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Abstract

We prove a moderate deviation principle for traces of words of weakly interacting random matrices
defined by a multi-matrix model with a potential being a small perturbation of the GUE. The
remarkable strength of high order expansions of the matrix model recently found by Guionnet and
Maurel-Segala is the key fact that allows us to develop our result and provides also an alternative
proof for a special case of the central limit theorem for traces of words, studied in [11].

1 Introduction

1.1 The multi-matrix model

In this note we study Hermitian matrices whose distribution is given by a small convex pertur-
bation of the Gaussian Unitary Ensemble, denoted by GUE. We fix m ∈ N the number of random
matrices we shall consider. LetHN (C)m be the set of m-tuples A= (A1, . . . , Am) of N×N hermitian
matrices, such that ReAi(kl), k < l, ImAi(kl), k < l, 2−

1
2 Ai(kk) is a family of independent real

Gaussian variables of variance (2N)−1. We will consider the following perturbation of the GUE:

µN
Vt
(dA) =

1

ZN
Vt

exp
�

−N tr
�

Vt(A1, . . . , Am)
�	

µN (d A), (1)
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where ZN
Vt

is the normalizing constant, Vt(A1, . . . , Am) :=
∑n

i=1 t iqi(A1, . . . , Am) a polynomial po-
tential with n ∈ N, t = (t1, . . . , tn) ∈ Cn and monomials (q j)1≤ j≤n fixed, and

µN (d A) =
1

ZN exp

(

−
N

2
tr

 

m
∑

i=1

A2
i

!)

dN A,

the law of the m-dimensional GUE with dN A the Lebesgue measure on HN (C)m. In this note we
will prove a moderate deviation principle (MDP) and a central limit theorem (CLT) for normalized
traces of a non-commutative monomial, tr(ql(A1, . . . , Am)), under µN

Vt
.

For m= 1 and Vt(A) = 0 we recover the classical GUE. In this case, a MDP for the difference of the
cumulative distribution function (cdf) of the semicircle distribution and the cdf of the eigenvalues
was proved in [4].
Matrix models, in which general polynomials Vt(A) were allowed in (1) while still keeping m= 1,
have been studied intensively in physics. The choice Vt(A) = t A4, t ∈ C, was a commonly studied
object, see [1, 2]. What was really striking, is the connection their analysis established between

matrix integrals like ZN
Vt

and map enumeration. A genus expansion of
ZN

Vt

ZN and log
ZN

Vt

ZN respectively

in powers of N was given for Vt(x) =
1
2

x2+
∑ν

k=1 tk x k with suitable chosen parameters (t1, . . . , tν)
and it was placed on solid mathematical grounds by Ercolani and McLaughlin [6], who proved
their results via a Riemann-Hilbert approach. It turned out, that the coefficients of the powers of
N in the expansion [6, Theorem 1.1] are closely related to map enumeration.
Moreover, for m = 1 and for a polynomial potential Vt of even degree and with a positive lead-
ing coefficient, Johansson [13] proved a CLT for

∑N
i=1 f (λi), where λi are the eigenvalues of

the hermitian matrix, for functions f fulfilling some kind of regularity condition, being pointwise
bounded by C(Vt + 1) for a constant C > 0 and its derivative being pointwise bounded by a poly-
nomial.
Since many interesting models like the Ising model on random graphs, the q-Potts model on ran-
dom graphs, the Chain model and the so-called induced QCD model (quantum chromodynamics,
see [15]) are of form (1) and have m > 1, the question arose, whether a genus expansion for
this multi-matrix model with general polynomial potentials Vt could be obtained. A first order ex-
pansion was obtained by Guionnet [7], a paper that relied on [12]. Guionnet and Maurel-Segala
refined the expansion up to second order [11] until Maurel-Segala [16] gave the full genus expan-
sion for the multi-matrix model of form (1). In [11], the authors also derived a CLT for N times
the difference of the empirical measure and its limit, the solution of a Schwinger-Dyson equation.
It was also shown that the CLT still holds, when the limit of the empirical measure is replaced by
its expectation. For a special case of that CLT, we will give an alternative proof. Finally, notice that
Cabanal-Duvillard [3] introduced a stochastic calculus approach and proved a CLT for traces of
non-commutative polynomials of Gaussian Wigner and Wishart matrices, as well as for traces of
non-commutative polynomials of pairs (m= 2) of independent Gaussian Wigner matrices.
After introducing a technical assumption for the polynomial potential Vt in (1), we will state our
main result in the next subsection. Since the results of the paper [16] are the crucial foundation
of this note, we will give the two main theorems of [16] in section 2, in which we finally prove
our main result.
In the last section, we compare the two different admissible regions of parameters of the polyno-
mial Vt as they appear in [6] and [16] and finally, we will apply our result to the Ising model and
the q-Potts model.
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1.2 Main results

Before stating our main result, we introduce the notion of c-convexity for the potential Vt .

Definition 1.1. If there exists c > 0, such that for all N in N, the function

ϕN
Vt

:
HN (C)m = (RN2

)m −→ C
(A1, . . . , Am) −→ tr

�

Vt(A1, . . . , Am) +
1−c

2

∑m
i=1 A2

i

�

is real and convex as a function of the entries of the matrices, we say that Vt is c-convex.

If Vt is c-convex, the Hessian of the trace of Vt(A1, . . . , Am) +
1
2

∑m
i A2

i is symmetric and positive
definite with eigenvalues bigger than c for any N ∈ N. Remark, that the condition implies that ZN

Vt

is automatically finite. An example of a c-convex Vt is

Vt =
n
∑

i=1

Pi

� m
∑

k=1

αi
kAk

�

+
∑

k,l

βk,lAkAl

with convex real polynomials Pi in one unknown and for all l,
∑

k |βk,l | ≤ (1 − c). This is due
to Klein’s Lemma [9, Lemma 6.2] which states that the trace of a real convex function of a self-
adjoint matrix is a convex function as function of the entries of the matrix. Hence, a special class
of examples are Vt of the form

Vt =
n
∑

i=1

t i

� m
∑

k=1

αi
kAk

�2 pi

with non-negative t i ’s, integers pi ’s and real α’s (see the potentials Vt considered in [6] in the one
matrix case m= 1).
Taking the potential Vt := Vt(A) := Vt(A1, . . . , Am) of form

∑n
i=1 t iqi(A1, . . . , Am), n ∈ N, with

complex t = (t1, . . . , tn) ∈ Cn and non-commutative monomials (q j)1≤ j≤n, we next define for any
η > 0 and c > 0

Bη,c =
§

t ∈ Cn| |t|=max
i
|t i | ≤ η, Vt is c−convex

ª

.

Let E denote the expectation with respect to the probability measure µN
Vt

, defined in (1).
Besides being c-convex, we require the potential function to also be self-adjoint in terms of the
following definition.

Definition 1.2. We say that the potential Vt is self-adjoint, if Vt = V †
t holds with respect to the

involution † that is given for all z ∈ C and all monomials ql(H1, . . . , Hm) = Hl1 . . . Hlp
by

(zql)
† = (zHl1 . . . Hlp

)† = zHlp
. . . Hl1 . (2)

Thus, if the potential Vt is self-adjoint, all the appearing monomials ql are also self-adjoint. Note
that a self-adjoint potential Vt or monomial ql always has a real trace.
We say that a sequence of probability measures (µn)n∈N, on some topological space X obeys a large
deviation principle with speed an and good rate function I(·) : X → R+0 if

• I is lower semi-continuous and has compact level sets NL := {x ∈ X : I(x) ≤ L}, for every
L ∈ [0,∞).
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• For every open set G ⊆ X it holds

lim inf
n→∞

1

an
logµn(G)≥− inf

x∈G
I(x).

• For every closed set A⊆ X it holds

lim sup
n→∞

1

an
logµn(A)≤− inf

x∈A
I(x).

Similarly, we will say that a sequence of random variables (Yn)n∈N with topological state space
X obeys a large deviation principle with speed an and good rate function I(·) : X → R+0 if the
sequence of their distributions does. Formally a moderate deviation principle is nothing but an
LDP. However, we will speak about a moderate deviation principle (MDP) for a sequence of ran-
dom variables, whenever the scaling of the corresponding random variables is between that of an
ordinary Law of Large Numbers and that of a Central Limit Theorem.
Now our result is as follows. For a non-commutative monomial ql , we define

φ l := tr(ql(A1, . . . , Am))−E[tr(ql(A1, . . . , Am))],

where the expectation is with respect to µN
Vt

.

Theorem 1.3 (A Moderate Deviation Principle (MDP)). Let t = (t1, . . . , tn) ∈ Rn, c > 0 and Vt =
∑n

i=1 t iqi(A1, . . . , Am) be self-adjoint with t l 6= 0. Then there exists η > 0, such that for n ∈ N, with
t ∈ Bη,c ∩Rn the sequence of distributions

�

µN
Vt
◦
� 1

Nγ
φ l
�−1�

N obeys a MDP with speed N2γ and rate
function

I(x) =
x2

2

�

∂ 2

∂ t l
2 F0(t)

�−1

for any 0< γ < 1. The function F0(·) is given by (3).

Since F0(t) is the connection between matrix models and map enumeration, we will give some
more details (for a detailed explanation of that connection see [19]). A map is a connected graph
drawn on a compact oriented connected surface, such that the edges are not intersecting (do not
cross each other), the number of holes in the surface in order to avoid intersections is minimal,
which is equivalent to obtaining a disjoint union of sets, where each set (or face) is homeomorphic
to open disks after cutting the surfaces along the edges. That minimal number of holes is called
the genus g of the surface. Thus a planar graph can be drawn on a surface of genus 0. We consider
maps that are colored in m colors, i.e. each edge has a color c ∈ {1, . . . , m}.
For a non-commutative monomial in m indeterminants,

ql(H1, . . . , Hm) = Hl1 Hl2 · · ·Hlkl
, with kl ∈ N, l j ∈ {1, . . . , m}, 1≤ j ≤ kl ,

we define vertices, that are of type ql as follows: We say that a vertex is of type ql , if it has kl
colored half-edges, one marked half edge and an orientation, such that the marked half-edge is
of color l1, the next one with respect to the orientation is of color l2 and so forth, until the last
half-edge is colored with lkl

. Thus, we obtain a bijection between monomials and stars. Moreover,
the graphical interpretation of the involution † as defined in (2) is quite simple. Just shift the
marker of the first half-edge towards the next neighboring half-edge against the orientation of the
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vertex and afterwards reverse the orientation of the vertex.
The function F0(t), which appears in the rate function of the MDP, is a generating function for
maps of genus 0 associated with Vt ,

F0(t) =
∑

k∈Nn

(−t)k

k!
C k

0 , (3)

where k! =
∏n

i=1 ki!, (−t)k =
∏n

i=1(−t i)ki and C k
0 being the number of maps on a surface of

genus 0 with ki vertices of type qi .
It is not quite obvious, how the second derivative of F0(t) with respect to t l looks like and we will
see below (in Theorem 2.2) that it can be regarded as a generating function for maps of genus 0,
which have two fixed stars ql :

∂ 2

∂ t2
l

F0(t) =
∑

k∈Nn

(−t)k

k!
C k+ j

0 , (4)

where j = (0, . . . , 0, jl = 2, 0, . . . , 0)) and everything else as above.
Now, we also state a special case of the CLT [11, Theorem 4.7] of which we will give an alternative
proof.

Theorem 1.4 (A Central Limit Theorem (CLT)). Let t = (t1, . . . , tn) ∈ Rn and c > 0. Then there
exists η > 0, such that for self-adjoint Vt =

∑n
i=1 t iqi(A1, . . . , Am), t l 6= 0, n ∈ N, with t ∈ Bη,c ∩Rn

and any fixed l ∈ {1, . . . , n} the distribution of the random variable φ l := tr(ql(A1, . . . , Am)) −
E[tr(ql(A1, . . . , Am))] with respect to µN

Vt
converges towards the normal distribution with expectation

0 and variance ∂ 2

∂ t l
2 F0(t).

2 Proof of main results

Before we give the proofs, we state the two main theorems of [16], on which the proofs build
upon. In physics it is known that the perturbed GUE is related to the enumeration of graphs on
surfaces. The main result in [16] is, that for small convex perturbations, the moments of the
empirical measure can be developed into a series whose g-th term is a generating function of
graphs on a surface of genus g:

Theorem 2.1 (Theorem 1.1 in [16]). Let Vt =
∑n

i=1 t iqi(A1, . . . , Am) and c > 0. For all g ∈ N, there
exists ηg > 0, such that for all t ∈ Bηg ,c , ZN

Vt
has the following expansion

F N
Vt

:=
1

N2 log ZN
Vt
= F0(t) +

1

N2 F1(t) + · · ·+
1

N2g F g(t) + o
�

1

N2g

�

, (5)

where F g is the generating function for maps of genus g associated with Vt ,

F g(t) =
∑

k∈Nn

(−t)k

k!
C k

g ,

and k! =
∏

i ki!, (−t)k =
∏

i(−t i)ki and C k
g is the number of maps on a surface of genus g with ki

vertices of type qi .
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Now it is obvious, why such an expansion is called genus expansion and why the leading term
F0(t) was called the planar approximation. For our purposes, we will only apply that theorem for
g = 1.
That the expansion in (5) can be derived term by term is the content of the next theorem. In fact,
this means that the asymptotics of much more observables are available. For j=( j1, . . . , jn) ∈ Nn,
we introduce the operator of derivation

D j =
∂
∑

i ji

∂ t j1
1 · · ·∂ t jn

n

.

Theorem 2.2 (Theorem 1.3 in [16]). Let Vt as above, c > 0. For all j = ( j1, . . . , jn) ∈ Nn, for all
g ∈ N, there exists ηg > 0, such that for all t ∈ Bηg ,c ,

D j F
N
Vt
= D j F

0(t) + · · ·+
1

N2g D j F
g(t) + o

�

1

N2g

�

, (6)

where D j F
g(t) is the generating function for rooted maps of genus g associated with Vt with some

fixed vertices:

D j F
g(t) =

∑

k∈Nn

(−t)k

k!
C k+ j

g ,

where C k
g is again the number of maps on a surface of genus g with ki vertices of type qi . For details

see [16, Theorem 7.4].

Thus, we find for example for m= 2, Vt = t1H2
1 H2

2 H2
1+ t2H2H1H2 and j = (2,0), that D j F

0 counts
all planar maps with k1 + 2 vertices of type q1 = H2

1 H2
2 H2

1 and k2 vertices of type q2 = H2H1H2.
Moreover, because of Theorem 2.2 the rate function I from Theorem 1.3 is the same as

I(x) =
x2

2

 

∑

k∈Nn

(−t)k

k!
C k+2el

0

!−1

.

Theorems 2.1 and 2.1 yield asymptotic information concerning the statistics of words of the multi-
matrix models. For example, by differentiating log ZN

Vt
, one obtains

∂

∂ t l
log ZN

Vt
=−N E

�

tr(ql(A1, . . . , Am))
�

. (7)

In conjunction with (6), one learns the following:

lim
N→∞
E
�

1

N
tr(ql(A1, . . . , Am))

�

=
∂

∂ t l
F0(t).

Out of these two theorems, we deduce an asymptotic expansion for the moment generating func-
tion of φl := φl(A) := tr(ql(A1, . . . , Am)) and φ l := φ l(A) := φl(A)−E[φl(A)]. Remember, that E
denotes the expectation with respect to the probability measure µN

Vt
.

Lemma 2.3. Let t ∈ Rn and c > 0. Then there exists η > 0, such that for self-adjoint Vt =
∑n

i=1 t iqi(A1, . . . , Am), n ∈ N, with t in Bη,c ∩Rn, and any fixed l ∈ {1, . . . , n} we have for any s ∈ R
that

E
�

exp
�

s φ l
�

�

=

exp

¨

N2

�

F0
�

t −
s

N
el

�

− F0(t) +
s

N

∂ F0(t)
∂ t l

�

+ F1
�

t −
s

N
el

�

− F1(t) +
s

N

∂ F1(t)
∂ t l

+ o(1)

«

.
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In the non-centered case, we find

E
�

exp
�

s φl
��

= exp
§

N2
�

F0
�

t −
s

N
el

�

− F0(t)
�

+ F1
�

t −
s

N
el

�

− F1(t) + o(1)
ª

.

Proof. Consider for any s ∈ R and l ∈ {1, . . . , n} the potential Vt− s
N

el
. We easily see that

Vt− s
N

el
=

n
∑

i=1
i 6=l

t i qi(H1, . . . , Hm) +
�

t l −
s

N

�

ql(H1, . . . , Hm) = Vt −
s

N
ql(H1, . . . , Hm).

We abbreviate eV := eV (t, s, l) := Vt− s
N

el
and obtain

ZN
eV
=

∫

HN (C)m
exp
�

−N
�

tr(eV (H))
��

µN (d H)

=

∫

HN (C)m
exp
�

−N(tr(Vt))
�

exp(s tr(ql(H)))µ
N (d H))

= E[exp(s tr(ql(H)))] ZN
Vt

.

Hence we get

E
�

exp(s tr(ql(H)))
�

=
ZN
eV

ZN
Vt

. (8)

We want to apply Theorem 2.1 for both terms on the right hand side of the last equality. Fix c > 0.
Then by Theorem 2.1 there exists a η := η(c) > 0 such that the expansion (5) holds true for ZN

Vt

for all t ∈ Bη,c .
Now for fixed s ∈ R we choose N sufficiently large such that |s/N | < ε for a ε > 0. We abbreviate
et := t − s

N
el . For any t ∈ Bη,c the polynomial Vt is c-convex, thus for N sufficiently large we can

find a c′ > 0 such that V
et is c′-convex. For this c′ > 0 we can find a η′ := η′(c′) > 0 such that (5)

holds true for any t ∈ Bη′,c′ , where Vt is c′-convex. Now we choose ε < η′ and η′′ :=min(η′−ε,η).
Since η′′ ≤ η, the condition |t| ≤ η′′ induces |t| ≤ η and therefore, the relevant set to consider
is Bη′′,c . Summarizing, for fixed s ∈ R and N sufficiently large, for any t ∈ Bη′′,c we can apply
Theorem 2.1 for both terms in (8).
Remark that we apply Theorem 2.1 taking g = 1. Now we obtain the following asymptotic expan-
sion in the non-centered case:

ZN
eV

ZN
Vt

= exp
§

N2F0
�

t −
s

N
el

�

+ F1
�

t −
s

N
el

�

+ o(1)
ª

×exp
¦

−N2F0(t)− F1(t) + o(1)
©

= exp
§

N2
�

F0
�

t −
s

N
el

�

− F0(t)
�

+ F1
�

t −
s

N
el

�

− F1(t) + o(1)
ª

.

In the centered case, we also have to consider the contribution of E
�

exp(−sE[φl(H)])
�

to the
asymptotic expansion. As it is well known in statistical mechanics and as we have seen in (7),
differentiating the free energy yields the expectation of the observables and hence we find

sE
�

tr(ql)
�

=−
s

N

∂

∂ t l
log ZN

Vt

⇐⇒ exp
�

−sE
�

tr(ql)
��

= exp
�

s

N

∂

∂ t l
log ZN

Vt

�

. (9)
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Finally, (8), (9) and Theorem 2.2 yield

E(exp(s φ̄l)) =
ZN
eV

ZN
Vt

× exp
�

s

N

∂

∂ t l
log ZN

Vt

�

= exp
§

N2
�

F0
�

t −
s

N
el

�

− F0(t)
�

+ F1
�

t −
s

N
el

�

− F1(t) + o(1)
ª

×exp
�

s

N

�

N2 ∂

∂ t l
F0(t) +

∂

∂ t l
F1(t) + o(1)

��

,

and therefore we obtain

E(exp(s φ̄l)) = exp
�

N2
�

F0
�

t −
s

N
el

�

− F0(t) +
s

N

∂

∂ t l
F0(t)

�

+ F1
�

t −
s

N
el

�

− F1(t) +
s

N

∂

∂ t l
F1(t) + o(1)

�

.

This lemma is now the crucial ingredient for the proofs of our main results.

Proof. (Proof of the central limit theorem, Theorem 1.4) By Taylors theorem, we have

F i
�

t −
s

N
el

�

− F i(t) +
s

N

∂

∂ t l
F i(t) =

s2

2N2

∂ 2

∂ t2
l

F i(ξi
N ), i = 0, 1, (10)

where ξi
N ∈

�

t ∧
�

t − s
N

el

�

, t ∨
�

t − s
N

el

��

.

Combining this with Lemma 2.3, we find the limit of the moment generating function of φ l to be
that of a centered random variable having a normal distribution with variance ∂ 2

∂ t2
l
F0(t):

lim
N→∞
E
�

exp(sφ l)
�

= lim
N→∞

exp

�

s2

2

∂ 2

∂ t2
l

F0(ξ0
N ) +

s2

2N2

∂ 2

∂ t2
l

F1(ξ1
N ) + o(1)

�

= exp
�

s2

2

∂ 2

∂ t2
l

F0(t)
�

,

since ξ0
N → t, for N →∞, and F0, F1 being differentiable functions of any order around the origin

by Theorem 2.2 (they are even analytic functions, see [16, Lemma 4.4]). By Levy’s continuity
theorem the CLT is established.

Proof. (Proof of the moderate deviation principle, Theorem 1.3) In order to apply the Gärtner-
Ellis theorem (cf. Theorem 2.3.6 in [5]), we calculate the limit of the properly scaled cumulant
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generating function of the random variable 1
Nγ
φ l , where 0< γ < 1: let s ∈ R, we obtain

lim
N→∞

1

N2γ logE
�

exp
�

s N2γ 1

Nγ
φ l

��

= lim
N→∞

1

N2γ logE
�

exp
�

s Nγφ l

��

= lim
N→∞

1

N2γ log
�

exp
�

N2
�

F0
�

t −
sNγ

N
el

�

− F0(t) +
sNγ

N

∂

∂ t l
F0(t)

�

+ F1
�

t −
sNγ

N
el

�

− F1(t) +
sNγ

N

∂

∂ t l
F1(t) + o(1)

��

= lim
N→∞

1

N2γ

�

N2

2

�

sNγ

N

�2 ∂ 2

∂ t l
2 F0(ξ0

N ) +
1

2

�

sNγ

N

�2 ∂ 2

∂ t l
2 F1(ξ1

N ) + o(1)

�

=
s2

2

∂ 2

∂ t l
2 F0(t). (11)

The second equality is due to Lemma 2.3. Although we cannot simply replace s by sNγ and assume
the lemma to hold, we can carefully go through the proof of Lemma 2.3 when the new scaling is
applied. It turns out, that the lemma still holds, which basically relies on Nγ/N going to 0. The
third equality is due to Taylor’s theorem (10) and the last one follows by F0 being differentiable of
any order around the origin and the fact that ξ0

N ∈
�

t ∧ (t − sNγ

N
el), t ∨ (t − sNγ

N
el)
�

, which yields
ξ0

N → t, for N →∞, since γ ∈ (0,1). In particular the right hand side of (11) is finite for all s ∈ R,
is everywhere differentiable in s and steep, since

�

�

�

�

�

∂

∂ s

s2

2

∂ 2

∂ t l
2 F0(t)

�

�

�

�

�

=

�

�

�

�

�

s
∂ 2

∂ t l
2 F0(t)

�

�

�

�

�

−→∞ for s→∞.

Thus, we can apply the Gärtner-Ellis theorem, and finish the proof by calculating the Legendre-
Fenchel transform of s

2
∂ 2

∂ t2
l
F0(t), which is

I(x) = sup
s∈R

¨

sx −
s2

2

∂ 2

∂ t2
l

F0(t)

«

=
x2

2

�

∂ 2

∂ t2
l

F0(t)

�−1

.

Remarks:
(1) For all the calculations carried out above, the second order expansion (g=1) in [11] could
have been sufficient, while we needed Theorem 2.2 to establish our Lemma 2.3, which was crucial
for proving our result.
(2) Instead of using the asymptotic expansion of log ZN

Vt
up to order g = 1 in Lemma 2.3 and

applying Taylor’s theorem, we could have only used that expansion up to order g = 2 for proving
the MDP and the CLT.
(3) In case of m= 1, we would find e.g. the limiting variance ofφ l to be ∂ 2

∂ t2
l
F0(t) =

∑

k∈Nn
(−t)k

k !
κ

k+2el
0 ,

where κk+2el
0 is the number of maps on a surface of genus 0 with ki vertices of valence i, i =

{1, . . . , n}, and two vertices of valence l. That corresponds to a non-colored graph, respectively a
graph in which all edges are colored with one color. Notice moreover that F0(t) corresponds to
e0(t1, . . . , tn) in the notation of [6].
(4) What about a LDP for

�

µN
Vt
◦
�

1
N
φl

�−1
�

N
? Along the proof of (11) we obtain that

lim
N→∞

1

N2 logE[exp{sNφl}] = F0(t − sel)− F0(t),
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for s ∈ R, such that t − sel ∈ Bη,c . Hence we are only able to apply the Gärtner-Ellis theorem
locally, for sufficient small s, obtaining a LDP only locally for sufficiently small intervals (−ε,ε)
with a implicit rate function

eI(x) = sup
s∈R,

t−sel∈Bη,c

¦

sx − F0(t − sel) + F0(t)
©

.

In other words, the expansions in [16] are not strong enough to obtain a full LDP. For a similar
discussion in case of m= 1, see [17].
Generalization:
All the results above can be generalized from monomials to polynomials,

∑n
i=1αi tr(qi), provided

that each qi has a non-vanishing coefficient t i in the potential Vt . We will briefly state the crucial
steps of the calculations and only look atψ= α1 tr(ql1)+α2 tr(ql2), where l1, l2 ∈ {1, . . . , n}, l1 6= l2,

α1,α2 ∈ R fix, and ψ = α1 tr(ql1) + α2 tr(ql2)− E[α1 tr(ql1) + α2 tr(ql2)] respectively. In order to
be able to apply Theorem 2.1 and a Taylor expansion in two variables, we argue as in the proof of
Lemma 2.3 that for c > 0 we can find a η= η(c)> 0 such that t−κ s

N
(α1el1+α2el2) ∈ Bη,c for every

κ ∈ [0, 1] and N sufficiently large. With the new potential Vt− s
N
(α1el1

+α2el2
) = Vt−

s
N
(α1ql1+α2ql2),

we find that
E
�

es(α1trql1
+α2trql2

)
�

= ZN
Vt− s

N (α1 el1
+α2 el2

)

�

ZN
Vt

�−1. (12)

Centering ψ, we need to calculate E[α1trql1 +α2trql2]. As above, the following holds,

E[α1trql1 +α2trql2] =−
1

N

�

α1
∂

∂ t l1

log ZN
Vt
+α2

∂

∂ t l2

log ZN
Vt

�

. (13)

The moment generating function now turns out to be (via Theorem 2.1)

E
h

esψ
i

(12)
=

ZN
Vt− s

N (α1el1
+α2el2

)

ZN
Vt

exp

(

s

N

2
∑

i=1

αi
∂

∂ t li

log ZN
Vt

)

(13)
= exp

(

N2

 

F0
�

t −
s

N
(α1el1 +α2el2)

�

− F0(t) +
s

N

2
∑

i=1

αi
∂

∂ t li

F0(t)

!

+ F1
�

t −
s

N
(α1el1 +α2el2)

�

− F1(t) +
s

N

2
∑

i=1

αi
∂

∂ t li

F1(t) + o(1)

)

.

Hence we obtain

E
h

esψ
i

= exp







s2

2

2
∑

i, j=1

αiα j
∂ 2

∂ t li
∂ t l j

F0(ξN ) +O
�

1

N2

�







, (14)

and therefore

lim
N→∞
E
h

esψ
i

= exp







s2

2

2
∑

i, j=1

αiα j
∂ 2

∂ t li
∂ t l j

F0(t)







.
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Here, we used the Taylor expansion in two variables and ξN = t − κ s
N
(α1el1 + α2el2), for a

κ ∈ (0,1). Having thus obtained the CLT for ψ under µN
Vt

, we can use the expansion (14)

to obtain the MDP for 1
Nγ
ψ under µN

Vt
, where γ ∈ (0,1), with speed N2γ and rate function

I(x) = x2

2

�

∑2
i, j=1αiα j

∂ 2

∂ t li
∂ t l j

F0(t)
�−1

via the Gärtner-Ellis approach:

lim
N→∞

1

N2γ logE
�

exp
¦

sNγψ
©�

(15)

= lim
N→∞

1

N2γ







N2

2

�

sNγ

N

�2




2
∑

i, j=1

αiα j
∂ 2

∂ t li
∂ t l j

F0(ξN ) + o(1)











=
s2

2

2
∑

i, j=1

αiα j
∂ 2

∂ t li
∂ t l j

F0(t),

since ξN = t − κ sNγ

N
(α1el1 + α2el2), with κ ∈ (0,1) and F0 being differentiable of any order for t

sufficiently small. Since s2

2

∑2
i, j=1αiα j

∂ 2

∂ t li
∂ t l j

F0(t) is finite for s ∈ R, everywhere differentiable in

s and steep, we have established the MDP.

3 Discussion and Applications

Let us consider the one-matrix model m = 1 first. In this case, the results of [16] are comparable
to the expansions given in [6, Theorem 1.1]. The former results can be applied to Vt being a
c-convex polynomial with t ∈ Bη,c ∩Rn. The latter results hold true for polynomials Vt such that
t = (t1, . . . , tn) lies in the region

T(T,γ) :=







t ∈ Rn | |t| ≤ T, tn > γ

n−1
∑

j=1

|t j |







. (16)

To be more specific, there is a T > 0 and a γ > 0 such that for t ∈ T(T,γ) the asymptotic
expansion of log ZN

Vt
given in [6, Theorem 1.1] is available. An analytic comparison between these

two admissible regions of parameters prompts us to claim the following :
Claim 1: If n is even and T > 0 and γ > 1 are such that T < 1

n(n−1)2(1+γ)
, it holds that

T(T,γ)⊂ BT,c(T,γ) for some c(T,γ)> 0.

Claim 2: If n is uneven, for Vt we can find T > 0 and γ > 0, such that t ∈ T(T,γ), whereas ∀η > 0
and ∀ c > 0 we find t 6∈ Bη,c .

In the situation of claim 1, the expansion of log ZN
Vt

does not hold a priori as we did not choose T
and γ with respect to that condition but rather arbitrary. But we can deduce that for our choice of
T and γ as above, the expansion of log ZN

Vt
holds for any t ∈ T(T,γ), because the potential can be

shown to be c-convex. Because of this observation, it is sometimes mentioned that the c-convexity
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encompasses the condition of Ercolani and McLaughlin for T sufficiently small and γ sufficiently
large, see e.g. [9].
While the first claim only holds for even n, the second claim states that for uneven n, only the
expansion of Ercolani and McLaughlin is applicable, since Vt cannot be c-convex in this situation.

Proof. (Proof of Claim 1) Let T > 0 and γ > 1 be as in claim 1. As m = 1, the potential Vt is of
form Vt(H) =

∑n
i=1 t iH

i , where H is a hermitian matrix. Therefore, tr(Vt +
1−c

2
H2) is always real.

We will deduce the existence of a c(T,γ) such that Vt is c-convex by an application of Klein’s lemma
and therefore we show that f (x) :=

∑n
i=1 t i x

i + 1−c
2

x2 is a convex function. Thus, we need to
establish the positivity of the second derivative, g(x) := f ′′(x) =

∑n
i=2 t i(i − 1)i x i−2 + 1− c ≥ 0

for any x ∈ R.
Observe, that we can find a c1(T,γ) such that g(0) = 2t2 + 1− c > 0, because of γ > 1 and T < 1

2
for n≥ 2.
The next case to consider is that of |x | ≥ 1. As t ∈ T(T,γ), it is obvious from (16) that

g(x) =
n
∑

i=1

t i(i− 1)i x i−2 + 1− c >
n−1
∑

i=1

�

t i(i− 1)i x i−2 + γ|t i |(n− 1)n xn−2
�

+ 1− c.

Because n is even and γ > 1, it holds for every i ≤ n that

γ|t i |(n− 1)n xn−2 =
�

�γ|t i |(n− 1)n xn−2
�

�>
�

�t i(i− 1)i x i−2
�

� ,

which gives g(x)> 0 for x with |x | ≥ 1.
When |x |< 1, we start with the observation that

0≤

�

�

�

�

�

n−1
∑

i=1

�

t i(i− 1)i x i−2 + γ|t i |(n− 1)n xn−2
�

�

�

�

�

�

< T (n− 1)2n+ γT n(n− 1)2 < 1.

Thus, we can find a c2(T,γ)> 0 such that

g(x)>
n−1
∑

i=1

�

t i(i− 1)i x i−2 + γ|t i |(n− 1)n xn−2
�

+ 1− c2(T,γ)> 0.

Hence, we choose c(T,γ) =min{c1(T,γ), c2(T,γ)} and applying Klein’s lemma yields

T(T,γ)⊂ BT,c(T,γ).

Proof. (Proof of Claim 2) In case of uneven n, take e.g. the potential Vt = 2t2H2+t3H3. Obviously,
this potential is not c-convex (take e.g. the case N = 1, in which the matrix H reduces to one real-
valued unknown h and we immediately see that tr

�

Vt(h) +
1−c

2
h2
�

= 4t2+1−c
2

h2 + t3h3 is not a
convex function in h for any c > 0, regardless of our choice of η > 0). Along the same lines, we
see that any potential Vt with tn 6= 0 for n uneven cannot be c-convex.

Remark:
When using the expansion (5), a CLT and a MDP for the centered and properly scaled random
variable tr(ql) = tr(X l) could only be obtained if t l 6= 0. Considering the case of Vt = tnHn, n ≥ 2,
either even or uneven, we see that the expansion can be applied to the numerator and denominator
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in (8) even for t l with l < n: Provided that t ∈ To(T,γ), where To(T,γ) denotes the interior of
the set T(T,γ), it still holds for large N that max{tn, | s

N
|} < T and tn > |γ

s
N
|, for s ∈ N. And once

this expansion was established, the proofs can be left unchanged to yield the CLT and MDP for
the distribution of the centered and properly scaled random variable tr(X l) =

∑N
i=1λ

l
i with l < n,

although t l = 0.
Next, we consider an example for m = 2, the random Ising model on random graphs. The Gibbs
measure of that model is given by

µN
Is(dH1, dH2) =

1

ZN
Is

exp
n

−N
�

tr(V 1
t1
(H1)) + tr(V 2

t2
(H2))− t3 tr(H1H2)

�o

µN (d H1)µ
N (d H2).

Here, V i
t (Hi) are convex self-adjoint polynomials depending on the parameter t i , i = 1,2, and

t3 ∈ R.
This model has been studied with regard to the first order asymptotic of the logarithmic parti-
tion function in [7] by using large deviations techniques and the first order could be given by a
variational formula.
Choosing the parameters t i , i = 1, 2,3, small enough guarantees that the function V 1

t1
(H1) +

V 2
t2
(H2) − t3H1H2 is c-convex, see also [10], and provides that the free energy can also be ex-

panded into a generation function for maps. which was done in [8].
Now, we take potential functions V j

t j
of type

V j
t j
=

n j
∑

i=1

t j,iH
i
j , j = 1, 2, (17)

and denote the N real eigenvalues of the two N × N hermitian matrices H i
j by λ j,i , j = 1,2, i =

1, . . . , N . Thus, we can apply Theorem 1.3 and 1.4 for small enough t for l ≤ n with t j,l 6= 0 in

V j
t j

to yield a CLT or a MDP for the sequence of distributions (µN
Vt
◦ ( 1

Nγ

∑n
i=1(λ

l
j,i − E[λ

l
j,i]))

−1)N
under µN

Is. The CLT and MDP can in case of small enough t j,i and t3 also be extended to hold for
traces of polynomials P of type

P(H1, H2) =
∑

k

αkHk
1 +
∑

i

βiH
i
2 +δH1H2,

for αk,βi ,δ ∈ R, where we only have to take care, that any monomial appearing in P also has a
non-vanishing parameter in its original potential function, i.e. t1,k, t2,i , t3 6= 0.
Finally, let us mention two models for general m, which are the chain model (see [14]) and the
q-Potts model (see e.g. [18]), for which the MDP and CLT can be applied. The potentials V are
given by

V (H1, . . . , Hm) =
m
∑

i=1

V i
t1,i
(Hi)−

m
∑

i=2

t2,i(Hi−1Hi),

and

V (H1, . . . , Hm) =
m
∑

i=1

V i
t1,i
(Hi)−

m
∑

i=2

t2,i(H1Hi),

where the V i
t are convex self-adjoint polynomials with parameters t1,i , i = 1, . . . , m small enough.

As in the Ising model on random graphs, a MDP and a CLT can be established for polynomials,
which consist of monomials appearing in the corresponding potentials.
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