a divergence formula for a subset WD of a Banach space

W = C([0,1],R) which consists of { f ∈ W ; f (t) ∈ D,∀t ∈ [0,1]}, where D = (−a,∞), a > 0.

The (topological) boundary ∂WD is clearly given by the set of functions whose minima are −a.

We will show that, though w ∈WD may hit −a many times, the metrical boundary consists of the

set that w ∈ WD hits −a exactly once. We also note that the minimum m(w) of each continuous

function is not H-C1 but H-Lipschitz (see [1, 15] for these notions), and is degenerate in terms of

Malliavin calculus.

The divergence formula for WD was first established by Zambotti [18] and the proof based on

profound insights of a theory of stochastic processes. He then applied his formula to analyze

solutions to stochastic partial differential equations with reflection of Nualart–Pardoux type [13]

through a theory of Dirichlet forms. His formula, which has its own interest, has been extended by

Funaki–Ishitani [5] for domains { f ∈W ; h1 < f < h2} with some continuous functions h1 and h2

using a random walk approximation for Brownian paths, and by Hariya [7] for multidimensional

cases applying a concrete representation of the heat kernel. Such approaches rely on a Markovian

property of the Brownian motions. Closely related studies to such divergence formulae have been

treated by Fukushima, Hino, and Uchida [3, 4, 8, 9].

The aim of the present paper is to give a simple and shorter proof, and an alternate representation

for Zambotti’s divergence formula in a frame work of Malliavin calculus. After that we will recover

his original formula applying simple and well-known probabilistic formulae. Our approach here

relies on the Gaussian property of Brownian motions and enables to extend his result to other

Gaussian spaces.

We are grateful to the referees for several suggestions which improve the paper.

2 Framework and main result

Our main subjects in the present paper are divergence formulae for two types of Wiener spaces

consisting of a Brownian motion starting from zero and a pinned Brownian motion starting from

and ending at zero on time interval [0,1]. We will, however, begin with a slight general set-

ting and introduce a Hilbert space E = L2(0,1). Let Q be an operator E → E given by a sym-

metric, nonnegative, and factorizable integral kernel ρ(s, t), namely, Q f (t) :=
∫ 1

0
ρ(s, t) f (s) ds

and ρ(s, t) :=
∫ 1

0
r(s,u)r(t,u) du. We will assume that r is in L2([0,1] × [0,1]) so that Q is

nuclear. We will, in addition, assume KerQ = {0}. Typical examples of ρ(s, t) are s ∧ t (Brow-

nian motion) and s ∧ t − st (pinned Brownian motion). The corresponding factors of ρ are,

respectively, r(s,u) = 1[0,s](u) and r(s,u) = 1[0,s](u) − s. If we define Hilbert–Schmidt oper-

ators on E by Rf (t) :=
∫ 1

0
r(s, t) f (s) ds and R† f (t) :=

∫ 1

0
r(t, s) f (s) ds, it is easy to see that




Q f , g
�

E =



Rf ,Rg
�

E and
¬

Q−1 f , g
¶

E
=
¬

(R†)−1 f , (R†)−1 g
¶

E
, though R and R† are not symmetric

nor nonnegative.

It is well-known that there exists a Gaussian measure on E with covariance operator Q if and only

if Q is symmetric nonnegative nuclear operator. With above settings, let us introduce a mean zero

Gaussian measure µ on E with covariance operator Q. Then H := Q1/2E is a reproducing kernel

Hilbert space with an inner product



f , g
�

H :=
¬

Q−1/2 f ,Q−1/2 g
¶

E
. We will always identify H and
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its dual H∗ hereafter. We shall denote by W ⊂ C([0,1],R) a Banach space which actually supports

µ. We note that the above setting also includes the canonical probability space induced by the

fractional Brownian motion [10].

We introduce here several notions which are used later before proceeding. The space Ds
p

is the

completion of the set of stochastic polynomials with respect to the norm ‖F‖Ds
p

:= ‖(I − L)s/2F‖p,

where L is the Ornstein–Uhlenbeck operator and ‖ · ‖p denotes the usual Lp-norm on W with

respect to µ for p > 1 and s ∈ R. And the space D∞∞− is defined by
⋂

p>1,s∈RD
s
p
. For every F ∈ D1

p

we can define the Gross–Shigekawa derivative D : D1
p
→ Lp(W, H) which is the set of H-valued

Lp-functions on W as usual, see, e.g., [12, 17] for detailed discussions and analysis on such spaces.

Before stating our result, we will introduce a concept of locally nondegenerate Wiener functional

following Florit–Nualart [2].

Definition 2.1. A Wiener functional F : W → Rn, F ∈ D1
2

is called locally nondegenerate on an

open set A⊂ Rn if there exist RA : W → Hn, RA
j ∈ D∞∞−(H) for j = 1, . . . , n and an n× n matrix σA

whose components are all in D∞∞− such that ρA(w) := detσA(w) satisfies 1/ρA ∈ Lp(W ) for every

1< p <∞ and σA
i
j
(w) =
¬

DF i(w),RA
j(w)
¶

H
holds on WA := {w ∈W ; F(w) ∈ A}.

It is known that the minimum m(w) is locally nondegenerate on (−∞,−α) for every α > 0 for the

Brownian motion and the fractional Brownian motion [10] starting from zero.

Theorem 2.1. Assume m(w) is locally nondegenerate on (−∞,−α) for every α > 0. Then we have,

for every F ∈ D2
p

with p ≥ 2 and h ∈Q(E),

∫

WD

〈DF(w),h〉H µ(dw) =

∫

WD

F(w)
¬

w,Q−1h
¶

E
µ(dw)−



F, (h ◦τm)δ−a(m)
�

, (1)

where τm(w) is an almost surely unique t ∈ [0,1] such that w(t) attains its minimum m(w)

(w(τm(w)) = m(w)), δ−a(m) is a Watanabe composition of Dirac measure δ−a at −a < 0 and

locally nondegenerate functional m, and 〈·, ·〉 is the canonical bilinear form.

We note that the fact that w(t) attains its minimum at a unique t ∈ [0,1] can be also proved in

the framework of Malliavin calculus (see [1]) and 〈Dm(w),h〉H = h(τm(w)).

Since δ−a(m(w)) is a positive generalized Wiener functional, it determines a positive measure on

W by Sugita’s theorem [16]. Moreover, by virtue of Theorem 6.1 in [16], we obtain the following

integral representation.

Corollary 2.2. With the settings of the above theorem, we have
∫

WD

〈DF(w),h〉H µ(dw) =

∫

WD

F(w)
¬

w,Q−1h
¶

E
µ(dw)−
∫

∂WD

F̃(w)h(τ(w))σ−a(dw),

where F̃ is (p, 1)-quasi-continuous version of F and σ−a(dw) := δ−a(m(w))µ(dw) in the sense of

Sugita.

3 Watanabe compositions

for locally nondegenerate functionals

Florit and Nualart [2] showed that the maximum of Brownian sheet has a C∞ density by intro-

ducing a concept of locally nondegenerate functionals. To show the result, they used a standard
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method in the Malliavin calculus, namely, they showed Malliavin’s integration by parts formula

still holds for locally nondegenerate functionals [12, Proposition 2.1.4]. Another well-known

approach to show the smoothness of the law of nondegenerate functionals is the Watanabe com-

position method [17], which is also based on Malliavin’s integration by parts.

We will show that Watanabe composition still holds for locally nondegenerate functionals with a

little restricted situations that are not essential for our purpose. Before stating the result, let us

recall that D−2
p

is the completion of the set of stochastic polynomials with respect to ‖F‖D−2
p

:=

‖(I − L)−1F‖p. It is also known that D−2
p

is the dual space of D2
q

with 1/p + 1/q = 1 under

identification of L2(E,µ) with its dual.

Proposition 3.1. Let F : W → Rn be locally nondegenerate on an open set A ⊂ Rn satisfying F ∈
L∞−(W,µ). Then for every 1< p <∞ and ϕ ∈ C∞

0
(A) which is the set of smooth functions supported

on A, we have

‖ϕ ◦ F‖D−2
p
≤ Cp‖ϕ‖T−2

,

where ‖ϕ‖T−2
:= ‖(1+ |x |2 −∆)−1ϕ(x)‖L∞

Proof. Define ψ(x) := (1+ |x |2 −∆)−1ϕ(x) ∈ S . Let G : W → R be G ∈ D∞∞− and G(w) = 0 on

w ∈ W c
A

:= {w ∈ W ; G(w) 6∈ A}. Then it is easy to see that (cf. [2, 17]) there exists Φ2(F, G; w)

such that

∫

W

�

(1+ |x |2 −∆)ψ
�

(F(w)) · G(w)µ(dw) =

∫

W

ψ(F(w))Φ2(F, G; w)µ(dw) (2)

with ‖Φ(F, G)‖L1
≤ Cn,p,F‖G‖D2

q
and 1

p
+ 1

q
= 1. Hence we have, from (2),

∫

W

ϕ ◦ F(w)G(w)µ(dw)

≤
∫

W

�

�(1+ |x |2 −∆)−1ϕ ◦ F(w)
�

� ·
�

�Φ2(F, G; w)
�

� µ(dw)

≤ ‖ϕ‖T−2
‖Φ2(F, G)‖L1

.

Note that, since ϕ ∈ C∞
0
(A), ϕ(F(w)) 6= 0 only for {w ∈ W ; F(w) ∈ suppϕ ⊂ A}. Hence if we

introduce an effective domain D(G) := {w ∈W ; G(w) 6= 0},

‖ϕ ◦ F‖D−2
p
= sup
‖G‖
D

2
q
≤1

�

�




ϕ ◦ F, G
�
�

�

= sup
‖G‖
D

2
q
≤1,D(G)⊂WA

�

�

�

�

�

∫

W

ϕ ◦ F(w)G(w)µ(dw)

�

�

�

�

�

≤ Kq,F‖ϕ‖T−2
,

where Kq,F := sup‖G‖
D

2
q
≤1,D(G)⊂WA

‖Φ2(F, G)‖L1
<∞.

Corollary 3.2. For each locally nondegenerate functional F ∈ L∞−(W ) on A and a Schwartz dis-

tribution T ∈ T−2 with supp T ⊂ A, we can uniquely define a composition T ◦ F ∈ D−2
p

for every

1< p <∞.
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Since δx ∈ T−2 if n= 1, we have

Corollary 3.3. Let m(w) be the minimum of w. If m(w) is locally nondegenerate, then δx(m(w))

has a rigorous meaning for every x < 0 as an element of D−2
p

for every 1< p <∞.

Hence we can derive the regularity of the density for the maximum/minimum of some Gaussian

processes in this framework (cf. [17]). We do not describe them since they are entirely standard.

4 Proof of the theorem and other representations

Once the Watanabe composition (Corollary 3.3) is established, the proof goes easily. We first note

that
∫

WD

〈DF(w),h〉H µ(dw) =
∫

W
1WD
(w) 〈DF(w),h〉H µ(dw). Since D = (−a,∞) and WD = {w ∈

C([0,1],R); w(t) ∈ D,∀t ∈ [0,1]}, we have 1WD
(w) = 1(−a,∞)(m(w)).

Note that, for every ϕ ∈ C1
b
(R), G ∈ D1

q
and F ∈ D1

p
with 1/p+ 1/q = 1, we have the integration

by parts formula:

∫

W

ϕ(G(w)) 〈DF(w),h〉H µ(dw)

=

∫

W

F(w)ϕ(G(w)) 〈w,h〉H µ(dw)−
∫

W

ϕ′(G(w)) 〈DG(w),h〉H F(w)µ(dw),

and



f , g
�

H is defined by
¬

Q−1/2 f ,Q−1/2 g
¶

E
. Therefore we can approximate 1(−a,∞) by smooth

functions and obtain
∫

W

1WD
(w) 〈DF(w),h〉H µ(dw) =

∫

W

F(w)1WD
(w)
¬

w,Q−1h
¶

E
µ(dw)

−



F,δ−a ◦m 〈Dm(w),h〉H
�

,

where 〈·, ·〉 of the last term is a natural coupling between D2
p

and D−2
q

with 1/p+1/q = 1. However

it is known that 〈Dm(w),h〉H = h(τm(w)), we have the conclusion.

We have now proved the theorem which was stated in a framework of infinite dimensional analy-

sis. We here reformulate the formula using some concrete expressions for several random variables

related to Brownian motions and pinned Brownian motions.

The following representation corresponds to those obtained by Hariya [7].

Proposition 4.1. Let h ∈ C2
0
((0,1)). Then we have:

(A) The case of Brownian motion starting from zero:

∫

WD

〈DF(w),h〉H µ(dw) = −
∫

WD




w,h′′
�

E µ(dw)

−
2
p
π

e−
a2

2 E
�

F · (h ◦τm) | m(w) = −a
�

.

(B) The case of pinned Brownian motion starting from and ending at zero:

∫

WD

〈DF(w),h〉H µ(dw) = −
∫

WD




w,h′′
�

E µ(dw)

− 4ae−2a2

E
�

F · (h ◦τm) | m(w) = −a
�

.
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Proof. Since Watanabe composition is a dual operator of the conditional expectation, we have




F, (h ◦τm)δ−a(m)
�

=

∫

R

E[F · (h ◦τm) | m(w) = x]δ−a(x)µ ◦m−1(d x)

= E[F · (h ◦τm) | m(w) =−a]pm(−a),

where pm(x) = µ ◦ m−1(d x)/d x . Then it is well known that pm(−a) = 2p
π

e−a2/2 for Brownian

motion and pm(−a) = 4ae−2a2

for pinned Brownian motion.

We can derive one more expression which corresponds to Zambotti’s representation.

Proposition 4.2. Let h ∈ C2
0
((0,1)). Then we have:

(A) The case of Brownian motion starting from zero:

∫

WD

〈DF(w),h〉H µ(dw) = −
∫

WD




w,h′′
�

E µ(dw)

−
∫ 1

0

du h(u)
a

π
p

u3(1− u)
exp

¨

−
a2

2u

«

E[F | m(w) = −a,τm(w) = u].

(B) The case of Brownian motion starting from and ending at zero:

∫

WD

〈DF(w),h〉H µ(dw) = −
∫

WD




w,h′′
�

E µ(dw)

−
∫ 1

0

du h(u)

p
2a2

p

πu3(1− u)3
exp

¨

−
a2

2u
−

a2

2(1− u)

«

× E[F | m(w) = −a,τm(w) = u].

Proof. The proof can be done similarly to the above proposition. Therefore it is sufficient to recall

that, for a Brownian motion starting from a > 0,

Pa

�

H(t) ∈ dv, inf
0≤s≤t

W (s) ∈ d y

�

=
1[0,t](v)(a− y)

π
p

v3(t − v)
exp

¨

−
(a− y)2

2v

«

d y dv,

where H(t) := inf{s < t; W (s) = m(t)}. Hence we have

Pa

�

m(w) = 0,τm(w) = u
�

du=
a

π
p

u3(1− u)
exp

¨

−
a2

2u

«

du.

Moreover it is also known that

Pa

�

H(t) ∈ dv, inf
0≤s≤t

W (s) ∈ d y,W (t) ∈ dz

�

=
(a− y)(z − y)

π
p

v3(t − v)3
exp

¨

−
(a− y)2

2v
−
(z − y)2

2(t − v)

«

d y dv dz,

so that the pinned case is also derived.
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