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Abstract

In this note, we take up the study of weak convergence for stochastic differential equations driven
by a (Liouville) fractional Brownian motion B with Hurst parameter H ∈ (1/3,1/2), initiated in
[3]. In the current paper, we approximate the d-dimensional fBm by the convolution of a rescaled
random walk with Liouville’s kernel. We then show that the corresponding differential equation
converges in law to a fractional SDE driven by B.

1 Introduction

The current article can be seen as a companion paper to [3], to which we refer for a further
introduction. Indeed, in the latter reference, the following equation on the interval [0,1] was
considered (the generalization to [0, T] being a matter of trivial considerations):

d yt = σ
�

yt
�

dBt + b
�

yt
�

d t, y0 = a ∈ Rn, (1)

where σ : Rn→ Rn×d , b : Rn→ Rn are two bounded and smooth enough functions, and B stands
for a d-dimensional fBm with Hurst parameter H > 1/3.
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Let us be more specific about the driving process for equation (1): we consider in the sequel the
so-called d-dimensional Liouville fBm B, with Hurst parameter H ∈ (1/3,1/2). Namely, B can be
written as B = (B1, . . . , Bd), where the Bi ’s are d independent centered Gaussian processes of the
form

Bi
t =

∫ t

0

(t − r)H−
1
2 dW i

r , (2)

for a d-dimensional Wiener process W = (W 1, . . . , W d). This process is very close to the usual
fBm, in the sense that they only differ by a finite variation process (as pointed out in [1]), and
we shall see that its simple expression (2) simplifies some of the computations throughout the
paper. In any case, B falls into the scope of application of the rough paths theory, which means
that equation (1) can be solved thanks to the semi-pathwise techniques contained in [9, 10, 13].
The natural question raised in [3] was then the following: is it possible to approximate equations
like (1) in law by ordinary differential equations, thanks to a Wong-Zakai type approximation (see
[12, 16, 17] for further references on the topic)?

Some positive answer to this question had already been given in [8], where some Gaussian se-
quences approximations were considered in a general context. In [3], we focused on a natural
and easily implementable (non Gaussian) scheme for B, based on Kac-Stroock’s approximation
to white noise (see [11, 15]). However, another very natural way to approximate B relies on
Donsker’s type scheme (see [14] for the case H > 1/2 and [4] for the Brownian case), involving a
rescaled random walk. We have thus decided to investigate weak approximations to (1) based on
this process.

More precisely, as an approximating sequence of B, we shall choose (X ε)ε>0, where X ε,i is defined
as follows for i = 1, . . . , d: consider a family of independent random variables {ηi

k; k ≥ 1, 1 ≤ i ≤
d}, satisfying the

Hypothesis 1.1. The random variables {ηi
k; k ≥ 1, 1 ≤ i ≤ d} are independent and share the same

law as another random variable η. Furthermore, η is assumed to satisfy E
�

η
�

= 0, E
�

η2
�

= 1 and
is almost surely bounded by a constant kη.

We then define X ε,i in the following way:

X i,ε(t) =

∫ t

0

(t + ε2 − r)H−
1
2 θ i,ε(r)dr, (3)

where

θ i,ε(r) :=
1

ε

+∞
∑

k=1

ηi
k I[k−1,k)

� r

ε2

�

. (4)

Notice that X ε is really a process given by the convolution of the rescaled random walk θ ε with
Liouville’s kernel.

Let us then consider the process yε solution to equation (1) driven by X ε, namely:

d yεt = σ
�

yεt
�

dX εt + b
�

yεt
�

d t, yε0 = a ∈ Rn, t ∈ [0, T]. (5)

Our main result is as follows:

Theorem 1.2. Let (yε)ε>0 be the family of processes defined by (5), and let 1/3 < γ < H, where H
is the Hurst parameter of B. Then, as ε → 0, yε converges in law to the process y obtained as the
solution to (1), where the convergence takes place in the Hölder space Cγ([0,1];Rn).
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Let us make a few comments about this theorem:

(i) We have presented our results for the Liouville fBm B because of some simplifications, apparent
in [3], in the manipulations of some stochastic integrals. However, as mentioned in [1], the usual
fractional Brownian motion B̂ can be decomposed as B̂ = B + V , where V is a finite variation
process and B is the Liouville fBm. By writing the Lévy area of B̂ according to this decomposition,
it is certainly possible to extend our results to fBm, which is in a sense a more natural process for
its invariance properties. We did not explore this possibility for sake of conciseness.

(ii) We also have chosen the range (1/3,1/2) for the coefficient H. Indeed, the case H > 1/2 can
be deduced easily from [5] since in this case, the solution y to (1) is a continuous function of B.
The Brownian case H = 1/2 is proved easily following the methods in [6]. We could also have
dealt with a coefficient H lying in (1/4,1/3] according to [8], but this case is much harder for
two reasons: (1) The approximation of third order integrals is also required in this case. (2) The
assumption H > 1/3 is needed for the convergence of certain terms in [3, Proof of Proposition
5.1] (see our term B2,1,1 there).

(iii) Notice that if t ∈ [Nε2, (N + 1)ε2) one has

X i,ε(t) =
1

(H + 1/2)ε

� N
∑

k=1

ηi
k

�

(t − (k− 2)ε2)H+1/2 − (t − (k− 1)ε2)H+1/2
�

+ηi
N+1

�

(t − (N − 1)ε2)H+1/2 − ε2H+1
�

�

.

Another possibility in order to approximate X i would have been to define a process X̂ i,ε at any
point of the form Nε2 by

X̂ i,ε(Nε2) =
1

(H + 1/2)ε−2H

N
∑

k=1

ηi
k

�

(N − (k− 2))H+1/2 − (N − (k− 1))H+1/2
�

,

and then compute X̂ i,ε at any other point by linear interpolation. This new approximation might
be closer to the spirit of Donsker type results, since the process X̂ i,ε is piecewise linear. In any
case, it should be easy (though technical) to show that X̂ i,ε − X i,ε vanishes when ε → 0, as L2-
random variables taking values in an appropriate rough path space (including the Lévy area of
both processes). Thus Theorem 1.2 certainly holds true when X i,ε is replaced by X̂ i,ε. Here again,
we did not explore this possibility for sake of conciseness.

Here is how our paper is structured: as the reader shall see, many of the techniques introduced
in [3] are also useful in our context. In the end, as explained at Section 2, most of the technical
differences between the two articles arise in the way to evaluate the moments of quantities like
∫ 1

0
f (r)θ i,ε(r) dr for a given Hölder function f , and to compare them with the moments of Gaus-

sian random variable. This is thus where we shall concentrate our efforts, and this essential point
will be handled at Section 3.

2 Reduction of the problem

We shall recall here briefly some preliminary steps contained in [3], which allow to reduce our
problem to the evaluation of the moments of a specific type of Wiener integrals.
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First of all, we need to recall the definition of some Hölder spaces, in which our convergences take
place. We call for instance C j([0, 1];Rd) the space of continuous functions from [0,1] j to Rd ,
which will mainly be considered for j = 1 or 2 variables. The Hölder norms on those spaces are
then defined in the following way: for f ∈ C2([0,1];Rd) let

‖ f ‖µ = sup
s,t∈[0,T]

| fst |
|t − s|µ

, and C µ2 ([0, 1];Rd) =
¦

f ∈ C2([0, 1];Rd); ‖ f ‖µ <∞
©

.

The usual Hölder spaces C µ1 ([0, 1];Rd) are then determined by setting ‖g‖µ = ‖δg‖µ for a contin-
uous function g ∈ C1([0, 1];Rd), where δg ∈ C2([0, 1];Rd) is defined by δgst = gt − gs. We then
say that g ∈ C µ1 ([0, 1];Rd) iff ‖g‖µ is finite. Note that ‖·‖µ is only a semi-norm on C1([0,1];Rd),
but we will work in general on spaces of the type

C µ1,a([0, 1];Rd) =
¦

g : [0, T]→ V ; g0 = a, ‖g‖µ <∞
©

, (6)

for a given a ∈ V , on which ‖g‖µ is a norm.

The second crucial point one has to recall is the natural definition of a Lévy area for Liouville’s
fBm. To this purpose, consider E the set of step-functions on [0, T] with values in Rd . Let H be
the Hilbert spaceH defined as the closure of E with respect to the scalar product induced by

¬

(1[0,t1], . . . ,1[0,td]), (1[0,s1], . . . ,1[0,sd])
¶

H =
d
∑

i=1

R(t i , si), si , t i ∈ [0, T], i = 1, . . . , d,

where R(t, s) := E[Bi
t B

i
s]. Then a natural representation of the inner product inH is given via the

operator K , defined from E to L2([0, T]), by:

K ϕ(t) = (T − t)H−
1
2ϕ(t)−

�

1

2
−H

�
∫ T

t

[ϕ(r)−ϕ(t)](r − t)H−
3
2 dr,

and it can be checked that K can be extended as an isometry between H and the Hilbert space
L2([0, T];Rd). Thus the inner product inH can be defined as:




ϕ,ψ
�

H ¬



K ϕ,Kψ
�

L2([0,T];Rd ) .

The mapping (1[0,t1], . . . ,1[0,td]) 7→
∑d

i=1 Bi
t i

can also be extended into an isometry between H
and the first Gaussian chaos H1(B) associated with B = (B1, . . . , Bd). We denote this isometry by
ϕ 7→ B(ϕ), and B(ϕ) is called the Wiener-Itô integral of ϕ. It is shown in [7, page 284] that
C γ1 (R

d)⊂H whenever γ > 1/2−H, which allows to define B(ϕ) for such kind of functions.

Proposition 2.1. Let B be a d-dimensional Liouville fBm, and suppose that its Hurst parameter
satisfies H ∈ (1/3,1/2). Then

(1) B is almost surely a γ-Hölder path for any 1/3< γ < H.

(2) A Lévy area based on B can be defined by setting

B2
st =

∫ t

s

dBu ⊗
∫ u

s

dBv , i. e. B2
st(i, j) =

∫ t

s

dBi
u

∫ u

s

dB j
v , i, j ∈ {1, . . . , d},
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for 0≤ s < t ≤ T. Here, the stochastic integrals are defined as Wiener-Itô integrals when i 6= j, while,
when i = j, they are simply given by

∫ t

s

dBi
u

∫ u

s

dBi
v =

1

2

�

Bi
t − Bi

s

�2
.

(3) The process B2 is almost surely an element of C 2γ
2 ([0, 1];Rd×d), and satisfies the algebraic rela-

tion
B2

st −B2
su −B2

ut =
�

Bu − Bs
�

⊗
�

Bt − Bu
�

,

for all 0≤ s ≤ u≤ t ≤ 1.

These algebraic and analytic properties of the fBm path allow to invoke the rough path machinery
(see [9, 10, 13]) in order to solve equation (1):

Theorem 2.2. Let B be a Liouville fBm with Hurst parameter 1/3 < H < 1/2, and σ : Rn → Rn×d

be a C2 function, which is bounded together with its derivatives. Then

(1) Equation (1) admits a unique solution y ∈ C γ1 (R
n) for any 1/3 < γ < H, with the additional

structure of weakly controlled process introduced in [10].

(2) The mapping (a, B,B2) 7→ y is continuous from Rn ×C γ1 (R
d)×C 2γ

2 (R
d×d) to C γ1 (R

n).

One of the nice aspects of rough paths theory is precisely the second point in Theorem 2.2, which
allows to reduce immediately our weak convergence result for equation (1), namely Theorem 1.2,
to the following result on the approximation of (B,B2):

Theorem 2.3. Recall that the random variables ηi
k satisfy Hypothesis 1.1, and let X ε be defined by

(3). For any ε > 0, let X2,ε = (X2,ε
st (i, j))s,t≥0; i, j=1,...,d be the natural Lévy’s area associated to X ε,

given by

X2,ε
st (i, j) =

∫ t

s

(X j,ε
u − X j,ε

s ) dX i,ε
u , (7)

where the integral is understood in the usual Lebesgue-Stieltjes sense. Then, as ε→ 0,

(X ε,X2,ε)
Law−→ (B,B2), (8)

where B2 denotes the Lévy area defined in Proposition 2.1, and where the convergence in law holds in
the spaces C µ1 (R

d)×C 2µ
2 (R

d×d), for any µ < H.

The remainder of our work is thus devoted to the proof of Theorem 2.3.

As usual in the context of weak convergence of stochastic processes, we divide the proof into
weak convergence for finite-dimensional distributions and a tightness type result. Furthermore,
the tightness result in our case is easily deduced from the analogous result in [3]:

Proposition 2.4. The sequence (X ε,X2,ε)ε>0 defined at Theorem 2.3 is tight inC µ1 (R
d)×C 2µ

2 (R
d×d).

Proof. The proof follows exactly the steps of [3, Proposition 4.3], the only difference being that
our Lemma 3.1 has to be applied here in order to get the equivalent of inequality (28) in [3].
Details are left to the reader.
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With these preliminaries in hand, we can now turn to the finite dimensional distribution (f.d.d. in
the sequel) convergence, which can be stated as:

Proposition 2.5. Under the assumption 1.1, let (X ε,X2,ε) be the approximation process defined by
(3) and (7). Then

f.d.d.− lim
ε→0
(X ε,X2,ε) = (B,B2), (9)

where f.d.d.− lim stands for the convergence in law of the finite dimensional distributions. Otherwise
stated, for any k ≥ 1 and any family {si , t i; i ≤ k, 0≤ si < t i ≤ T}, we have

L − lim
ε→0
(X εt1

,X2,ε
s1 t1

, . . . , X εtk
,X2,ε

sk tk
) = (Bt1

,B2
s1 t1

, . . . , Btk
,B2

sk tk
). (10)

Proof. The structure of the proof follows again closely the steps of [3, Proposition 5.1], except
that other kind of estimates will be needed in order to handle the Donsker case.

To be more specific, it should be observed that the first series of simplifications in the proof of [3,
Proposition 5.1] can be repeated here. They allow to pass from a convergence of double iterated
integrals to the convergence of some Wiener type integrals with respect to X ε. Namely, for i = 1, 2
and 0≤ u< t ≤ 1, set

Y i(u, t) =

∫ t

u

(Bi
v − Bi

u)(v− u)H−
3
2 dv,

and for 0≤ u< t ≤ 1 and (u1, . . . , u6) in a neighborhood of 0 in R6, set also

Zu = u1 + u2B2
u + u3Y 2(u, t) + u4

∫ t

u

(v− u)H−
1
2 dW 2

v

+u5

∫ t

u

dw

∫ w

u

(w− v)H−
3
2
�

(w− u)H−
1
2 − (v − u)

1
2
�

dW 2
v

+u6

∫ t

u

dw

∫ u

0

(w− v)H−
3
2 (w− u)H−

1
2 dW 2

v .

Consider the analogous processes Y i,ε, Zε defined by the same formulae, except that they are based
on the approximations θ i,ε of white noise. We still need to recall a little more notation from [3]:
for f ∈ L2([0, 1]) and t ∈ [0,1], we set

Φε( f ) = E
�

ei
∫ t

0
f (u)θ ε,1(u)du

�

, φεf =

∫ 1

0

∫ 1

0

f 2(x) f 2(y)I{|x−y|<ε2}d xd y, (11)

and
Φ( f ) = E

�

ei
∫ t

0
f (u) dW 1

u

�

= e
1
2

∫ t

0
f 2(u) du.

Then it is shown in [3, Proposition 5.1] that one is reduced to prove that limε→0 va
ε = 0, where va

ε

is given by

va
ε = E

�

Φε(Z
ε)eiw

∫ t

0
θ ε,2(u)du

�

− E
�

Φ(Zε)eiw
∫ t

0
θ ε,2(u)du

�

,

for an arbitrary real parameter w in a neighborhood of 0. Furthermore, bounding eiw
∫ t

0
θ ε,2(u)du triv-

ially by 1 and conditioning, it is easily shown that va
ε is controlled by the difference E[|Φε(Zε))−
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Φ(Zε)|], for which Lemma 3.3 provides the bound

|Φε(Zε))−Φ(Zε)|

≤ E



4

r

1

5
w3(φεZε )

1
2 ‖Zε‖L2 k3

η exp(4w2k2
η‖Z

ε‖2
L2) +w2ε2α‖Zε‖α‖Zε‖L2 exp(w2‖Zε‖2

L2)

+
8
p

5
w4(φεZε )

1
2 ‖Zε‖2

L2 kη
2 exp(4w2k2

η‖Z
ε‖2

L2) +
1

2
w4φεZε exp(w2‖Zε‖2

L2)
�

,

for any α ∈ (0,1). In order to reach our aim, it is thus sufficient to check the following inequalities:

sup
ε

E
�

‖Zε‖2
α

�

≤ M , lim
ε→0

E
�

(φεZε )
2
�

= 0

and for w < w0, where w0 is a small enough constant,

sup
ε

E
�

ew2‖Zε‖2
L2

�

≤ M .

However, these relations can be deduced, as (39), (40) and (41) in [3], from Lemma 3.1 (it should
be noticed however that a one-parameter version of [2, Lemma 5.1] is needed for the adaptation
of the latter result to our Donsker setting). The proof is thus finished once the lemmas below are
proven.

3 Moments estimates in the Donsker setting

In order to deal with our technical estimates, let us first introduce a new notation: set ρ1 =
(1− 51/2)/2 and ρ2 = (1+ 51/2)/2. Then the moments of any integral of a deterministic kernel f
with respect to θ i,ε can be bounded as follows:

Lemma 3.1. Let m ∈ N, f ∈ L2([0, 1]), i ∈ {1, 2} and ε > 0. Recall that the random variable η is
assumed to be almost surely bounded by a constant kη. Then we have

�

�

�

�

�

�

E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2m






�

�

�

�

�

�

(12)

≤
(2m)!
2m m!

‖ f ‖2m
L2 +

(2m)!

51/2(m− 2)!
k2m
η

�

ρ2m−1
2 −ρ2m−1

1

�

(φεf )
1
2 ‖ f ‖2m−2

L2 ,

and
�

�

�

�

�

�

E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2m+1






�

�

�

�

�

�

≤
(2m+ 1)!

51/2(m− 1)!
k2m+1
η

�

ρ2m
2 −ρ

2m
1

�

(φεf )
1
2 ‖ f ‖2m−1

L2 , (13)

where φεf is the quantity defined at (11).

Proof. We focus first on inequality (12) and divide this proof into several steps.
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Step 1: Identification of some key iterated integrals. Notice that

�

�

�

�

�

�

E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2m






�

�

�

�

�

�

≤
∫

[0,1]2m

| f (r1)| · · · | f (r2m)||E(θ i,ε(r1) · · ·θ i,ε(r2m))|dr1 · · · dr2m.

Transforming the symmetric integral on [0, 1]2m into an integral on the simplex, and using expres-
sion (4) for θ ε, we can write the latter expression as:

(2m)!
ε2m

n(ε)
∑

k1, . . . , k2m = 1
k1 ≥ · · · ≥ k2m

∫ k1ε
2

(k1−1)ε2

· · ·
∫ k2mε

2

(k2m−1)ε2

| f (r1)| · · · | f (r2m)|

× |E(ηi
k1
· · ·ηi

k2m
)|I{r1≥r2≥···≥r2m}dr1 · · · dr2m, (14)

where n(ε) = [ 1
ε2 ] + 1 and where we understand that f (x) = 0 whenever x > 1.

Let us study now the quantities E(ηi
k1
· · ·ηi

kl
). If there exists l such that kl 6= k j for all j 6= l

then E(ηi
k1
· · ·ηi

kl
) = 0. On the other hand, when k2l−1 = k2l > k2l+1 for any l, we clearly

have E(ηi
k1
· · ·ηi

kl
) = 1. Finally, in the general case, for all l ∈ N, |E(ηi

k1
· · ·ηi

kl
)| ≤ kl

η. Sepa-

rating the cases in this way for |E(ηi
k1
· · ·ηi

k2m
)|, we end up with a decomposition of the form

E[(
∫ 1

0
f (r)θ i,ε(r)dr)2m] = T 1

m + T 2
m, where

T 1
m =
(2m)!
ε2m

n(ε)
∑

k1, . . . , km = 1
k1 > · · ·> km

∫ k1ε
2

(k1−1)ε2

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

∫ kmε
2

(km−1)ε2

| f (r1)| · · · | f (r2m)| × I{r1≥r2≥···≥r2m}dr1 · · · dr2m,

and where the term T 2
m is defined by:

T 2
m =
(2m)! k2m

η

ε2m

∑

n1, . . . , ns ≥ 2; s ∈ {1, ..., m− 1}
n1 + · · ·+ ns = 2m

Un1,...,ns
, (15)

with

Un1,...,ns
=

n(ε)
∑

k1, . . . , ks = 1
k1 > · · ·> ks

∫

Dk1 ···ks

| f (r1)| · · · | f (r2m)|I{r1≥r2≥···≥r2m}dr1 · · · dr2m, (16)

and where we have set Dk1···ks
=
∏s

j=1[(k j − 1)ε2, k jε
2]n j .

Let us observe at this point that we have split our sum into T 1
m and T 2

m because T 1
m represents

the dominant contribution to our moment estimate. This is simply due to the fact that T 1
m is

obtained by assuming some pairwise equalities among the random variables ηi
k, while T 2

m is based
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on a higher number of constraints. In any case, both expressions will be analyzed through the
introduction of some iterated integrals of the form

Kν(k; v, w) =
1

εν

∫

[(k−1)ε2,kε2]ν

ν
∏

j=1

| f (r j)| I{w≥r1>···>rν≥v}dr1 · · · drν ,

defined for ν , k ≥ 1 and 0≤ v < w ≤ 1.

Step 2: Analysis of the integrals Kν . Those iterated integrals are treated in a slightly different way
according to the parity of ν . Indeed, for ν = 2n, thanks to the elementary inequality 2ab ≤ a2+b2,
we obtain a bound of the form:

n(ε)
∑

k=1

K2n(k; v, w) (17)

≤
n(ε)
∑

k=1

1

ε2n

∫

[(k−1)ε2,kε2]2n

n
∏

i=1

�

f 2(x2i−1) + f 2(x2i)
2

�

I{w≥x1≥···≥x2n≥v}d x1 · · · d x2n

≤
n(ε)
∑

k=1

1

ε2n

∫

[(k−1)ε2,kε2]2n

f 2(x1) · · · f 2(xn)I{w≥x1≥···≥xn≥v}d x1 · · · d x2n

=
n(ε)
∑

k=1

∫

[(k−1)ε2,kε2]n
f 2(x1) · · · f 2(xn)I{w≥x1≥···≥xn≥v}d x1 · · · d xn

≤
∫

[0,1]n
f 2(x1) · · · f 2(xn)I{x1−xn<ε

2} I{w≥x1≥···≥xn≥v}d x1 · · · d xn.

The case ν = 2n+ 1 can be treated along the same lines, except for the fact that one has to cope
with some expressions of the form

n(ε)
∑

k=1

K3(k; v, w) ≤
n(ε)
∑

k=1

1

ε

∫

[(k−1)ε2,kε2]2
| f (x1)| f 2(x2)I{w≥x1≥x2≥v}d x1d x2

≤
1

ε

∫

[0,1]2
| f (x1)| f 2(x2)I{x1−x2<ε

2} I{w≥x1≥x2≥v}d x1d x2. (18)

Combining (18) and (17) we can state the following general formula: let ν ≥ 1, and define a
couple (ν∗, ν̂) as: (i) ν∗ = ν/2, ν̂ = 0 if ν is even, (ii) ν∗ = (ν + 1)/2, ν̂ = 1 if ν is odd. With this
notation in hand, we have:

n(ε)
∑

k=1

Kν(k; v, w)≤
1

εν̂

∫

[0,1]ν∗
| f (x1)|2−ν̂ f 2(x2) · · · f 2(xν∗)I{x1−xν∗<ε2}

× I{w≥x1≥···≥xν∗≥v}d x1 · · · d xν∗ . (19)

Step 3: Bound on T 1
m. It is readily checked that T 1

m can be decomposed into blocks of the form
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K2(k; w, v), for which one can apply (19). This yields

T 1
m ≤
(2m)!

2m

n(ε)
∑

k1,...,km=1

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

f 2(r1) · · · f 2(rm)I{r1≥r2≥···≥rm}dr1 · · · drm

≤
(2m)!
2mm!

‖ f ‖2m
L2 .

Step 4: Bound on Un1,...,ns
. Recall that Un1,...,ns

is defined by (16). We introduce now a recursion
procedure in order to control this term. Namely, integrating with respect to the last ns variables,
one obtains that

1

ε2m Un1,...,ns
=

1

ε2m−ns

n(ε)
∑

k1, . . . , ks−1 = 1
k1 > · · ·> ks−1

∫

Dk1 ···ks−1

2m−ns
∏

l=1

| f (rl)| I{r1≥r2≥···≥r2m−ns }

× Kns
(ks; 0; r2m−ns

) dr1 · · · dr2m−ns

Plugging our bound (19) on Kns
into this expression, we get

1

ε2m Un1,...,ns
≤

1

ε2m−ns+n̂s

n(ε)
∑

k1, . . . , ks−1 = 1
k1 > · · ·> ks−1

∫

Dk1 ···ks−1

∫

[0,1]n
∗
s

2m−ns
∏

l=1

| f (rl)| | f (y1)|2−n̂s

×
n∗s
∏

j=2

f 2(y j)I{y1−yn∗s
<ε2} I{r1≥r2≥···≥r2m−ns≥y1≥···≥yn∗s

}dr1 · · · dr2m−ns
d y1 · · · d yn∗s

.

We can now proceed, and integrate with respect to the variables rl for 2m−ns−ns−1 < l ≤ 2m−ns.
In the end, since

∑

ns = 2m, the remaining singularity in ε is of the form
∏

ε−n̂s . However, each
of the singularity ε−n̂s comes with an integral that compensates the singularity ε−n̂s (recall that
n̂s ≤ 1). Hence, iterating the integrations with respect to the variables r, we end up with a bound
of the form

1

ε2m Un1,...,ns
≤

1

(m− 2)!
‖ f ‖2(m−2)

L2 φεf ≤
1

(m− 2)!
‖ f ‖2m−2

L2 (φεf )
1
2 . (20)

Notice that when one of the terms n1, n2, . . . , ns of the decomposition of 2m is even the last bound
is easily obtained. On the other hand, we will illustrate with an example how the bound can be
obtained when all the terms are odd. Let us consider the case m = n1 = n2 = 3. Following our
procedure we obtain that

1

ε6 U3,3 ≤
1

ε2

∫

[0,1]4
f 2(y2) · | f (y1)| · f 2(y4) · | f (y3)|

×I{y1−y2<ε
2} I{y3−y4<ε

2} I{y3≥y4≥y1≥y2}d y1 · · · d y4

≤
1

ε2

∫

[0,1]4
f 2(y2) f

2(y4)

�

f 2(y1) + f 2(y3)
2

�

×I{y1−y2<ε
2} I{y3−y4<ε

2} I{y3≥y4≥y1≥y2}d y1 · · · d y4

≤ φεf
1

ε2

∫

[0,1]2
f 2(y4)I{0≤y3−y4<ε

2}d y3d y4

= ‖ f ‖2
L2φ

ε
f .
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Step 5: Bound on T 2
m. Owing to inequality (20), our bound on T 2

m can be reduced now to an
estimate of the number of terms in the sum over n1, . . . , ns in formula (15). This boils down to the
following question: given a natural number n, how can we write it as a sum of natural numbers
(larger than one)?

This is arguably a classical problem, and in order to recall its answer, let us take a simple example:
for n= 6, the possible decompositions can be written as {6; 2+2+2; 2+4;4+2; 3+3}. Further-
more, notice that the decompositions of 6 can be obtained by adding +2 to the decompositions of
4 or adding 1 to the last number of the decompositions of 5. Extrapolating to a general integer n,
it is easily seen that the number of decompositions can be expressed as un−1, where (un)n≥1 stands
for the Fibonacci sequence. We have thus found a number of decompositions of the form

Nn = 5−1/2
�

ρn−1
2 −ρn−1

1

�

,

where the quantities ρ1,ρ2 appear in formula (12). Moreover, the number of terms in T2 is given
by N2m − 1, the −1 part corresponding to the term T1.

Putting together this expression with (20) and the result of Step 3, our claim (12) is now easily
obtained.

Step 6: Proof of (13). The proof of (13) follows the same arguments as for (12). We briefly sketch
the main difference between these two proofs, lying in the analysis of the term Un1,...,ns

. Indeed,
since we are now dealing with an odd power 2m+ 1, the equivalent of (20) is an upper bound of
the form

1

ε

∫ 1

0

∫ 1

0

| f (y1)| f 2(y2)I{|y1−y2|<ε2}d y1d y2

∫

[0,1]m−1

m−1
∏

j=1

f 2(x j)I{x1≥···≥xm−1}d x1 · · · d xm−1. (21)

Furthermore, applying Hölder’s inequality twice, we obtain

1

ε

∫ 1

0

∫ 1

0

| f (y1)| f 2(y2)I{|y1−y2|<ε2}d y1d y2 =
1

ε

∫ 1

0

f 2(y2)

∫ 1∧(y2+ε2)

0∨(y2−ε2)

| f (y1)|d y1d y2

≤

 

∫ 1

0

∫ 1

0

f 2(y1) f
2(y2)I{|y1−y2|<ε2}d y1d y2

!
1
2

‖ f ‖L2 = (φεf )
1
2 ‖ f ‖L2 ,

and thus we can bound (21) by 1
(m−1)!

(φεf )
1
2 ‖ f ‖2m−1

L2 , which ends the proof.

Our next technical lemma compares the moments of a Wiener type integral with respect to θ ε and
with respect to the white noise.

Lemma 3.2. Let m ∈ N, f ∈ Cα([0,1]), i ∈ {1,2}, ε > 0 and for m≥ 1, set

Jm =

�

�

�

�

�

�

1

(2m)!
E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2m





−

1

2mm!

∫

[0,1]m
f 2(s1) · · · f 2(sm)ds1 · · · dsm

�

�

�

�

�

�

.

Then

(1) We have J1 ≤ ε2α‖ f ‖L2‖ f ‖α.
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(2) For any m> 1, the following inequality holds true, where we recall that ρ1,ρ2 have been defined
just before Lemma 3.1:

Jm ≤
1

(m− 1)!
ε2α‖ f ‖α‖ f ‖2m−1

L2

+
k2m
η

p
5(m− 2)!

�

ρ2m−1
1 −ρ2m−1

2

�

(φεf )
1
2 ‖ f ‖2m−2

L2 +
1

(m− 2)!
‖ f ‖2(m−2)

L2 φεf .

Proof. We divide again this proof into several steps.

Step 1: Variance estimates. We prove here the first of our assertions: Notice that

1

2

∫ 1

0

f 2(s1)ds1 =
1

2ε2

n(ε)
∑

k=1

∫ kε2

(k−1)ε2

∫ kε2

(k−1)ε2

f 2(s1)ds2ds1.

On the other hand

1

2
E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2





=

1

2ε2

n(ε)
∑

k=1

∫ kε2

(k−1)ε2

∫ kε2

(k−1)ε2

f (r1) f (r2)dr2dr1.

We thus get

J1 =

�

�

�

�

�

1

2ε2

n(ε)
∑

k=1

∫ kε2

(k−1)ε2

∫ kε2

(k−1)ε2

f (r1)( f (r2)− f (r1))dr2dr1

�

�

�

�

�

=

�

�

�

�

�

1

2ε2

∫ 1

0

∫ 1

0

f (r1)( f (r2)− f (r1))

 

+∞
∑

k=1

I[k−1,k)2

� r1

ε2 ,
r2

ε2

�

!

dr2dr1

�

�

�

�

�

,

and hence this quantity can be bounded as follows:

J1 ≤
1

2ε2

∫ 1

0

∫ 1

0

| f (r1)||( f (r2)− f (r1))|I{|r1−r2|<ε2}dr2dr1

≤
1

2ε2

∫ 1

0

| f (r1)|‖ f ‖α

∫ 1

0

|r2 − r1|α I{|r1−r2|<ε2}dr2dr1

≤ ε2α‖ f ‖L2‖ f ‖α,

which is the first claim of our lemma.

Step 2: decomposition for higher moments: We can follow exactly the computations of Lemma 3.1,
Step 1, in order to get

1

(2m)!
E







 

∫ 1

0

f (r)θ i,ε(r)dr

!2m





= T̃ 1

m + T̃ 2
m,

with T̃ j
m =

T j
m

(2m)!
for j = 1, 2. Furthermore, the term T̃ 2

m can be bounded as in Lemma 3.1, and we
obtain

|T̃ 2
m| ≤

k2m
η

p
5(m− 2)!

�

ρ2m−1
2 −ρ2m−1

1

�

(φεf )
1
2 ‖ f ‖2m−2

L2 . (22)
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Step 3: Study of T̃ 1
m: We analyze T̃ 1

m in a slightly different way as in Lemma 3.1. Namely, we first
write

T̃ 1
m =

1

2mε2m

n(ε)
∑

k1, . . . , km = 1
k1 > · · ·> km

∫ k1ε
2

(k1−1)ε2

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

∫ kmε
2

(km−1)ε2

f (r1) · · · f (r2m)

× I{{r1,r2}≥···≥{r2m−1,r2m}}dr1 · · · dr2m, (23)

where we have written {a, b} ≥ {c, d} for a ∧ b ≥ c ∨ d. We will now compare this quantity with
another expression of the same type, called T̂ 1

m and defined by

T̂ 1
m =

1

2mm!

∫

[0,1]m
f 2(s1) · · · f 2(sm)ds1 · · · dsm.

Let us thus write T̂ 1
m as

T̂ 1
m =

1

2m

∫

[0,1]m

m
∏

j=1

f 2(s j) I{s1≥···≥sm} ds1 · · · dsm

=
1

2m

n(ε)
∑

k1, . . . , km = 1
k1 ≥ · · · ≥ km

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

m
∏

j=1

f 2(s j) I{s1≥···≥sm} ds1 · · · dsm

=
1

2m

n(ε)
∑

k1, . . . , km = 1
k1 > · · ·> km

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

m
∏

j=1

f 2(s j) I{s1≥···≥sm} ds1 · · · dsm + T̃ 3
m,

where T̃ 3
m represents the part of the sum taken over the indices k1, . . . , km such that there exist l

satisfying kl = kl+1. However, this latter term can be bounded as in (20), yielding

|T̃ 3
m| ≤

m− 1

2m

1

(m− 2)!
‖ f ‖2(m−2)

L2 φεf ≤
1

2

1

(m− 2)!
‖ f ‖2(m−2)

L2 φεf . (24)

Step 4: Conclusion. Putting together the decompositions we have obtained so far, we end up with

Jm ≤ |T̃ 2
m|+ |T̃

3
m|+

�

�

�

�

�

1

2mε2m

n(ε)
∑

k1, . . . , km = 1
k1 > · · ·> km

∫ k1ε
2

(k1−1)ε2

∫ k1ε
2

(k1−1)ε2

· · ·
∫ kmε

2

(km−1)ε2

∫ kmε
2

(km−1)ε2

�

f (r1) · · · f (r2m)− f 2(r1) f
2(r3) · · · f 2(r2m−1)

�

I{{r1,r2}≥···≥{r2m−1,r2m}}dr1 · · · dr2m

�

�

�

�

�

≤ |T̃ 2
m|+ |T̃

3
m|+

1

2mm!ε2m

∫

[0,1]2m

�

� f (r1) · · · f (r2m)− f 2(r1) f
2(r3) · · · f 2(r2m−1)

�

�

× I{|r1−r2|<ε2} · · · I{|r2m−1−r2m|<ε2} dr1 · · · dr2m.
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Invoking our estimates (22) and (24) on T̃ 2
m and T̃ 3

m, our bound on Jm easily reduced to check that

1

2mm!ε2m

∫

[0,1]2m

�

� f (r1) · · · f (r2m)− f 2(r1) f
2(r3) · · · f 2(r2m−1)

�

�

× I{|r1−r2|<ε2} · · · I{|r2m−1−r2m|<ε2}dr1 · · · dr2m ≤
1

(m− 1)!
ε2α‖ f ‖α‖ f ‖2m−1

L2 .

The latter inequality can now be obtained from the decomposition

�

� f (r1) · · · f (r2m)− f 2(r1) f
2(r3) · · · f 2(r2m−1)

�

�

=
�

� f (r1)( f (r2)− f (r1)) f (r3) f (r4) · · · f (r2m)

+ f 2(r1) f (r3)( f (r4)− f (r3)) f (r5) f (r6) · · · f (r2m)
+ · · ·
+ f 2(r1) f

2(r3)... f
2(r2m−3) f (r2m−1)( f (r2m)− f (r2m−1))

�

� ,

the inequalities

1

2ε2

∫ 1

0

∫ 1

0

f 2(r1)I|r1−r2|<ε2 dr2dr1 ≤ ‖ f ‖2
L2 ,

1

2ε2

∫ 1

0

∫ 1

0

f (r1) f (r2)I|r1−r2|<ε2 dr2dr1 ≤ ‖ f ‖2
L2 ,

and from the estimate we have already obtained for J1. This finishes the proof.

Finally, the characteristic function of a Wiener type integral of the form
∫ 1

0
f (r)θ k,ε(r)dr can be

compared to its expected limit
∫ 1

0
f (r)dW k

r in the following way:

Lemma 3.3. Let f ∈ C α([0,1]) for a certain α ∈ (0, 1), k ∈ {1, . . . , d} and ε > 0. For any u ∈ R,
we have:

�

�

�E
�

eiu
∫ 1

0
f (r)θ k,ε(r)dr�− E

�

eiu
∫ 1

0
f (r)dW k

r
�

�

�

�

≤ 4(1/5)1/2u3(φεf )
1
2 ‖ f ‖L2 k3

η exp(4u2k2
η‖ f ‖2

L2) + u2ε2α‖ f ‖α‖ f ‖L2 exp(u2‖ f ‖2
L2)

+85−1/2u4(φεf )
1
2 ‖ f ‖2

L2 k2
η exp(4u2k2

η‖ f ‖2
L2) + (1/2)u4φεf exp(u2‖ f ‖2

L2).

Proof. Let us control first the imaginary part of the difference. Using lemma 3.1, and invoking the
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fact that the odd moments of a Gaussian random variable are null, we get
�

�

�

�

Im
�

E
�

eiu
∫ 1

0
f (r)θ k,ε(r)dr�− E

�

eiu
∫ 1

0
f (r)dW k

r
�

�

�

�

�

�

≤
∞
∑

m=1

|u|2m+1

(2m+ 1)!

�

�

�

�

�

�

E







 

∫ 1

0

f (r)θ k,ε(r)dr

!2m+1






�

�

�

�

�

�

≤
∞
∑

m=1

(1/5)1/2|u|2m+1

(m− 1)!
k2m+1
η

�

ρ2m
2 −ρ

2m
1

�

(φεf )
1
2 ‖ f ‖2m−1

L2

≤ 4(1/5)1/2u3(φεf )
1
2 ‖ f ‖L2 k3

η

∞
∑

m=1

1

(m− 1)!

�

4k2
η‖ f ‖2

L2u2
�m−1

≤ 4(1/5)1/2u3(φεf )
1
2 ‖ f ‖L2 k3

η exp(4u2k2
η‖ f ‖2

L2).

In order to control the real part of the difference, we will use Lemma 3.2. This yields:
�

�

�Re
�

E
�

eiu
∫ 1

0
f (r)θ k,ε(r)dr�− E

�

eiu
∫ 1

0
f (r)dW k

r
��

�

�

�

≤
+∞
∑

m=1

u2m

�

1

(m− 1)!
ε2α‖ f ‖α‖ f ‖2m−1

L2

+ u4(φεf )
1
2

8
p

5
‖ f ‖2

L2 k2
η

+∞
∑

m=2

1

(m− 2)!

�

4k2
ηu2‖ f ‖2

L2

�m−2

+
1

2
u4φεf

+∞
∑

m=2

1

(m− 2)!

�

u2‖ f ‖2
L2

�m−2
�

.

The latter quantity can be bounded by

u2ε2α‖ f ‖α‖ f ‖L2 exp(u2‖ f ‖2
L2) +

8
p

5
u4(φεf )

1
2 ‖ f ‖2

L2 k2
η exp(4u2k2

η‖ f ‖2
L2)

+
1

2
u4φεf exp(u2‖ f ‖2

L2),

which ends the proof.
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