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Abstract

In this note we explain two transitions known for moment generating functions of local times by
means of properties of the renewal measure of a related renewal equation. The arguments simplify
and strengthen results on the asymptotic behavior in the literature.

1 Introduction and Results

Suppose X = (X t) is a time-homogeneous continuous time Markov process on a countable set S

with transition probabilities pt(i, j) = P[X t = j |X0 = i] for i, j ∈ S. We fix some arbitrary i ∈ S

and denote by L i
t

the time (X t) spends at i until time t:

L i
t
=

∫ t

0

δi(Xs) ds.

A quantity that has been studied in different contexts is the moment generating function Ei
�

eγL i
t

�

,
where X0 = i and γ is a positive real number.
To explain our interest in Ei

�

eγL i
t

�

let us have a brief look at the parabolic Anderson model with
Brownian potential, i.e.

dut(i) = ∆ut(i) d t + γut(i)dBt(i) (1)

with homogeneous initial conditions u0 ≡ 1. Here, i ∈ Zd , ∆ denotes the discrete Laplacian
∆ f (i) =
∑

|i− j|=1 1/(2d)( f ( j)− f (i)), and {B(i)}i∈Zd is a family of independent Brownian motions.
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It is known (see for instance Theorem II.3.2 of [CM94]) that the moments of ut(i) solve discrete-
space heat equations with one-point potentials. In particular, E[ut(i)ut( j)] solves

d

d t
w(t, i, j) = ∆w(t, i, j) + γδ0(i − j)w(t, i, j) (2)

with homogeneous initial conditions. The discrete Laplacian acts on both spatial variables i and j

seperately. Applying the Feynman-Kac formula one reveals that

w(t, i, j) = Ei, j�eγ
∫ t

0
δ0(X

1
s −X 2

s ) ds
�

where X 1, X 2 are independent simple random walks. Hence, for Lt corresponding to the difference
walk X 1 − X 2 (or equivalently corresponding to a simple random walk with doubled jump rate)

E
�

ut(i)
2�= w(t, i, i) = E0�eγL0

t

�

.

The notion of weak 2-intermittency, i.e. exponential growth of the second moment E[ut(i)
2], now

explains the interest in the study of the exponential moment of L i
t

for continuous time Markov
processes.
Applying the variation of constant formula to solutions of (2) one can guess that the following
renewal equation holds for fixed γ≥ 0 and t ≥ 0:

E
i
�

eγL i
t

�

= 1+ γ

∫ t

0

E
i
�

eγL i
t−s

�

ps(i, i) ds. (3)

Indeed, expanding the exponential one can show directly the validity of Equation (3) for general
time-homogeneous Markov processes on countable state spaces (see Lemma 3.2 of [AD09]). The

same equation holds for Ei
�

eL
j
t
�

with ps(i, i) replaced by ps(i, j). As the analysis does not change
we restrict ourselves to i = j.

In Section III of [CM94] and as well in Lemma 1.3 and Theorem 1.4 of [GdH06] analytic tech-
niques were applied to understand the longtime behavior of solutions of (2) by means of spectral
properties of the discrete Laplacian with one-point potential. They showed that the exponential
growth rate

r(γ) := lim
t→∞

1

t
logE
�

ut(i)
2�= lim

t→∞

1

t
log w(t, i, i) = lim

t→∞

1

t
logE0�eγL0

t

�

.

exists and obeys the following transition in γ:

r(γ)> 0 if and only if γ > 1/G∞(i, i),

where G∞(i, i) is the Green function
∫∞

0
ps(i, i) ds. This first transition in γ can be proved ana-

lytically, as identifying r(γ) corresponds to identifying the smallest eigenvalue of the perturbed
operator H = ∆+ γδ0. As multiplication with γδ0 is a one-dimensional perturbation and for the
discrete Laplacian explicit formulas for eigenfunctions are available, all necessary quantities can
be calculated. In particular the exponential growth rate r(γ), in the general case of our Theorem
1 represented by the Laplace transform of the transition probabilities, has been described for the
simple random walk as the unique solution of

2

γ
=

1

(2π)d

∫

S2

1

Φ(s) + r(γ)γ/2
ds
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where S2 denotes the d-dimensional torus and Φ(s) = 2
∑d

i=1(1 − cos(si)). Compared to this
expression, our Laplace transform representation is particularly useful (and easy to prove) as it
immediately provides the qualitative behavior of r(γ) as a function of γ.

Replacing the discrete Laplacian by a generator of a finite range random walk, in [DD06] the
second moment of solutions of (1) were analyzed via a random walk representation. For more
general initial conditions this leads to a renewal equation similar to (3). The authors analyzed
their equation (3.16) directly without appealing to the renewal theorem. In precisely the same
manner as we do in the proof of our Theorem 1 one can proceed in their case and strengthen the
asymptotics of their Equation (3.15).

Assuming only that pt(i, i) ∼ c t−α for some α > 0 (by f ∼ g we denote strong asymptotic equiv-
alence lim f /g = 1 at infinity) a second transition was revealed in Proposition 3.12 of [AD09] by
a Laplace transform technique combined with Tauberian theorems: at the critical point γ= 1/G∞
the growth is of linear order if and only if α > 2. As for the simple random walk on Zd the local
central limit theorem implies pt(i, i)∼ c t−d/2, linear growth occurs for dimensions at least 5.

The main goal of the following is to show how the known results easily follow from different
renewal theorems utilizing the fact that Equation (3) is a renewal equation of the type

Z(t) = z(t) +

∫ t

0

Z(t − s)U(ds) (4)

with Z(t) = Ei
�

eγL i
t

�

, initial condition z ≡ 1, and renewal measure U(ds) = γps(i, i) ds. This
approach is robust as there is no need to assume any properties of the underlying Markov process
(neither symmetry to obtain a self-adjoint operator, nor polynomial decay for Tauberian theorems
or finite range transitions kernels for the random walk representation).
The two transitions will now appear in terms of whether or not the renewal measure U

• is a probability measure,

• has finite mean.

In the supercritical case γ > 1/G∞(i, i) without any further consideration we obtain the strong
asymptotics of Ei

�

eγL i
t

�

. This of course is stronger than considering the Lyapunov exponent r(γ)

that appears in [CM94], [GdH06], and [AD09] as we exclude the possible existence of a subexpo-
nential factor. With further considerations this can be proved analytically but comes here for free
from the renewal theorem.

For the statement of the theorem we denote by H∞(i, i) =
∫∞

0
sps(i, i) ds the expected time of

hitting of two independent copies of X . In contrast to the Green function G∞ here we count the
hitting time of the entire paths not only of the paths at same time. The Laplace transform in time
of pt(i, i) is denoted by p̂(λ), λ > 0, and weak asymptotic equivalence at infinity by f ≈ g (i.e.
there are constants such that C1 ≤ lim inf f /g ≤ lim sup f /g ≤ C2).

Theorem 1. Suppose (X t) is a time-homogeneous Markov process on S started in i. Then for L i
t
=

∫ t

0
δi(Xs) ds the following holds:
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1. If γ > 1
G∞(i,i)

, then p̂−1(1/γ)> 0 and

E
i
�

eγL i
t

�

∼
1

p̂−1(1/γ)γ
∫∞

0
se−p̂−1(1/γ)s ps(i, i) ds

e p̂−1(1/γ)t .

2. If γ= 1
G∞(i,i)

, then

E
i
�

eγL i
t

�

≈
t

γ
∫ t

0

∫∞

s
pr(i, i) drds

,

where the weak asymptotic bounds are 1 and 2. If moreover

H∞(i, i) =

∫ ∞

0

sps(i, i) ds <∞,

then

E
i
�

eγL i
t

�

∼
t

γH∞(i, i)
.

3. If 0≤ γ < 1
G∞(i,i)

, then

lim
t→∞
E

i
�

eγL i
t

�

=
1

1− γG∞(i, i)
.

Remark 1. In the general case, we only obtained weak convergence at criticality in the previous theo-

rem with asymptotic bounds 1 and 2. Under the stronger assumptions pt(i, i) ∼ c t−α, in Proposition

3.12 of [AD09] strong asymptotics were obtained by Tauberian theorems. The case of α > 2 is con-

tained in the second part, α≤ 1 is contained in the first part of our previous theorem and also strong

asymptotics for α ∈ (1,2] can be obtained by extended renewal theorems. Here, we can directly use

the infinite mean renewal Theorem 1 of [AA87] to obtain precisely the same strong asymptotics as of

Proposition 3.12 of [AD09].

Qualitative properties of the exponential growth rate r(γ) have been considered for the simple
random walk (see Section III of [CM94], Theorem 1.4 of [GdH06]) and in the polynomially case
(see Corollary 3.10 of [AD09]). The representation of the growth rate in the previous theorem
directly shows that the qualitative behavior (see Figure 1 for the qualitative behavior of r(γ)

plotted against the identity function) is valid for general Markov processes:

Corollary 1. Suppose (X t) is a time-homogeneous Markov process on S started in i. Then for L i
t
=

∫ t

0
δi(Xs) ds the following holds for γ≥ 0:

1. r(γ)≥ 0 and r(γ)> 0 if and only if γ > 1/G∞(i, i),

2. the function γ 7→ r(γ) is strictly convex for γ > 1/G∞(i, i),

3. r(γ)≤ γ for all γ, and r(γ)/γ→ 1, as γ→∞.
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Figure 1: γ 7→ r(γ) for G∞(i, i) =∞ and G∞(i, i)<∞ plottet agains the identity function

2 Proofs

Proof of Theorem 1. The proof of Theorem 1 is based on the renewal equation (4) setting z ≡ 1,
Z(t) = Ei
�

eγL i
t

�

, and U(ds) = γps(i, i) ds.
1. The assumptions of the theorem directly imply that in this case U is not a probability measure.
Either the measure is infinite (with density bounded by γ) or it is finite with total mass strictly
larger than 1. From the definition of the Laplace transform we obtain for λ = p̂−1(1/γ) that

Ū(ds) = γe−λs ps(i, i) ds

is a probability measure. As by assumption λ > 0, we obtain that e−λt is directly Riemann inte-

grable and Ū has finite mean γ
∫∞

0
sps(i, i)e−λs ds. Hence,

e−λt
E

i
�

eγL i
t

�

= e−λt + γ

∫ t

0

e−λ(t−s)
E

i
�

eγL i
t−s

�

e−λs ps(i, i) ds

is a proper renewal equation. The classical renewal theorem (see for instance page 363 of [F71])
implies that

lim
t→∞

e−λt
E

i
�

eγL i
t

�

=

∫∞

0
e−λs ds

γ
∫∞

0
se−λs ps(i, i) ds

=
1

λγ
∫∞

0
se−λs ps(i, i) ds

proving the claim.
2. In the critical case γ

∫∞

0
ps(i, i) ds = 1, the measure U as defined above indeed is a probability

measure which does not necessarily has finite mean. Furthermore, the situation is different from
the first case as now the initial condition z ≡ 1 is not directly Riemann integrable. Iterating
Equation (3) we obtain the representation

E
i
�

eγL i
t

�

=

∫ t

0

∑

n≥0

ps(i, i)∗n ds,

where ∗n denotes n-fold convolutions. Note that convergence of the series is justified by bounded-
ness of p. In the case of finite mean, Equation (1.2) of page 358 of [F71] and the renewal theorem
on page 360 now directly imply

E
i
�

eγL i
t

�

∼
t

γ
∫∞

0
sps(i, i) ds

=
t

γH∞(i, i)
.
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For renewal measure U with infinite mean we again use the convolution representation of Ei
�

eγL i
t

�

to apply Lemma 1 of [E73] showing that the denominator needs to be replaced by the truncated

mean
∫ t

0

�

1−
∫ s

0
γpr(i, i) dr
�

ds.
3. For γ < G∞ we may directly use the proof of Proposition 3.11 of [AD09] as there no additional
structure was assumed. We repeat the simple argument for completeness. Taking Laplace trans-
form of Equation (3) and solving the multiplication equation in Laplace domain (note that under
Laplace transform the convolution turns into multiplication) we obtain with f (t) = Ei

�

eγL i
t

�

f̂ (λ) =
1

λ

1

1− γp̂(λ)

for λ > 0. As by assumption the second factor converges to the constant 1/(1− γG∞(i, i)) as λ
tends to zero, Karamata’s Tauberian theorem (see Theorem 1.7.6 of [BGT89]) implies the result.
Note that as f (t) is increasing, the Tauberian condition for that theorem is fulfilled.

Proof of Corollary 1. Part 1. of Theorem 1 shows that understanding p̂−1 suffices to understand
r(γ). This is not difficult due to the following observation: as p is bounded by 1, p̂(λ) is finite for
all λ > 0, strictly decreasing and convex with p̂(0) = G∞(i, i). Hence, p̂−1(λ) = 0 if and only if
λ ≥ G∞(i, i). This implies that p̂−1(1/γ) = 0 precisely for λ ≤ 1/G∞(i, i). Hence, parts 1. and 2.
are proved as r(γ) = p̂−1(1/γ).
First note that the first part of 3. is immediate as L i

t
≤ t. Continuity of p and p0(i, i) = 1 imply

that for ε > 0 there is t0(ε) such that pt(i, i)≥ 1− ε for t ≤ t0(ε). Hence,

1

γ
= p̂(r(γ)) =

∫ ∞

0

e−r(γ)t pt(i, i) d t ≥ (1− ε)

∫ t0(ε)

0

e−r(γ)t d t = (1− ε)
1

r(γ)

�

1− e−r(γ)t0(ε)
�

.

Since r(γ)→∞ for γ→∞ we obtain

lim inf
k→∞

r(γ)

γ
≥ 1.

This combined with the first part of 3. proves the second part.

3 Related Work

After submission of this paper the authors learned about an unpublished manuscript of Philippe
Carmona. In this note a large deviation principle for L i

t
was established taking into account the

renewal theorem.

There are two more papers which we would like to mention for continuous space analogue ques-
tions. In their analysis of laws of the iterated logarithms for local times of symmetric Lévy pro-
cesses, moment generating functions of local times were considered in [MR96]. They exploited
the renewal equation (3) where now the transition probabilities need to be replaced by transition
kernels. Solving in Laplace domain as we did in part 3. of the proof of Theorem 1 they transformed
back via inverse Laplace transformation to estimate rather delicately the difference

E
i
�

eγL i
t

�

−
1

p̂−1(1/γ)γ
∫∞

0
se−p̂−1(1/γ)s ps(i, i) ds

e p̂−1(1/γ)t .
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Their estimate is uniform in t and γ but does not establish convergence as t tends to infinity.
Applying our proofs to the renewal equation representation (see the proof of their Lemma 2.6),
one obtains the same results for local times of Lévy processes as we obtained in discrete space.

Recently, a parabolic Anderson model in R with Lévy driver was consider in [FK1] and [FK2]. As
their results are based on the same renewal equation (see for instance Equation (2.2) of [FK2] or
(4.15) of [FK1]) that we used, one can strengthen their bounds away from the notion of Lyapunov
exponents to strong asymptotics with the same expressions for constants and exponential rates
as in our discrete setting. This is not surprising as also for their Lévy process driven version
of the parabolic Anderson model the afore mentioned correspondence of second moments and
exponential moments of local times of the corresponding Lévy process holds true.
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