
Elect. Comm. in Probab. 15 (2010), 489–503 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

DEVIATION INEQUALITIES FOR SUMS OF WEAKLY DEPENDENT
TIME SERIES

WINTENBERGER OLIVIER
CEREMADE, UMR CNRS 7534
Université de PARIS - DAUPHINE
Place du Maréchal De Lattre De Tassigny
75775 PARIS CEDEX 16 - FRANCE
email: wintenberger@ceremade.dauphine.fr

Submitted September 23, 2010, accepted in final form October 5, 2010

AMS 2000 Subject classification: Primary 60E15; Secondary 60G10
Keywords: Bernstein’s type inequalities, weak dependence, coupling schemes, Bernoulli schifts,
Markov chains, expanding maps

Abstract
In this paper we extend the classical Bernstein inequality for partial sums from the independent
case to two cases of weakly dependent time series. The losses compared with the independent
case are studied carefully. We give several examples that satisfy our deviation inequalities. The
proofs are based on the blocks technique and two different coupling arguments.

1 Introduction

The aim of this paper is to extend the Bernstein inequality from the independent case to some
weakly dependent ones. We consider a sample (X1, . . . , Xn) = (X

(n)
1 , . . . , X (n)n ) of a stationary pro-

cess (X (n)t ) with values in a metric space (X , d). Let F be the set of 1-Lipschitz functions from
X to [−1/2,1/2]. We are interested by the deviation of the partial sum S( f ) =

∑n
i=1 f (X i) for

any f ∈ F assuming that E( f (X1)) = 0. Denoting σ2
k( f ) = k−1 Var(

∑k
i=1 f (X i)), the Bernstein

inequality in the indenpendent case writes as, see Bennett [2]:

P
�

S( f )≥
Æ

2nσ2
1( f )x + x/6

�

≤ e−x for all x ≥ 0. (1.1)

This inequality reflects the gaussian approximation of the tail of S( f ) for small values x and the
exponential approximation of the tail of S( f ) for large values of x .

When one extends the Bernstein inequality to the dependent cases, a tradeoff between the sharp-
ness of the estimates and the generality of the context has to be done. Estimates as sharp as in the
independent cases (up to constants) are obtained for Markov chains in Lezaud [16], Joulin and
Ollivier [15] under granularity. For Harris recurrent Markov chains, Bertail and Clemençon [3]

489



490 Electronic Communications in Probability

obtain a deviation inequality of a different nature. They prove the existence of C > 0 such that for
all M > 0 and all x > 0:

P(S( f )≥ C(
p

nσ2( f )x +M x))≤ e−x + nP(τ1 ≥ M),

where the Tis are the return times to the atom, τi = Ti − Ti−1 and, if T0 is the first return time
to the atom after time 0, σ2( f ) = E(τ1)−1 Var(

∑T1

i=T0+1 f (X i)). Remark that σ2( f ) is the sum of
the series of the covariances attached to the sequence ( f (X i)) and thus the asymptotic variance
in the CLT satisfied by S( f ). This approximation of the deviation of S( f ) is natural as, through
the splitting technique of Nummelin [20], the partial sum S( f ) is the sum of iid sums with τi
number of summands. If the regeneration times admit finite exponential moments, fixing M ≈ ln n
Adamczak [1] obtains the existence of a constant C > 0 satisfying

P
�

S( f )≥ C
�
p

nσ2( f )x + x ln n
��

≤ e−x for all x ≥ 0.

A loss of rate ln n, that cannot be reduced, appears in the exponential approximation compared
with the iid case, see Adamczak [1] for more details.

In all these works, the strong Markov property is crucial. To bypass the Markov assumption, one
way is to use dependent coefficients such as uniformly φ-mixing coefficients introduced by Ibragi-
mov [13]. When

∑
p

φ r <∞, Samson [23] achieves the deviation inequality (1.1) with different
constants. Less accurate results have been obtained for more general mixing coefficients: Vien-
net [24] for absolutely regular β-mixing coefficients and Merlevède et al. [18] for geometrically
strongly mixing coefficients. Recently, mixing coefficients have been extended to weakly depen-
dent ones, see Doukhan and Louhichi [10] and Dedecker and Prieur [7]. If these coefficients
decay geometrically, deviation inequalities for S( f ) are given in Doukhan and Neumann [11] and
Merlevède et al. [19] extend these results for unbounded functions f .

The dependence context of this paper is the one of the ϕ-weakly dependent coefficients introduced
by Rio in [21] to extend the uniformly φ-mixing coefficients. These coefficients are used to deal
with non mixing processes, such as dynamical systems called expanding maps, see Collet et al.
[7] and continuous functions of Bernoulli shifts, see Rio [21]. The Bernstein’s deviation inequal-
ity given in Theorem 3.1 sharpens the existing ones in ϕ-weak dependence context. The deviation
inequality is obtained by dividing the sample (X1, . . . , Xn) in different blocks (X i , . . . , X i+k∗), where
the length k∗ must be carefully chosen and then by approximating non consecutive blocks by
independent blocks using a coupling scheme. The coupling scheme follows from a conditional
Kantorovitch-Rubinstein duality due to Dedecker et al. [8] and detailed in Section 2.

Using this coupling scheme, we provide a new deviation inequality in Section 3:

P
�

S( f )≥ 5.8
Æ

nσ2
k∗( f )x + 1.5 k∗x)

��

≤ e−x for all x ≥ 0, (1.2)

with σ2
j ( f ) = sup j≤k≤nσ

2
k( f ) for all 1 ≤ j ≤ n and k∗ = min{k ≥ 1; kδk ≤ σ

2
k( f )}, where (δk)

only depends on the ϕ-coefficients, see condition (3.1) for more details. Under dependence, the
variance term σ2

k∗( f ) is more natural than σ1( f ) as it tends to the limit variance in the CLT with
k∗. When the non degenerate CLT holds, i.e. σ2

k( f )→ σ2( f ) > 0, then the size k∗ of the blocks
is bounded uniformly over n and the classical Bernstein’s inequality (1.1) holds with different
constants. But if the functionals fn are such as σ2

k( fn)→ 0 for all k (it is the case when studying
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the risk of estimators, see [17] and [4] for more details), then a loss appears in the exponential
approximation. As for Harris recurrent Markov chains, the loss is due to the size k∗ of the blocks
that goes to infinity with n. In contrast with the Harris recurrent Markov chains context, it is still
an open question wether the loss in the exponential approximation can be reduced or not.

However, in many bounded ϕ-weakly dependent examples (such as chains with infinite memory,
Bernoulli shifts and Markov chains), an L∞ coupling scheme for (X t) is directly tractable, see
Section 5 for details. Using this different coupling scheme, an improved version of the deviation
inequality (1.2) is given in Theorem 5.1:

P
�

S( f )≥ 2
Æ

nσ2
k∗′
( f )x + 1.34 k∗′x)

�

≤ e−x for all x ≥ 0,

with k∗′ =min{1 ≤ k ≤ n / nδ′k ≤ kx}, where (δ′k) only depends on the L∞ coupling scheme, see
condition (5.1) for more details. The refinement is due to a smaller size k∗′ of blocks than the size
k∗ used in (1.2), see Remark 5.1. Moreover, the size k∗′ is fixed independently of σ2

k( f ). Then
we provide a convenient dependent context for the study of the risk of estimators: the limiting
behavior σ2

k( fn)→ 0 does not affect the accuracy of the deviation inequality when an L∞ coupling
scheme exists.

2 Preliminaries: coupling and weak dependence coefficients

Let (X1, . . . , Xn) with n ≥ 1 be a sample of random variables on some probability space (Ω,A ,P)
with value in a metric space (X , d). We assume in all the sequel that for any n ≥ 1 there exists
a strictly stationary process (X (n)t ) such that (X1, . . . , Xn) = (X

(n)
1 , . . . , X (n)n ). Let us consider F the

set of measurable functions f : X 7→ R satisfying

| f (x)− f (y)| ≤ d(x , y), ∀(x , y) ∈ X ×X and sup
x∈X
| f (x)| ≤ 1/2. (2.1)

We denote the partial sum S( f ) =
∑n

i=1 f (X i) andM j = σ(X t ; 1≤ t ≤ j) for all 1≤ j ≤ n.

2.1 Kantorovitch-Rubinstein duality

The classical Kantorovitch-Rubinstein duality states that given two distribution P and Q on X
there exists a random couple Y = (Y1, Y2) with Y1 ∼ P and Y2 ∼Q satisfying

E(d(Y1, Y2)) = sup
f ∈Λ1

E| f (dP − dQ)|= inf
Y ′

E(d(Y ′1 , Y ′2)),

where Y ′ have the same margins than Y and Λ1 denotes the set of 1-Lipschitz functions such that
| f (x)− f (y)| ≤ d(x , y).

Dedecker et al. [8] extend the classical Kantorovitch-Rubinstein duality by considering it condi-
tionally on some eventM ∈A . Assuming that the original space Ω is rich enough, i.e. it exists a
random variable U uniformly distributed over [0, 1] and independent ofM , for any Y1 ∼ P with
values in a Polish space there exists a random variable Y2 ∼ P independent ofM satisfying

E(d(Y1, Y2) | M ) = sup{|E( f (Y1)|M )−E( f (Y1))|, f ∈ Λ1} a.s. (2.2)
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2.2 ϕ-weak dependence coefficients and coupling schemes

Rio [21] defines the weak dependence coefficient ϕ as follows:

Definition 2.1. For any X ∈ X , for any σ-algebraM ofA then

ϕ(M , X ) = sup{‖E( f (X )|M )−E( f (X ))‖∞, f ∈ F}.

Another equivalent definition is given in [7]:

ϕ(M , X r)) = sup{|Cov(Y, f (X r))|, f ∈ F and Y isM -measurable and E|Y |= 1}. (2.3)

Let the condition (A) be satisfied when X is a metric Polish space and sup(x ,y)∈X 2 d(x , y) ≤ 1.
Under (A) we have ϕ(M , X ) = τ∞(M , X ) where τ∞ is defined in [6] by the relation

τ∞(M , X ) = sup{‖E( f (X )|M )−E( f (X ))‖∞, f ∈ Λ1}.

This coefficient is the essential supremum of the right hand side term of the identity (2.2). Thus
the conditional Kantorovitch-Rubinstein duality (2.2) provides a first coupling scheme directly on
the variable X : it exists a version X ∗ ∼ X independent ofM such that

‖E(d(X , X ∗) | M )‖∞ = τ∞(M , X ) = ϕ(M , X ).

A well known case corresponds to the Hamming distance d(x , y) = 11x 6=y that satisfies (A) for any
X . The coefficient ϕ(M , X ) then coincides with the uniform mixing coefficient φ(M ,σ(X )) of
Ibragimov defined for 2 σ-algebrasM andM ′ by the relation

φ(M ,M ′) = sup
M∈M ,M ′∈M ′

|P(M ′ | M)−P(M ′)|.

In a more general context than (A), we have ϕ(M , X )≤ τ∞(M , X ) and coupling scheme directly
on the variable X does not follow from the Eqn.(2.2). However, there exists a new coupling
scheme on the variables f (X i) for f ∈ F . If the sample (X1, . . . Xn) satisfies ϕ(M j , X i)<∞ for all
1≤ j < i ≤ n then a coupling scheme for f (X i) follows from the identity (2.2) and the relation

τ∞(M j , f (X i))≤ ϕ(M j , X i) :

there exists f (X i)∗ independent ofM j such that f (X i)∗ is distributed as f (X i) and

‖E(| f (X i)
∗ − f (X i)| | M j)‖∞ = τ∞(M j , f (X i))≤ ϕ(M j , X i). (2.4)

In this paper we use this second coupling scheme as it is more general than the first one.

For some examples satisfying (A), we use a third coupling scheme in Section 5. There, the dynamic
of (X (n)t ) provides the existence of X ∗i distributed as X i and independent ofM j such that d(X i , X ∗i )
is estimated a.s. by a sequence ui− j decreasing to 0 when i− j→∞. Such coupling scheme in L∞

provides immediately another L∞ coupling scheme for f (X i) ( f ∈ F ): f (X ∗i ) independent ofM j
is distributed as f (X i) and

| f (X ∗i )− f (X i)| ≤ d(X ∗i , X i)≤ ui− j a.s.
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2.3 Extensions to the product space X q, q > 1.

To consider conditional coupling schemes of length q > 1, we define the notion of ϕ-coefficients
for X = (X t)r≤t<r+q ∈ X q.

Definition 2.2. For any q ≥ 1, any X ∈ X q and any σ-algebraM ofA let us define the coefficients

ϕ(M , X ) = sup{‖E( f (X )|M )−E( f (X ))‖∞, f ∈ Fq},

where Fq is the set of 1-Lipschitz functions with values in [−1/2,1/2] of X d equipped with the
metric dq(x , y) = q−1

∑q
i=1 d(x i , yi).

Let us discuss the consequences of the choice of the metric dq:

• The coefficient τ∞ is defined for X q equipped with the same metric dq, see [6]. Thus we
have τ∞(M , X ) = ϕ(M , X ) under (A) and τ∞(M , ( f (X1), . . . , f (Xq)))≤ ϕ(M , (X1, . . . , Xq))
for all f ∈ F .

• As dq(x , y)≤ 11x 6=y then ϕ(M , X )≤ φ(M ,σ(X )); our definition of the coefficient ϕ differs
from the one of Rio in [21] where X q is equipped with d∞(x , y) =max1≤i≤q d(x i , yi).

3 A deviation inequality under ϕ-weak dependence

Assume that there exists a non increasing sequence (δr)r>0 satisfying

sup
1≤ j≤n−2r+1

ϕ(M j , , (X r+ j , . . . , X2r+ j−1))≤ δr for all r ≥ 1. (3.1)

3.1 A Bernstein type inequality

Theorem 3.1. If condition (3.1) is satisfied, for any f ∈ F such that E( f (X1)) = 0 we have

P
�

S( f )≥ 5.8
Æ

nσ2
k∗( f )x + 1.5 k∗x

�

≤ e−x , (3.2)

where k∗ =min{1≤ k ≤ n / kδk ≤ σ
2
k( f )} and σ2

k∗( f ) =max{σ2
k( f ) / k∗ ≤ k ≤ n}.

The proof of this Theorem is given in Subsection 6.1. We adopt the convention min; = +∞ and
the estimate is non trivial when rδr → 0 and nδn ≥ σn( f ), i.e. for not too small values of n.

3.2 The variance terms σ2
k( f )

Before giving some remarks on Theorem 3.1, the next proposition give estimates of the quantity
σ2

k( f ) = k−1 Var(
∑k

i=1 f (X i)):

Proposition 3.2. Under the assumption of Theorem 3.1, for any 1≤ k ≤ n we have

σ2
k( f )≤

 

σ2
1( f ) + 2E| f (X1)|

k−1
∑

r=1

δr

!

.

See Subsection 6.2 for a proof of Proposition 3.2. The estimate given in Proposition 3.2 can be
rough, for example in the degenerate case when σ2

k( f ) tends to 0 with k. Note also that this
estimate is often useless when the correlations terms are summable as the inequality σ2

k( f ) ≤
σ2

1( f )
∑

k≥1 |Corr( f (X0), f (Xk))| may lead to better estimates.
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3.3 Remarks on Theorem 3.1

Remark that the variance term σ2
k∗( f ) is more natural than σ2

1( f ) in (1.1) as it converges to the
asymptotic variance in the CLT as k∗ goes to infinity. In the non degenerate case σ2

k( f )→ σ
2( f )>

0 then k∗ is finite as soon as rδr ↓ 0. The deviation inequality (3.1) becomes similar to (1.1),
except its variance term σ2

1( f ) instead of σ2
1( f ): there exists C > 0 satisfying

P(S( f )≥ 5.8
Æ

nσ2
1( f )x + C x)≤ e−x for all x ≥ 0.

Remark that σ2
1( f ) may be replaced by the asymptotic variance σ2( f ) (or the marginal variance

σ2
1( f )) at the cost of a constant larger than 5.8.

In the degenerate case the size of blocks k∗ might depend on n and the deviation inequality (3.1)
is no longer of the same type than (1.1). Consider the statistical example of the deviation of the
risk of an estimator, see [17] and [4] for more details; there f depends on n and σ2

k( fn)→ 0 with
n for all k. Assume that k∗n =min{k ≤ n / kδk ≤ σ

2
k( fn)} exists, then we obtain

P(S( f )≥ 5.8
q

σ2
k∗n
( fn)nx + 1.5 k∗n x)≤ e−x for all x ≥ 0.

As for the Harris recurrent Markov chains, the loss in the exponential approximation is due to the
size k∗n of the blocks that tends to infinity with n. More precisely, we can fix:

• k∗n ≈− ln(σ2
1( fn)) if δr = Cδr for C > 0 and 0< δ < 1,

• k∗n ≈ σ
2
1( fn)1/(1−δ) if δr = C rδ for C > 0 and δ > 0.

Thus the exponential approximation given by the classical Bernstein inequality (1.1) is no longer
valid. It is an open question wether this loss may be reduced, as for uniformly mixing processes,
see Samson [23], or not, as for Harris recurrent Markov Chains, see Adamczak [1].

4 Continuous functions of Bernoulli shifts and expanding maps

Let us focus on ϕ-weakly dependent examples that are not uniformly φ-mixing as, in the latter
context, the classical Bernstein inequality (1.1) holds up to constants, see Samson [23]. Thus
we present continuous functions of Bernoulli shifts that are not φ-mixing nor under (A) and
expanding maps that are not φ-mixing under (A). For other examples under (A), we refer the
reader to the Section 5 where an L∞ coupling scheme and a sharper deviation inequality are
given.

4.1 Continuous functions of Bernoulli shifts

Let us consider a φ-mixing stationary process (ξt) in some measurable space Y and the sequence
(Ut) with value in X defined as

Ut = F(ξt− j; j ∈ N)
where F is a measurable function. Assume that the original state space is large enough such that
it exists (ξ′t) distributed as (ξt) but independent of it. As in [21], assume that there exists a non
increasing sequence (vk) satisfying almost surely

d(F(ξ j; j ∈ N), F(ξk
j ; j ∈ N))≤ vk,
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where the sequence (ξk
t ) satisfies ξt = ξk

t for 0 ≤ t ≤ k and for t > k, ξk
t = ξ

′
t . Finally set

X t = H(Ut) for some measurable function H :X →X and t = {1, . . . , n} and denote

wH(x ,η) = sup
d(x ,y)≤η

d(H(x), H(y)).

Proposition 4.1. The sample (X1, . . . , Xn) satisfies (3.1) with

δr = inf
1≤k≤r−1

{2φr−k +E(3wH(U0, 2vk))∧ 1}.

See the Subsection 6.3 for the proof of this Proposition. Remark that by construction the process
(X t) is non necessarily φ-mixing nor under (A).

4.2 Expanding maps

Consider stationary expanding maps as in Collet et al. [5] where the authors prove a covariance
inequality similar to (2.3). It follows the existence of C > 0 and 0 < ρ < 1 such that (3.1) is
satisfied with rδr = Cρr , see Dedecker and Prieur [7] for more details.

5 Under (A) with a coupling scheme in L∞.

Assume that the condition (A) holds: X is a metric Polish space and sup(x ,y)∈X 2 d(x , y) ≤ 1.
We say that an L∞ coupling scheme exists for (X1, . . . , Xn) when for any r, j we can construct
(X ∗i )r+ j≤i<2r+ j−1 (distributed as (X i)r+ j≤i<2r+ j−1 and independent ofM j) and a sequence (δ′r)r≥1
satisfying the relation

sup
1≤ j≤n−2r+1

2r+ j−1
∑

i=r+ j

d(X i , X ∗i )≤ rδ′r a.s. for all r ≥ 1. (5.1)

5.1 A sharper deviation inequality

Remark that condition (5.1) with (δ′r) implies condition (3.1) with δr = δ′r . Under condition
(5.1), we can refine Eqn. (3.2):

Theorem 5.1. If condition (5.1) is satisfied, for any f ∈ F such that E( f (X1)) = 0, any x ≥ nδ′k
with 1≤ k ≤ n we have

P(S( f )≥ x)≤ exp

�

−
2nσ2

k( f )

k2 h

�

k(x − nδ′k)

2nσ2
k( f )

��

where h(u) = (1+ u) ln(1+ u)− u for all u≥ 0. Then for any x ≥ 0

P
�

S( f )≥ 2
Æ

nσ2
k∗′
( f )x + 1.34 k∗′x)

�

≤ exp(−x) (5.2)

with k∗′ =min{1≤ k ≤ n / nδ′k ≤ kx}.

The proof of this Theorem is given in Subsection 6.4. In the theorem 5.1, the first deviation
inequality is of Bennett’s type. It refines the exponential approximation of Bernstein’s type in-
equalities with a poisson approximation.
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Remark 5.1. To compare the two Bernstein’s type inequalities (3.2) and (5.2), we compare the blocks
sizes k∗ and k∗′ involve only in the exponential approximation. As k∗′ = min{1 ≤ k ≤ n / kδ′k ≤
xk2/n}, if δ′k = δk then k∗′ ≤ k∗ as soon as nσ2

k( f ) ≤ k2 x or equivalently
p

nσ2
k( f )x ≤ kx, i.e. as

soon as x is in the domain of the exponential approximation. Thus the exponential approximation
given in inequality (5.2) sharpens the one in (3.2) and as their normal approximations are similar,
the latter inequality is always the sharpest.

A tradeoff between the generality of the context and the sharpness of the deviation inequalities
is done. However, for the deviation study of the risk of an estimator where σ2

k( fn)→ 0 for all k,
the latter context is more convenient as the blocks size k∗′ is independent of σ2

k( fn). The negative
effects, due to the blocks size tending to infinity with n and described in the remarks of Subsection
3.3, are no longer valid here. Moreover, condition (5.1) is satisfied in many practical examples:

5.2 Bounded Markov Chains

Following Dedecker and Prieur [7], let us consider a stationary Markov chain (X t) with its tran-
sition kernel P that is a κ-Lipschitz operator on Λ1 (the set of 1-Lipschitz functions) with κ < 1.
Then

rδ′r = κ
r(1+ · · ·+κr−1),

see [7] for more details.

5.3 Bounded chains with infinite memory

Let the sequence of the innovations (ξt) be an iid process on a measurable space Y . We define
(X t) as the solution of the equation

X t = F(X t−1, X t−2, . . . ;ξt) a.s., (5.3)

for some bounded function F :X N\{0} ×Y →X . Assume that F satisfies the condition

d(F((xk)k≥1;ξ0), F((yk)k≥1;ξ0))≤
∞
∑

j=1

a j(F)d(x j , y j), a.s. (5.4)

for all (xk)k≥1, (yk)k≥1 ∈ X N\{0} such that there exists N > 0 as xk = yk = 0 for all k > N with
a j(F)≥ 0 satisfying

∞
∑

j=1

a j(F) := a(F)< 1. (5.5)

Let (ξ∗t ) be a stationary sequence distributed as (ξt)t∈Z , independent of (ξt)t≤0 and such that
ξt = ξ∗t for all t > 0. Let (X ∗t )t∈Z be the solution of the equation

X ∗t = F(X ∗t−1, X ∗t−2, . . . ;ξ∗t ), a.s.

Using similar arguments as in Doukhan and Wintenberger [12] we get

Lemma 5.2. Under condition (5.5) there exists some bounded (by 1/2) stationary process X solution
of the equation (5.3). Moreover, this solution satisfies (5.1) with

rδ′r =
2r−1
∑

j=r

inf
0<p≤ j







a(F)r/p +
∞
∑

j=p

a j(F)







.
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As the proof of this lemma is similar to the proof given in [12], it is omitted here.

Many solutions of econometrical models may be written as chains with infinite memory. However,
the assumption of boundedness is very restrictive in econometrics.

5.4 Bernoulli shifts

Solutions of the recurrence equation (5.3) may always be written as X t = H((ξ j) j≤t) for some
measurable function H : Y N 7→ X . A coupling version (X ∗t ) is thus given by X ∗t = H((ξ∗t )) for all
t ∈ Z where (ξ∗t ) is distributed as (ξt), independent of (ξt)t≤0 and such that ξt = ξ∗t for t > 0. If
there exist ai ≥ 0 such that

d(H(x), H(y))≤
∑

i≥1

aid(x i , yi) with
∑

i≥1

ai <∞,

and if d(ξ1, y) is bounded a.s. for some y ∈ Y , then there exists C > 0 satisfying (5.1) with

rδ′r = C
∑

i≥r

ar .

6 Proofs

6.1 Proof of the Theorem 3.1

To deal with the dependence, we first use the Bernstein’s blocks technique as in [9] and then
the proof ends with the Chernoff device as in the iid case. Let us denote by I j the j-th block of
indices of size k, i.e. {( j − 1)k + 1, jk} except the last blocks and let p be an integer such that
2p− 1≤ k−1n≤ 2p. Denote S1 and S2 the sums of even and odd blocks defined as

S1 =
∑

i∈I2 j , 1≤ j≤p

f (X i) and S2 =
∑

i∈I2 j−1, 1≤ j≤p

f (X i).

We want to prove that for any 0≤ t ≤ 1, choosing k = [1/t]∧ n as in [9] it holds:

lnE(exp(tS( f )))≤ 4nt2(2(e− 2)σ2
k( f ) + ekδk). (6.1)

From the Schwarz inequality, we get

lnE[exp(tS( f ))]≤
1

2

�

lnEexp
�

2tS1
�

+ lnEexp
�

2tS2
��

. (6.2)

Now let us treat in detail the term depending on S1, the same argument applies identically to
S2. Denoting Lm = lnE(exp(2t

∑

i∈I2 j , 1≤ j≤m f (X i))) for any 1 ≤ m ≤ p, we do a recurrence on m
remarking that lnE(exp(2tS1)) = Lp. From the Holder inequality, for any 2≤ m≤ p− 1 we get

exp(Lm+1)− exp(Lm)exp(L1)

≤ exp(Lm)



















E
�

exp
�

2t
∑

i∈I2(m+1)

f (X i)
�

| M2mk

�

−E
�

exp
�

2t
∑

i∈I2(m+1)

f (X i)
��
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≤ exp(Lm)



















E
�

exp
�

2t
∑

i∈I2(m+1)

f (X i)
�

− exp
�

2t
∑

i∈I2(m+1)

f (X i)
�∗
| M2mk

�



















∞

,

where exp
�

2t
∑

i∈I2(m+1)
f (X i)

�∗
is a coupling version of the variable exp

�

2t
∑

i∈I2(m+1)
f (X i)

�

, in-
dependent ofM2mk. The definition of the coupling coefficients τ∞ provides that



















E
�

exp
�

2t
∑

i∈I2(m+1)

f (X i)
�

− exp
�

2t
∑

i∈I2(m+1)

f (X i)
�∗
| M2mk

�



















∞

≤ τ∞
�

M2mk, exp
�

2t
∑

i∈I2(m+1)

f (X i)
��

.

As
∑

i∈I2(m+1)
f (X i) is bounded with k/2, then, using the metric dk, u → exp(2t

∑k
i=1 u) is a

2kt exp(kt)-Lipschitz function bounded with exp(kt) for all t ≥ 0. Thus for any n−1 < t ≤ 1,
choosing k = [1/t]∧ (n− 1) and under condition (3.1) we have

τ∞

�

M2mk, exp
�

2t
∑

i∈I2(m+1)

f (X i)
��

≤ 2ktektϕ(M2mk, (X i)i∈I2(m+1)
)≤ 2eδk.

Collecting these inequalities, we achieve that

exp(Lm+1)≤ exp(Lm)(exp(L1) + 2eδk).

The classical Bennett inequality applied on
∑

i∈I2
f (X i) gives the estimate exp(L1)≤ 1+4σ2

k( f )(e
kt−

kt − 1)/k. As kt ≤ 1 we obtain

Lm+1 ≤ Lm + ln

�

1+
4(e− 2)σ2

k( f ) + 2ekδk

k

�

≤ Lm +
4(e− 2)σ2

k( f ) + 2ekδk

k
.

The last step of the recurrence leads to the desired inequality

lnE(exp(2tS1))≤ 2p
2(e− 2)σ2

k( f ) + ekδk

k
.

As the same inequality holds for S2 we obtain (6.1) from (6.2) for n−1 < t ≤ 1 remarking that
2pk−1 ≤ 4nt2. For t ≤ n−1, classical Bennett inequality on S1 gives

lnE(exp(2tS1))≤ 4σ2
n( f )/n(e

nt − nt − 1).

Remarking that ent−nt−1≤ (nt)2
∑

j≥0(nt) j/( j+2)! and ( j+2)!≥ 2·3 j , we obtain the inequality
ent − nt − 1≤ 2−1(nt)2

∑

j≥0 3− j ≤ 3(nt)2/4 for nt ≤ 1. Using it, we derive for any t ≤ n−1 that

lnE(exp(2tS1))≤ 3nσ2
n( f )t

2 ≤ 4nt2(2(e− 2)σ2
n( f ) + enδn).

The same inequality holds for S2 and we obtain (6.1) for all 0≤ t ≤ n−1 and then for all 0≤ t ≤ 1.

Note that by definition σ2
k( f )≤ σ

2
k∗( f ) and kδk ≤ σ

2
k( f ) for all k ≥ k∗ . From (6.1) we achieve

lnE(exp(tS( f )))≤ Knσ2
k∗( f )t

2, for 0≤ t ≤ k∗−1,
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with K = 4(3e − 4). We follow the Chernoff’s device (optimizing in t ∈ [0; k∗−1] the inequality
lnP(S( f )≥ x)≤ lnE(exp(tS( f )))− t x) and we obtain

P(S( f )≥ x)≤ exp

 

−
x2

2Knσ2
k∗( f )

!

11k∗ x≤2Knσ2
k∗ ( f )
+ exp

 

Knσ2
k∗( f )

k∗2
−

x

k∗

!

11k∗ x>2Knσ2
k∗ ( f )

.

Easy calculation yields for all x ≥ 0

P
�

S( f )≥
Æ

2Knσ2
k∗( f )11k∗2 x≤2Knσ2

k∗ ( f )
+ (k∗ t + k∗−1Knσ2

k∗( f ))11k∗2 x>2Knσ2
k∗ ( f )

�

≤ e−x .

A rough bound k∗ t + k∗−1Knσ2
k∗( f ) ≤ 3k∗x/2 for k∗2 x > 2Knσ2

k∗( f ) then leads to the result of
the Theorem 3.1.

6.2 Proof of Proposition 3.2

We have the classical decomposition

Var

 

k
∑

i=1

f (X i)

!

= k Var( f (X1)) + 2
k−1
∑

r=1

(k− r)Cov( f (X1), f (X r+1)).

Now let us consider the coupling scheme f (X r+1)∗ distributed as f (X r+1) but independent ofM1.
Then

Cov( f (X1), f (X r+1)) = E(E( f (X r+1)− f (X r+1)
∗ |M1) f (X1)).

and as |E( f (X r+1)− f (X r+1)∗|M1)≤ δr by ineq. (2.4), we get the desired result.

6.3 Proof of Proposition 4.1

We sketch the proof of [21]. We are interested in estimating the coefficientsϕ(M j , (X r+ j , . . . , X2r−1+ j))
for any ( j, r) satisfying 1≤ j ≤ j+ r ≤ 2r −1+ j ≤ n. Let us fix ( j, r) and denote (ξk

t ) a sequence
such that ξk

t = ξt for all t ≥ r + j − k > j and ξk
t = ξ

′
t otherwise. Let Uk

t = F(ξk
t− j; j ∈ N) and

X k
t = H(Uk

t ). For any f ∈ F , we have

f (X r+ j , . . . , X2r−1+ j)− f (X k
r+ j , . . . , X k

2r−1+ j)≤





1

r

2r−1+ j
∑

i=r+ j

d(X i , X k
i )



∧ 1. (6.3)

By definition of the modulus of continuity, since d(Uk
i , Ui) ≤ vk for any r + j ≤ i ≤ 2r − 1+ j, we

have
d(X i , X k

i ) = d(H(Ui), H(Uk
i ))≤ wH(U

k
i , vk).

Noting that
�

r−1
∑2r−1+ j

i=r+ j wH(Uk
i , vk)

�

∧ 1 is a measurable function of ((ξ′t)t<r+ j−k, (ξt)t≥r+ j−k)
bounded by 1, we get, from the definition of the φ-mixing coefficients,

E





�

r−1
2r−1+ j
∑

i=r+ j

wH(U
k
i , vk)

�

∧ 1 /M j



≤ φr−k +E





�

r−1
2r−1+ j
∑

i=r+ j

wH(U
k
i , vk)

�

∧ 1



 .
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Using again that d(Uk
i , Ui) ≤ vk, then wH(Uk

i , vk) ≤ 2wH(Ui , 2vk). By stationarity of (Ut), we
obtain

E





�

r−1
2r−1+ j
∑

i=r+ j

wH(U
k
i , vk)

�

∧ 1



≤ E(2wH(U0, 2vk))∧ 1.

So combining these inequalities we obtain for all 1≤ k ≤ r − 1:







E
�

f (X r+ j , . . . , X2r−1+ j)− f (X k
r+ j , . . . , X k

2r−1+ j)
.

M j

�









∞
≤ φr−k +E(2wH(U0, 2vk))∧ 1. (6.4)

Using again the definition of the φ-mixing coefficients we get, since f is bounded by 1,







E
�

f (X k
r+ j , . . . , X k

2r−1+ j)
.

M j

�

−E
�

f (X k
r+ j , . . . , X k

2r−1+ j)
�









∞
≤ φr−k. (6.5)

Finally, using again (6.3) and that d(X i , X k
i )≤ wH(Ui , vk), by stationarity of (Ut) we obtain

E f (X r+ j , . . . , X2r−1+ j)−E f (X k
r+ j , . . . , X k

2r−1+ j)≤ E(wH(U0, vk))∧ 1. (6.6)

The result of the Proposition 4.1 follow from the definition of the ϕ-coefficients, the inequalities
(6.4), (6.5) and (6.6).

6.4 Proof of Theorem 5.1

Let us keep the same notation as in the proof of Theorem 3.1. The Bennett’s type deviation
inequality follows classically from the Chernoff device together with the estimate:

ln(E(exp(tS( f )))≤
2nσ2

k( f )

k2 (exp(kt)− kt − 1) + nδ′k t for all t ≥ 0. (6.7)

To prove (6.7), let us use the L∞-coupling scheme and (5.1) to derive that, for any 1≤ m≤ p:















∑

i∈I2m

f (X i)−
∑

i∈I2m

f (X ∗i )
















∞

≤
∑

i∈I2(m+1)





d(X i , X ∗i )






∞ ≤ kδ′k,

where, as in Subsection 6.1, |I j | = k for all 1 ≤ j ≤ 2p with 2p − 1 ≤ nk−1 ≤ 2p. Then, for any
t ≥ 0 we have:

exp



2t
∑

i∈I2m

f (X i)



≤ e2tkδ′k exp



2t
∑

i∈I2m

f (X ∗i )



 a.s.

for all 1 ≤ m ≤ p. In particular, by independence of (X ∗i )i∈I2m
withM2i−1 and by stationarity we

deduce that

E



exp



2t
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i∈I2m

f (X i)



 | M2(m−1)



≤ e2tkδ′kE



exp



2t
∑

i∈I1

f (X ∗i )









for all 1≤ m≤ p. Applying this inequality for m= p we have

Eexp(2tS1) = E






exp



2t
∑

1≤m≤p−1

∑

i∈I2m

f (X i)



E






exp


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i∈I2p

f (X i)




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| M2(p−1)
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
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≤ e2tkδ′kE



exp



2t
∑

i∈I1

f (X ∗i )







E



exp



2t
∑

1≤m≤p−1

∑

i∈I2m

f (X i)







 .

Using the same argument recursively on m= p− 1, . . . , 2 we then get that

lnEexp(2tS1)≤ 2(p− 1)kδ′k t + p lnE



exp



2t
∑

i∈I1

f (X ∗i )







 .

Now the classical Bennett inequality gives

lnE



exp



2t
∑

i∈I1

f (X ∗i )







≤
4σ2

k( f )

k
(exp(kt)− kt − 1)

and the inequality (6.7) follows remarking that 4pk−1 ≤ 2nk−2 and 2(p− 1)k ≤ n.

To prove the Bernstein’s type inequality, from (6.7), the series expansion of the function exp(x)−
x − 1 and the fact that j!≥ 2 · 3 j−2 for all j ≥ 2 we first obtain that

ln(E(exp(tS( f )))≤
nσ2

k( f )t
2

1− (k/3)t
+ nδ′k t for all 0≤ t < 3/k.

With the same notation than in [17], for x ≥ nδ′k the Chernoff device leads to:

P(S( f )≥ x)≤ exp

�

2nσ2
k( f )

(k/3)2
h1

�

(k/3)(x − nδ′k)

2nσ2
k( f )

��

,

where h1(x) = 1+ x −
p

1+ 2x for all x ≥ 0. Then for all x ≥ 0 we have

P(S( f )≥ x + nδ′k)≤ exp

�

2nσ2
k( f )

(k/3)2
h1

�

(k/3)x

2nσ2
k( f )

��

and the desired result follows as h−1
1 (x) =

p
2x + x for all x ≥ 0.
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