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Abstract

We prove that for symmetric Markov processes of diffusion type admitting a “carré du champ”, the
Poincaré inequality is equivalent to the exponential convergence of the associated semi-group in
one (resp. all) Lp(µ) spaces for 1 < p < +∞. We also give the optimal rate of convergence. Part
of these results extends to the stationary, not necessarily symmetric situation.

1 Introduction and main results.

Let X t be a general Markov process taking values in some Polish space E. We denote by L its
infinitesimal generator. We assume that the extended domain of L contains a nice core D of
uniformly continuous functions which is an algebra. Functions in D will be called “smooth”, and
constant functions are assumed to be in D. Next, we define the “carré du champ” operator

Γ( f , g) =
1

2

�

L( f g)− f Lg − g L f
�

.
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For a given probability measure µ on E, the associated Dirichlet form can thus be defined for
smooth f ’s as

E ( f , f ) := −
∫

f L f dµ =

∫

Γ( f , f ) dµ .

In the sequel we assume that µ is an invariant measure. Thus L generates a µ stationary semi-
group Pt , which is a contraction semi-group on all Lp(µ) for 1 ≤ p ≤ +∞. We shall also look at
cases where the following L2 ergodic theorem holds (this is automatic in the symmetric case): for
all f ∈ L2(µ),

lim
t→+∞

‖ Pt f −
∫

f dµ ‖L2(µ)= 0 .

For the above, see e.g. [3].
Here and in the sequel, for any p ∈ [1,∞), ‖ f ‖Lp(µ) or shortly ‖ f ‖p, stands for the Lp(µ)-norm
of f with respect to µ: ‖ f ‖p

p:=
∫

| f |pdµ.
In the sequel we shall assume that Γ comes from a derivation, i.e.

Γ( f g, h) = f Γ(g, h) + g Γ( f , h) ,

i.e. (in the terminology of [1]) that X . is a diffusion. We also recall the chain rule: if ϕ is a C2

function,
L(ϕ( f )) = ϕ′( f ) L f +ϕ′′( f )Γ( f , f ) .

It is well known that the following two statements are equivalent

(H-Poinc). µ satisfies a Poincaré inequality, i.e. there exists a constant CP such that for all
smooth f ,

Varµ( f ) :=

∫

f 2d µ−
�
∫

f dµ

�2

≤ CP

∫

Γ( f , f ) dµ .

(H-2-1). There exists a constant λ2 such that

Varµ(Pt f ) ≤ e−2λ2 t Varµ( f ) .

If one of these assumptions is satisfied we have λ2 = 1/CP .

The symmetric situation is peculiar due to the following well known reinforcement of the previous
equivalence

Lemma 1.1. Assume that µ is symmetric. If there exists β > 0 such that for all f ∈ C , C be-
ing an everywhere dense subset of L2(µ) the following property holds Varµ(Pt f ) ≤ c f e−2β t , then
Varµ(Pt f )≤ e−2β t Varµ( f ) for all f ∈ L2(µ), i.e. the Poincaré inequality holds with CP ≤ 1/β .

There are several proofs of this lemma (using the spectral resolution or some convexity tools), see
e.g. [8] lemma 2.6. In particular any exponential decay of the Variance

(H-2) Varµ(Pt f ) ≤ K2 e−2β t Varµ( f ) ,

implies (H-2-1) with β = λ2, i.e. we may take K2 = 1.
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A similar statement is false in the non-symmetric case. Examples are known where (H-2) holds
with K2 > 1 but where the Poincaré inequality does not hold (see the kinetic Ornstein-Uhlenbeck
process studied in [6] (also see [2] section 6)).

Our aim in this note will be be to investigate the Lp situation. For f ∈ Lp(µ) define

Np( f ) :=‖ f −
∫

f dµ ‖p .

Consider the operators defined on Lp by Tt( f ) = Pt( f − µ( f )), where µ( f ) =
∫

f dµ. Tt is a
bounded operator in Lp with operator norm denoted by ‖ Tt ‖p. For all t ≥ 0, ‖ Tt ‖p≤ 2, and for
p = 2 we have ‖ Tt ‖2≤ 1. According to the Riesz-Thorin interpolation theorem, using the pairs
(1,2) or (2,+∞) depending whether 1≤ p ≤ 2 or p ≥ 2, we thus have

‖ Tt ‖p≤ 21−rp with rp = 2 min
�

1

p
, 1−

1

p

�

. (1.2)

The same interpolation argument (with the pairs (1, p), (p,+∞) and possibly p = 2) yields

Theorem 1.3. The following statements are equivalent.

(1) (H-2) is satisfied.

(2) There exist some 1 < p < +∞ and positive constants λp and Kp such that for all f ∈ Lp(µ)
and all t > 0,

Np(Pt f ) ≤ Kp e−λp t Np( f ) .

(3) for all 1< p <+∞, there exist positive constants λp and Kp such that for all f ∈ Lp(µ) and
all t > 0,

Np(Pt f ) ≤ Kp e−λp t Np( f ) .

We shall denote by (H-p) the property (2) for a given p.
Furthermore, if µ is symmetric, these statements are also equivalent to (H-Poinc).

In addition if (H-2) is satisfied, we have

Kp ≤ 21−rp K2 and λp ≥ rp λ2 . (1.4)

Note that one cannot directly use the Riesz-Thorin theorem on the closed subspace of functions
with zero mean, so the prefactor 21−rp cannot be (at least immediately) avoided.
Our goal will be to obtain the best possible constants λp and Kp, assuming that the Poincaré
inequality holds (i.e. K2 = 1).
There are two interests in such a result. In the first case it is obviously the rate of convergence
at infinity. In this case, it is important to get the largest possible λp, despite the (reasonable)
value of Kp. In the second case it is the opposite: to obtain the result with Kp = 1 so that the
inequality becomes an equality at time t = 0. In this case, one may use the result in order to
obtain (for example) isoperimetric controls. The ideal situation is, of course, the one where we
can reach these goals simultaneously (as for p = 2). Unfortunately we did not succeed in obtaining
this ideal result. Nevertheless, we will improve on the result obtained via interpolation in both
directions. More precisely, we will prove the two results described below.
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Theorem 1.5. If (H-Poinc) is satisfied, then for all p ≥ 2, (H-p) holds with Kp = 1 and

λp ≥
1

82k CP

, if p ≤ 2k for some k ≥ 2 .

Note that for p = 2 (k = 1) we recover a worse constant than the known λ2 = 1/CP .

Theorem 1.6. If (H-Poinc) is satisfied, then for all p ≥ 1, (H-p) holds with

λp ≥
4(p− 1)

p2 CP
= 4λ2

1

p

�

1−
1

p

�

and an appropriate Kp .

For p ≥ 4 one may choose Kp = 22− 4
p and for 2 < p ≤ 4 one may choose Kp = p2/(p − 2)2. For

1≤ p < 2 we have Kp ≤ 2
2
p
−1 Kp/(p−1).

Note that the constant λp obtained in Theorem 1.6 satisfies

λp = 2 max
�

1

p
, 1−

1

p

�

rp λ2 ,

and so improves upon the one obtained by interpolation (see (1.4)) by a factor almost equal to 2

for large p′s. Actually we believe that λp = 4λ2
1
p

�

1− 1
p

�

is the best constant for all p’s, but we
did not succeed in giving a rigorous proof of this fact.
Once it was seen that the Poincaré inequality implies the same exponential decay for both Pt and
its adjoint P∗t , the case 1 < p < 2 is obtained via a simple duality argument, so that we shall only
consider the case p ≥ 2 in the sequel.
Note also that for p = 2k for k ≥ 1, our proof gives Kp = 21−2/p and even a better one for large p.
There is something surprising in the previous theorem, namely the explosion of Kp when p goes
to 2. Actually the proof will furnish a “better” result for small t’s, namely

Theorem 1.7. If (H-Poinc) is satisfied, then for all 2≤ p ≤ 4, (H-p) holds with

λp =
1

CP

�

1

p
+

1

2

�

and Kp = 22− 4
p .

In this situation it also holds

Np(Pt f )≤
�

1+
4(p− 1)t

pCP

�1/p

e−4λ2
1
p

�

1− 1
p

�

t Np( f ) .

The latter result suggests that one can expect a “reasonable” Kp for p close to 2 and λp =

4λ2
1
p

�

1− 1
p

�

. The same duality argument allows us to consider the cases p ≤ 2. One can
also remark that the final bound yields, fortunately, Np(Pt f )/Np( f ) ≤ 1 for all t ≥ 0 contrary to
the previous one obtained in Theorem 1.6.

The case p = 1 is extensively studied in [4] and the Poincaré inequality is no longer sufficient in
general to obtain an exponential decay in L1(µ). Replacing Lp norms by Orlicz norms (weaker
than any Np for p > 1) is possible provided one reinforces the Poincaré inequality into a F -Sobolev
inequality (see [4] Theorem 3.1 and also [5]) as it is well known in the case F = log for the Orlicz
space L log L.



274 Electronic Communications in Probability

We could not find the statement of our results in the literature, perhaps because the interpolation
argument appeared to be immediate. However recall that in [7], F.Y. Wang used the equivalent
Beckner type formulation of Poincaré inequality to give a partial answer to the problem i.e., a
Poincaré inequality with constant CP is equivalent to the following: for any 1< p ≤ 2 and for any
non-negative f ,

∫

(Pt f )p dµ−
�
∫

f dµ

�p

≤ e−
4(p−1) t

p CP

�
∫

( f )p dµ−
�
∫

f dµ

�p�

.

One has to take care with the constants since a factor 2 may or may not appear in the definition
of Γ, depending on authors and of papers by the same authors. This result cannot be used to
study the decay to the mean in Lp norm, but it is of particular interest when studying densities of
probability.
Note that the decay rate we obtain in Theorem 1.6 is the same as the one in Wang’s result.
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2 Poincaré inequalities and Lp spaces.

This section is dedicated to the proof of our results.

2.1 Proof of Theorem 1.5.

A natural idea is to study the time derivative of Np(Pt f ), namely

d

d t
N p

p (Pt f ) = p

∫

si gn(Pt f −µ( f )) |Pt f −µ( f )|p−1 LPt f dµ .

It follows that the following staments are equivalent:

There exists a constant C(p) such that for all f ,

N p
p (Pt f )≤ e−

pt
C(p) N p

p ( f ) . (2.1)

There exists a constant C(p) such that for all f ∈ D with µ( f ) = 0,

N p
p ( f ) ≤ −C(p)

∫

si gn( f ) | f |p−1 L f dµ . (2.2)
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In order to compare all the inequalities (2.2) to the Poincaré inequality (i.e. p = 2) one is tempted
to make the change of function f 7→ si gn( f ) | f |2/p (or f 7→ si gn( f ) | f |p/2) and to use the chain
rule. Unfortunately, first ϕ(u) = u2/p is not C2, and secondly µ(si gn( f ) | f |2/p) 6= 0 (the same for
p/2 for the second argument).
However, for p ≥ 2, one can integrate by parts in (2.2) which thus becomes

N p
p ( f ) ≤ C(p) (p− 1)

∫

| f |p−2 Γ( f , f ) dµ = C(p)
4(p− 1)

p2

∫

Γ(| f |p/2, | f |p/2) dµ. (2.3)

Thus, it remains to show that the Poincaré inequality implies (2.3) for all p ≥ 2. This will be done
in three steps. First we will show that (2.3) holds for p = 4. Next we shall show that it holds for all
2 ≤ p ≤ 4. Finally we shall show that if (2.3) holds for p then it holds for 2p. This will complete
the proof by an induction argument. In this procedure, starting with p = 2, only the last two steps
are necessary. Anyway, we believe that the details for 2p = 4 will help the reader to follow the
scheme of proof for the general cases.

The case p = 4. We proceed with the proof for p = 4, i.e. we prove that the Poincaré inequality
implies (2.3) for p = 4. Assume that µ( f ) = 0. First, applying the Poincaré inequality to f 2 we get

∫

f 4dµ≤
�
∫

f 2dµ

�2

+ 4 CP

∫

f 2 Γ( f , f ) dµ ,

so that it remains to prove that

�
∫

f 2dµ

�2

≤ C

∫

f 2 Γ( f , f ) dµ ,

for some constant C . For any u > 0 let ϕ = ϕu : R 7→ R be the 2-Lipschitz function defined by
ϕ(s) = 0 if |s| ≤ u, ϕ(s) = s if |s| ≥ 2u and linear in between. Applying Poincaré inequality to ϕ( f )
yields

∫

(ϕ( f ))2 dµ≤
�
∫

ϕ( f ) dµ

�2

+ 4 CP

∫

{| f |≥u}
Γ( f , f ) dµ .

But
∫

(ϕ( f ))2 dµ≥
∫

{| f |≥2u}
f 2 dµ≥

∫

f 2dµ − 4u2 ,

and since µ( f ) = 0,

�

�

�

�

∫

ϕ( f ) dµ

�

�

�

�

≤
∫

|ϕ( f )− f |dµ=
∫

{| f |≤u}
| f |dµ+

∫

{u≤| f |≤2u}
|ϕ( f )− f |dµ

≤ u
�

µ({| f | ≤ u}) +µ({u≤ | f | ≤ 2u})
�

≤ u (2.4)

where we have used that |ϕ(s)− s| ≤ u for any s ∈ [−2u,−u] ∪ [u, 2u]. Summarizing, it follows
that

∫

f 2 dµ≤ 5u2 + 4 CP

∫

{| f |≥u}
Γ( f , f ) dµ≤ 5u2 +

4

u2 CP

∫

f 2 Γ( f , f ) dµ .
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Optimizing in u2 finally yields
�
∫

f 2 dµ

�2

≤ 90 CP

∫

f 2 Γ( f , f ) dµ ,

and in turn

N4
4 ( f ) ≤ 94 CP

∫

f 2 Γ( f , f ) dµ .

The constant 94 is clearly not optimal. Note that replacing the constant 2 by (1+ρ), ρ > 0, in the
definition of ϕ would yield a worse constant.

The case 2 ≤ p ≤ 4. In the previous part we used the ordinary form of the Poincaré inequality.
Actually if 1≤ a ≤ 2 we have

∫

| f |2 dµ−
�
∫

| f |a dµ

�2/a

≤ Varµ( f )≤ CP

∫

Γ( f , f ) dµ . (2.5)

Hence if 2≤ p ≤ 4, applying (2.5) with | f |p/2, and choosing a = 4/p we have
∫

| f |p dµ≤
�
∫

f 2 dµ

�p/2

+ CP (p
2/4)

∫

| f |p−2 Γ( f , f ) dµ . (2.6)

Now recall that, in the previous step, we have shown
∫

f 2 dµ≤ 5u2 + 4 CP

∫

{| f |≥u}
Γ( f , f ) dµ ,

hence
∫

f 2 dµ≤ 5u2 +
4

up−2 CP

∫

| f |p−2 Γ( f , f ) dµ .

Again, we may optimize in u, and obtain
∫

| f |p dµ≤
�

p2

4
+ 22+ p

2 5
p
2
−1

�

CP

∫

| f |p−2 Γ( f , f ) dµ , (2.7)

so that (2.3) holds for 2≤ p ≤ 4, with

C(p)≤
p2

4
+ 22+ p

2 5
p
2
−1

p− 1
CP .

From p to 2p. Now assume that (2.3) holds for some p ≥ 2 and that the Poincaré inequality
also holds with constant CP . First we apply Poincaré inequality to the function | f |p to get

∫

| f |2pdµ≤
�
∫

| f |p dµ

�2

+ CP p2

∫

| f |2p−2 Γ( f , f ) dµ .

Our aim is to bound the quantity
∫

| f |p dµ using (2.3). On the one hand we have
∫

|ϕ( f )|pdµ≥
∫

| f |p − 2pup.
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On the other hand, using that |a+ b|p ≤ 2p−1 (|a|p + |b|p) and (2.4), it follows from (2.3) applied
to ϕ( f )−µ(ϕ( f )) that (recall that ϕ is 2-Lipschitz)

∫

|ϕ( f )|pdµ≤ 2p−1|µ(ϕ( f ))|p + 2p−1

∫

|ϕ( f )−µ(ϕ( f ))|pdµ

≤ 2p−1up + 2p−1(p− 1)C(p)

∫

{| f |≥u}
|ϕ( f )−µ(ϕ( f ))|p−2Γ(ϕ( f ),ϕ( f ))dµ

≤ 2p−1up + 2p+1(p− 1)C(p)

∫

{| f |≥u}
|ϕ( f )−µ(ϕ( f ))|p−2Γ( f , f )dµ.

Now, again by (2.4) we have
∫

{| f |≥u}
|ϕ( f )−µ(ϕ( f ))|p−2Γ( f , f )dµ≤

∫

{| f |≥u}
|| f |+ u|p−2Γ( f , f )dµ

=
1

up

∫

{| f |≥u}
up| f |p−2

�

�

�

�

1+
u

| f |

�

�

�

�

p−2

Γ( f , f )dµ

≤
2p−2

up

∫

| f |2p−2Γ( f , f )dµ.

Summarizing we end up with
∫

| f |pdµ≤
�

2p + 2p−1
�

up +
22p−1

up (p− 1)C(p)

∫

| f |2p−2Γ( f , f )dµ.

Since 2p + 2p−1 = 3 · 2p−1, optimizing over u leads to

�
∫

| f |pdµ

�2

≤ 3 · 23p(p− 1)C(p)

∫

| f |2p−2Γ( f , f )dµ.

In turn,
∫

| f |2pdµ≤
�

3 · 23p(p− 1)C(p) + p2CP

�

∫

| f |2p−2Γ( f , f )dµ.

This is equivalent to say that

C(2p)(2p− 1)≤ 3 · 23p(p− 1)C(p) + p2CP . (2.8)

Note that the previous computation applied to p = 2 (recall that C(2) = CP) leads to a worse
constant than 94. From (2.8) we easily deduce that

C(2k)≤ 2k · 23·2k

from which the expected result of Theorem 1.5 follows.

2.2 Proof of Theorem 1.6

The proof of Theorem 1.6 will use the following two lemmata
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Lemma 2.9. Assume that (H-Poinc) holds, and that (H-p) holds for some p ≥ 1 with λp = θp/p CP
and Kp.
Then, provided pθp > 2p− 1, (H-2p) holds with

λ2p = 4(2p− 1)/(2p)2CP and K2p
2p = 1 +

2p− 1

pθp − (2p− 1)
K2p

p .

Lemma 2.10. Assume that (H-Poinc) holds. Then for all 2≤ p ≤ 4, (H-p) holds with

λp = 4(p− 1)/p2CP and K p
p =

p2

(p− 2)2
.

In this situation we also have

Np(Pt f )≤
�

1+
4(p− 1)t

pCP

�1/p

e
− 4(p−1)t

p2 CP Np( f ) .

Proof of Lemma 2.9.
Without loss of generality we assume that

∫

f dµ = 0 and denote by Up(t) := N p
p (Pt f ). Recall

that, since 2p ≥ 2,

U ′2p(t) = 2p

∫

si gn(Pt f ) |Pt f |2p−1 LPt f dµ

= −2p (2p− 1)

∫

(Pt f )2p−2 Γ(Pt f , Pt f ) dµ

= −
4(2p− 1)

2p

∫

Γ(|Pt f |p, |Pt f |p) dµ .

In addition the Poincaré inequality, applied to |Pt f |p, yields

U2p(t)≤ U2
p (t) + CP

∫

Γ(|Pt f |p, |Pt f |p) dµ .

Putting these inequalities together we thus have

U ′2p(t)≤−
4(2p− 1)

2p CP
U2p(t) +

4(2p− 1)
2p CP

U2
p (t) . (2.11)

We may thus apply Gronwall’s lemma and obtain

U2p(t)≤ e−
4(2p−1)t

2p CP

�

Uk(0) +
4(2p− 1)

2p CP

∫ t

0

e
4(2p−1)s

2p CP U2
p (s) ds

�

.
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Applying (H-p) we obtain

U2p(t) ≤ e−
4(2p−1)t

2p CP

�

U2p(0) +
4(2p− 1)

2p CP

∫ t

0

e
4(2p−1)s

2p CP

�

K p
p e−

pθp s

p CP Up(0)
�2

ds

�

≤ e−
4(2p−1)t

2p CP

�

U2p(0) +
4(2p− 1)

2p CP

∫ t

0

e−
2(pθp−(2p−1))s

p CP K2p
p U2

p (0) ds

�

≤ e−
4(2p−1)t

2p CP

�

U2p(0) +
2p− 1

pθp − (2p− 1)
K2p

p U2
p (0)

�

≤ e−
4(2p−1)t

2p CP U2p(0)

�

1 +
2p− 1

pθp − (2p− 1)
K2p

p

�

since U2
p (0)≤ U2p(0) thanks to the Cauchy-Schwarz inequality.

Proof of Lemma 2.10.
If 2≤ p ≤ 4, write p = 2q with 1≤ q ≤ 2. We have

U ′p(t) =−
4(p− 1)

p

∫

Γ(|Pt f |q, |Pt f |q) dµ .

As in the second step of the proof of theorem 1.5, we may use the following consequence of the
Poincaré inequality,

N2q
2q (|Pt f |)− N2q

2 (Pt f )≤ CP

∫

Γ(|Pt f |q, |Pt f |q) dµ . (2.12)

As in the previous proof we thus obtain

U ′p(t)≤−
4(p− 1)

p CP
Up(t) +

4(p− 1)
p CP

Uq
2 (t) .

Using Gronwall’s lemma and applying the Poincaré inequality for U2, we thus have

Up(t) ≤ e−
4(p−1)t

p CP

�

Up(0) +
4(p− 1)

p CP

∫ t

0

e
4(p−1)s

p CP e−
sp
CP Uq

2 (0) ds

�

≤ e−
4(p−1)t

p CP

�

Up(0) +
4(p− 1)

p CP

∫ t

0

e−
s(p−2)2

p CP Uq
2 (0) ds

�

≤ e−
4(p−1)t

p CP Up(0)
�

1 +
4(p− 1)
(p− 2)2

�

,

yielding the first part of the lemma. The second one immediately follows from the second inequal-
ity above.

Proof of Theorem 1.6 and of Theorem 1.7.
The two previous lemmata yield λ4 = 3/4CP and K4 =

p
2.

It follows that Tt is bounded in L4 with an operator norm smaller than or equal to 2 e−3t/4CP .
Interpolating between L2 and L4 yields for 2≤ p ≤ 4,

λp =
1

CP

�

1

p
+

1

2

�

and Kp = 2(2−
4
p
) .
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Of course this value of λp is smaller, for 2 < p < 4, than the expected 4(p − 1)/p2CP , but it is

already better than the one obtained via direct interpolation. Kp is exactly (21− 2
p )2.

It is immediate that for 2≤ p ≤ 4, θp = 1+ p
2

satisfies pθp > 2p−1, so that we may apply Lemma
2.9 for 2≤ p ≤ 4. Now if θp = 4(p− 1)/p and p ≥ 2 it is immediate that pθp ≥ 2p− 1. Hence we
have obtained that for all p ≥ 4 we may choose λp = 4(p− 1)/p2CP .

It is not difficult, although tedious, to check that if Kp ≤ 22− 4
p then K2p ≤ 22− 4

2p (one has to deal

first with the case 2≤ p ≤ 4 with pθp = p+ p2

2
, and then with the case p ≥ 4).
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