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Abstract

Under very general conditions the hitting time of a set by a stochastic process is a stopping time.
We give a new simple proof of this fact. The section theorems for optional and predictable sets are
easy corollaries of the proof.

1 Introduction

A fundamental theorem in the foundations of stochastic processes is the one that says that, under
very general conditions, the first time a stochastic process enters a set is a stopping time. The
proof uses capacities, analytic sets, and Choquet’s capacibility theorem, and is considered hard.
To the best of our knowledge, no more than a handful of books have an exposition that starts with
the definition of capacity and proceeds to the hitting time theorem. (One that does is [[1].)

The purpose of this paper is to give a short and elementary proof of this theorem. The proof is
simple enough that it could easily be included in a first year graduate course in probability.

In Section [2) we give a proof of the debut theorem, from which the measurability theorem follows.
As easy corollaries we obtain the section theorems for optional and predictable sets. This argument
is given in Section 3]

2 The debut theorem

Suppose (2, Z,P) is a probability space. The outer probability P* associated with P is given by
P*(A) =inf{P(B):AC B,B € Z}.

A set A is a P-null set if P(A) = 0. Suppose {Z,} is a filtration satisfying the usual conditions:

NesoFire = F, for all t > 0, and each &, contains every P-null set. Let 7 : [0,00) X Q@ — Q be
defined by 7t(t, w) = w.
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Recall that a random variable taking values in [0, 00] is a stopping time if (T < t) € &, for all
t; we allow our stopping times to take the value infinity. Since the filtration satisfies the usual
conditions, T will be a stopping time if (T < t) € &, for all t. If T; is a finite collection or
countable collection of stopping times, then sup; T; and inf; T; are also stopping times.

Given a topological space &, the Borel o-field is the one generated by the open sets. Let %[0, t]
denote the Borel o-field on [0, t] and [0, t] x %, the product o-field. A process X taking values
in a topological space & is progressively measurable if for each t the map (s, w) — X;(w) from
[0,t] x Q to & is measurable with respect to B[0,t] x &Z,, that is, the inverse image of Borel
subsets of # are elements of %[0, t] x &,. If the paths of X are right continuous, then X is easily
seen to be progressively measurable. The same is true if X has left continuous paths. A subset of
[0,00) X Q is progressively measurable if its indicator is a progressively measurable process.

If EC [0,00) X £, let Dy =inf{t > 0: (t,w) € E}, the debut of E. We will prove

Theorem 2.1. If E is a progressively measurable set, then Dy, is a stopping time.

Fix t. Let £ °(t) be the collection of subsets of [0, t] x Q of the form K x C, where K is a compact
subset of [0,t] and C € Z,. Let #(t) be the collection of finite unions of sets in .#°(t) and let
A5(t) be the collection of countable intersections of sets in £ (t). We say A € $B[0,t] X &, is
t-approximable if given ¢ > 0, there exists B € #5(t) with B C A and

P*(n(A)) < P*(n(B)) + ¢. 2.1)
Lemma 2.2. If B € X5(t), then n(B) € &,. If B, € 5(t) and B, | B, then n(B) =N, n(B,).

The hypothesis that the B, be in 5(t) is important. For example, if B, = [1 —(1/n),1) x Q, then
n(B,) =  but n(N,B,,) = 0. This is why the proof given in [2, Lemma 6.18] is incorrect.

Proof. If B =K x C, where K is a nonempty subset of [0, t] and C € %,, then n(B) = C € %,.
Therefore n(B) € Z, if B € #°(t). If B= U |A; with A; € #°(t), then n(B) = U™ nt(A;) € Z,.
For each w and each set C, let

S(CY)w)={s<t:(s,w)eC}. (2.2)

If B € #5(t) and B, | B with B, € 2 (t) for each ¢, then S(B,)(w) | S(B)(w), so S(B)(w) is
compact.

Now suppose B € #3(t) and take B, | B with B, € J#5(t). S(B,)(w) is a compact subset of
[0, t] for each n and S(B,,)(w) | S(B)(w). One possibility is that N,S(B,,)(w) # @; in this case,
if s € N,S(B,)(w), then (s, w) € B, for each n, and so (s, w) € B. Therefore w € n(B,,) for each
n and w € n(B). The other possibility is that N,S(B,)(w) = @. Since the sequence S(B,)(w)
is a decreasing sequence of compact sets, S(B,)(w) = @ for some n, for otherwise {S(B,)(w)"}
would be an open cover of [0, t] with no finite subcover. Therefore w ¢ 7(B,) and w ¢ ©(B). We
conclude that (B) = N, 7(B,,).

Finally, suppose B € #5(t) and B,, | B with B,, € #(t). Then n(B) =N,n(B,) € Z,. O

Proposition 2.3. Suppose A is t-approximable. Then ©(A) € &,. Moreover, given € > 0O there exists
B € A#5(t) such that P(n(A) \ n(B)) < e.

Proof. Choose A, € A5(t) with A, C A and P(n(A,)) — P*(n(A)). Let B, = A, U---UA, and
let B =U,B,. Then B, € 2#5(t), B, 1 B, and P(t(B,)) = P(n(4,)) — P*(«t(A)). It follows that
n(B,) 1 n(B), and so ©(B) € &, and

P(n(B)) = limP(n(B,)) = P*(m(A)).
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For each n, there exists C, € & such that n(A) c C, and P(C,) < P*(n(A)) + 1/n. Setting
C =n,C,, we have n(A) C C and P*(n(A)) = P(C). Therefore n(B) C n(A) C C and P(n(B)) =
P*(n(A)) = P(C). This implies that 7t(A)\7(B) is a P-null set, and by the completeness assumption,
1(A) = (t(A) \ n(B)) U n(B) € Z,. Finally,

lim P(7e(A) \ 7(B,)) = P(7(A)) \ 7(B)) = 0.

We now prove Theorem [2.1

Proof of Theorem Fix t. Let
M=1{Ac B[0,t] x F, : Ais t-approximable}.

We show . is a monotone class. Suppose A, € 4, A, 1T A. Then ©(A,) T ©(A). By Proposition
n(A,) € &, for all n, and therefore n(A) € &, and P(n(A)) = lim,, P(7t(A,)). Choose n large
so that P(7t(A)) < P(n(A,)) + /2. Then choose K,, € #3(t) such that K, C A, and P(7(A,)) <
P(n(K,)) + /2. This shows A is t-approximable.

Now suppose A, € .# and A, | A. Choose K, € #5(t) such that K,, C A, and P(7t(A,) \ =(K,)) <
g/2"1. Let L, = K;n---NK,, L =nN,K,. Since each K, € #;(t), so is each L,, and hence
L € #;5(t). Also L, | L and L C A. By Lemma[2.2] n(L,) | n(L), hence P(n(L,)) — P(n(L)).
Therefore P(7t(L,)) < P(m(L)) + ¢/2 if n is large enough. We write

P(n(A)) < P(n(A,)) < P(n(A)\ n(Ly)) +P(7(Ly))
< PUL, (m(A) \ (K;)) + P(7e(L,))

< ZP(n(Ai)\n(Ki))wm(Ln))

i=1
<e+P(n(L))

if n is large enough. Therefore A is t-approximable.

If .#9(t) is the collection of sets of the form [a,b) X C, where a < b < t and C € &,, and .#(t)
is the collection of finite unions of sets in .#°(t), then .#(t) is an algebra of sets. We note that
#(t) generates the o-field 8[0,t] x Z,. A set in .#°(t) of the form [a, b) x C is the union of sets
in 2#°(t) of the form [a,b — (1/m)] x C, and it follows that every set in .#(t) is the increasing
union of sets in 2 (t). Since .# is a monotone class containing .# (t), then .# contains .#(t). By
the monotone class theorem, .# = %[0,t] x Z,. By Proposition ifAe 8[0,t] x Z,, then
n(A) € Z,.

Now let E be a progressively measurable and let A= E N ([0, t] x ). We have (Dy <t) =n(A) €
Z,. Because t was arbitrary, Dy is a stopping time. O

If B is a Borel subset of a topological space &, let
Ug =inf{t >0:X, € B}

and
Tz =inf{t > 0:X, € B},

the first entry time and first hitting time of B, resp.
Here is the measurability theorem.



102

Electronic Communications in Probability

Theorem 2.4. If X is a progressively measurable process taking values in & and B is a Borel subset
of &, then Uy and Ty are stopping times.

Proof. Since B is a Borel subset of & and X is progressively measurable, then 15(X,) is also
progressively measurable. Uy is then the debut of the set E = {(s,w) : 15(X,(w)) = 1}, and
therefore is a stopping time.

If we let Yt‘s =X,,s and UB5 =inf{t > 0: Yf € B}, then by the above, Ug is a stopping time with
respect to the filtration {9}5 }, where 9[5 = Z,45. It follows that 6 + Ug is a stopping time with
respect to the filtration {Z,}. Since (1/m) + U;/ ™ | Ty, then Ty is a stopping time with respect to
{Z,} as well. O

We remark that in the theory of Markov processes, the notion of completion of a o-field is a bit
different. In that case, we suppose that &, contains all sets N such that P#(N) = 0 for every
starting measure . The proof in Proposition [2.3|shows that

(") (n(A)\ n(B) =0

for every starting measure u, so (A)\ t(B) is a P*-null set for every starting measure u. Therefore
1(A) = n(B) U (t(A) \ n(B)) € &Z,. With this modification, the rest of the proof of Theorem
goes through in the Markov process context.

3 The section theorems

Let (Q,Z,P) be a probability space and let {Z,} be a filtration satisfying the usual conditions.
The optional o-field @ is the o-field of subsets of [0,00) x € generated by the set of maps X :
[0,00) X 2 — R where X is bounded, adapted to the filtration {&,}, and has right continuous
paths. The predictable o-field & is the o-field of subsets of [0,00) X Q generated by the set
of maps X : [0,00) x Q — R where X is bounded, adapted to the filtration {Z,}, and has left
continuous paths.

Given a stopping time T, we define [T,T] = {(t,w) : t = T(w) < oo}. A stopping time is
predictable if there exist stopping times T;, Ty,... with T; < T, < ---, T, T T, and on the event
(T >0), T, < T for all n. We say the stopping times T,, predict T. If T is a predictable stopping
time and S = T a.s., we also call S a predictable stopping time.

The optional section theorem is the following.

Theorem 3.1. If E is an optional set and ¢ > 0, there exists a stopping time T such that [T,T] C E
and P(nt(E)) <P(T < 00) + €.

The statement of the predictable section theorem is very similar.

Theorem 3.2. If E is a predictable set and € > 0, there exists a predictable stopping time T such that
[T,T] CE and P(n(E)) <P(T < o0)+e¢.

First we prove the following lemma.

Lemma 3.3. (1) O is generated by the collection of processes 1c(w)1, p)(t) where C € Z,,.
(2) @ is generated by the collection of processes 1¢(w)1, oy(t) where C € F, and a <b <c.
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Proof. (1) First of all, 1c(w)1f,)(t) is a bounded right continuous adapted process, so it is
optional.

Let 0’ be the o-field on [0, 00) x 2 generated by the collection of processes 1¢(w)1, »)(t), where
C € Z,. Letting b — o0, ¢’ includes sets of the form [a,00) X C with C € &,.

Let X, be a right continuous, bounded, and adapted process and let € > 0. Let U, = 0 and define
Uipr = inf{t > U; : |X, — Xy | > €}. Since (U; < t) = U(|X; — X,| > ¢), where the union is over all
rational q less than ¢, U, is a stopping time, and an analogous argument shows that each U; is also
a stopping time. If S and T are stopping times, let 1(5 7y = {(t, w) € [0,00) x Q2 : S(w < t < T(w)}.
If we set

o0
X£(w) =D Xy (@)1y,p, (0,
i=0

then sup,>( |X, — X;| < e. Therefore we can approximate X by processes of the form

0 0
ZXUi 1[Ui,00) - ZXUi 1[Ui+1»00)'
i=0 i=0

It therefore suffices to show that if V is a stopping time and A € Zy, then 1,(w)1(y,)(t) is 0’
measurable.
Letting V, = (k+ 1)/2" when k/2" <V < (k +1)/2",

14(0) 1y ()00 () = nlgglo La() 1y, (w),00)()

o0
= nlljc}o; Lan(v,=(e+1)/20) L (k1) /27,000 (8,
which is 0’ measruable.

(2) Aslong as a+(1/n) < b, the processes 1c(w)1(p—_(1/n)c—1/m)](t) are left continuous, bounded,
and adapted, hence predictable. The process 1c(w)1p, (t) is the limit of these processes as
n — o0, so is predictable. On the other hand, if X, is a bounded adapted left continuous process,
it can be approximated by

[0 9)
Zx(k—l)/z”(w)l(k/Z",(k+1)/2”](t)c
k=1
Each summand can be approximated by linear combinations of processes of the form 1(w)1; (t),
where C € ., and a < b < c. Finally, 11 is the limit of 1¢(w)1[p1(1/n)c+1/n)(t) @8N — 00. 0

A consequence of this lemma is that # C 0. Since 0 is generated by the class of right continuous
processes and right continuous processes are progressively measurable, we have from Theorem
[2.1] that the debut of a predictable or optional set is a stopping time.
Fix t and define

o(t)={ANn([0,t] xQ):Ae 0}.

Let yo(t) be the collection of subsets of 0(t) of the form K x C, where K is a compact subset of
[0,t] and C € &, with a < inf{s : s € K}. Let #(t) be the collection of finite unions of sets in

#°(t) and A 5(t) the collection of countable intersections of sets in .#(t). Define zo(t) to be
the collection of sets of the form [a,b) X C, where a < b < t and C € Z,, and let #(t) be the

. - . . —0
collection of finite unions of sets in . (t).
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The proof of the following proposition is almost identical to the proof of Theorem Because
the debut of optional sets is now known to be a stopping time, it is not nececessary to work with
P*.

Proposition 3.4. Suppose A € O(t). Then given & > 0, there exists B € A 5(t) such that P(r(A) \
n(B)) < e.

We now prove Theorem [3.1

Proof of Theorem|3.1} If E is an optional set, choose t large enough so thatif A, = EN([0, t]x£),
then P(7t(A,)) > P(n(E)) — /2. This is possible because A, 1 E and so ©(A,) 1 ©(E). With this
value of t, choose B € £ 5(t) such that B € A, and P(n(B)) > P(n(A,)) — £/2. We will show
[Dg, D] C B. Since (Dy < 00) = nt([Dg, Dg]) = n(B), we have [Dy,Dz] C E and

P(n(E)) < P(n(A,)) +&/2 < P(n(B)) + £ = P(n([Dy, Dp]1)) + €.

By the argument of the proof of Lemma [2.2} S(B)(w) is a compact set if B € # 5(t). Therefore
Dg(w) =inf{s : s € S(B)(w)} is in S(B)(w), which implies [Dg, D] C B. a

To prove Theorem [3.2] we follow along the same lines. Define
Z(t)={An([0,t] xQ):Ae @}

and define #°(t) to be the collection of subsets of % (t) of the form K x C, where K is a compact
subset of [0,t] and C € &, with a < inf{s : s € K}, let A () be the collection of finite unions of
sets in #(t), and JK’; (t) the collection of countable intersections of sets in #(t). Define .$°(t)
to be the collection of sets of the form [b,c) X C, where C € %, and a < b < ¢ < t, and let S(t)
be the collection of finite unions of sets in .#°(t). Following the proof of Theorem 3.1} we will be
done once we show Dy is a predictable stopping time when B € #;(t).

Proof of Theorem Fix t. Suppose B € #°(t) is of the form B = K x C with C € &, and
a < b =inf{s : s € K}. Note that this implies b > 0. Then Dy equals b if w € C and equals infinity
otherwise. As long as a + (1/m) < b, we see that D, is predicted by the stopping times V,,,, where
V,, equals b — (1/m) if w € C and equals m otherwise. Note also that [Dy,Dz] C B. If B= U] B,
with B; € HO(t), then Dy = Dg A---ADg , and it is easy to see that Dy is predictable because
each Dy is, and also that [Dg, Dg] C B.

Now let B € JZ; (t) with B, | Band B, € A (t). We have Dg 1, and the limit, which we call T, will
be a stopping time. Since B C B,,, then Dy < Dy, and therefore T < Dy. Each Dy _is a predictable
stopping time. Let R,,,, be stopping times predicting Dy and choose m,, large so that

P(Rym, +27" <Dp <00) <277, P(Rym, <n,Dp =00) <27
By the Borel-Cantelli lemma,

P(supR,,, <T <00)=0 and P(supR,, <T =00)=0,

so if we set Q, = nA(Ryp, V- VR, ), we see that {Q,} is a sequence of stopping times predicting
T, except for a set of probability zero. Hence T is a predictable stopping time.

If n > m, then [Dy ,Dp ] C B, C B,. Since S(B,,)(w) is a closed subset of ¢, the facts that
Dy (w) € S(B,,)(w) for n > m and Dy (w) — T(w) for each w shows that T(w) € S(B,,)(w) for
each w. Thus [T, T] C B,,. This is true for all m, so [T, T] C B. In particular, T > Dg, so T = Dj.
Therefore 1(B) = (Dg < 00) = ([T, T]).

This and the argument of the first paragraph of the proof of Theorem 3.1] proves Theorem[3.2] O
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