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Abstract
Let f = ( fn)n≥0 be a nonnegative submartingale starting from x and let g = (gn)n≥0 be a sequence
starting from y and satisfying

|d gn| ≤ |d fn|, |E(d gn|Fn−1)| ≤ E(d fn|Fn−1)

for n≥ 1. We determine the best universal constant U(x , y) such that

P(sup
n

gn ≥ 0)≤ || f ||1 + U(x , y).

As an application, we deduce a sharp weak type (1,1) inequality for the one-sided maximal func-
tion of g and determine, for any t ∈ [0,1] and β ∈ R, the number

L(x , y, t,β) = inf{|| f ||1 : P(sup
n

gn ≥ β)≥ t}.

The estimates above yield analogous statements for stochastic integrals in which the integrator is
a nonnegative submartingale. The results extend some earlier work of Burkholder and Choi in the
martingale setting.

1 Introduction

The purpose of this paper is to study some new sharp estimates for submartingales and their
differential subordinates. Let us start with introducing the necessary background and notation.
In what follows, (Ω,F ,P) is a non-atomic probability space, filtered by a nondecreasing family
(Fn)n≥0 of sub-σ-fields of F . Let f = ( fn)n≥0 be an adapted sequence of integrable variables.
Then d f = (d fn)n≥0, the difference sequence of f , is given by

d f0 = f0, and d fn = fn − fn−1 for n≥ 1.

1PARTIALLY SUPPORTED BY MNISW GRANT N N201 397437 AND FOUNDATION FOR POLISH SCIENCE.

508



Weak-type inequality 509

Assume that g = (gn)n≥0 is another adapted integrable sequence, satisfying

|d gn| ≤ |d fn| and |E(d gn|Fn−1)| ≤ |E(d fn|Fn−1)|, n≥ 1. (1.1)

Following Burkholder [5], we say that g is strongly differentially subordinate to f , if |g0| ≤ | f0|
and the condition (1.1) holds. For example, this is the case when g is a transform of f by a
predictable sequence v = (vn)n≥0, bounded in absolute value by 1. That is, we have d gn = vnd fn
for n≥ 0 and by predictability we mean that for each n the variable vn is measurable with respect
toF(n−1)∨0. Let us also mention that if f is a martingale, then the strong differential subordination
is equivalent to saying that g is a martingale satisfying |d gn| ≤ |d fn| for all n≥ 0.
Let |g|∗ = supn |gn|, g∗ = supn gn denote the maximal function of g and the one-sided maximal
function of g, respectively. We will also use the notation || f ||p = supn || fn||p for the p-th norm of
the sequence f , p ≥ 1.
The problem of a sharp comparison of the sizes of f and g under various assumptions on f has
been studied extensively by many authors. The literature on the subject is very rich, we refer the
interested reader to the papers [3]–[9], [11]–[16] and references therein for more information
on the subject, and [1], [2], [10] for applications to Riesz systems and the Beurling-Ahlfors trans-
form. We only mention here a few classical estimates, related to the problem investigated in the
paper. In the martingale setting, Burkholder [3] proved the following weak-type inequality.

Theorem 1.1. Suppose that f is a martingale and g is strongly differentially subordinate to f . Then
for any λ > 0,

λP(|g|∗ ≥ λ)≤ 2|| f ||1, (1.2)

and the constant 2 is the best possible.

A natural question about the optimal constant above for nonnegative submartingales f was an-
swered by Burkholder in [5].

Theorem 1.2. Suppose that f is a nonnegative submartingale and g is strongly differentially subor-
dinate to f . Then for any λ > 0,

λP(|g|∗ ≥ λ)≤ 3|| f ||1 (1.3)

and the constant 3 is the best possible.

The two results above have been extended and generalized in many directions, see e.g. [3], [6],
[9], [11], [12], [15] and [16]. We take the line of research related to the following question,
raised by Burkholder in [3]. Suppose that g, a strong differential subordinate to f , has at least
probability t of exceeding β; how small can || f ||1 be? In the particular case when t = 1 and f is
a martingale, the answer is the following (cf. [3]).

Theorem 1.3. Suppose that f is a martingale starting from x and g is strongly differentially subor-
dinate to f . If g satisfies the one-sided bound

P(g∗ ≥ β) = 1,

then
|| f ||1 ≥ |x | ∨ (β − x)

and the expression on the right is the best possible.

This result was generalized by Choi [9] to the case when t ∈ [0, 1] is arbitrary. Precisely, we have
the following.
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Theorem 1.4. Suppose that f is a martingale starting from x and g is strongly differentially subor-
dinate to f . If g satisfies the one-sided bound

P(g∗ ≥ β)≥ t,

where t ∈ [0,1] is a fixed number, then

|| f ||1 ≥ |x | ∨
�

β − x − [β+(β − 2x)+(1− t)]1/2
	

.

Again, the bound on the right is the best possible.

2 Main results

Our contribution will be, among other things, to establish a submartingale version of the theorems
above. First, we study a more general problem and provide a sharp upper bound for the tail of
g∗, which depends not only on || f ||1 and f0, but also on the starting point of g. Throughout, the
function U : [0,∞)×R→ R is given by (3.1) below.

Theorem 2.1. Let f be a nonnegative submartingale starting from x ≥ 0 and let g be a sequence
starting from y ∈ R such that the condition (1.1) is satisfied. Then

P(g∗ ≥ 0)≤ || f ||1 + U(x , y) (2.1)

and the inequality is sharp.

This will be proved in Sections 3 and 4 below. As an application, we will obtain in Section 5 the
following extension of Theorem 1.4. Throughout the paper, the function L : [0,∞)×R×[0,1]→ R
is given by (5.4) below.

Theorem 2.2. Let f be a nonnegative submartingale starting from x ≥ 0 and let g start from y ∈ R.
Suppose that (1.1) holds. If g satisfies the one-sided estimate

P(g∗ ≥ β)≥ t, (2.2)

where t ∈ [0,1] is a fixed number, then

|| f ||1 ≥ L(x , y − β , t) (2.3)

and the bound is the best possible. In particular, if g is strongly differentially subordinate to f , then
we have a sharp inequality

|| f ||1 ≥ L(x , x − β , t). (2.4)

Finally, Theorem 2.1 leads to another interesting variation of the inequality (1.3), to be proved in
Section 5.

Theorem 2.3. Assume that f is a nonnegative submartingale and g is strongly differentially subor-
dinate to f . Then for any λ > 0 we have

λP(g∗ ≥ λ)≤
8

3
|| f ||1 (2.5)

and the constant 8/3 is the best possible.
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Comparing this to Theorem 1.2 we see that the constant decreases in the one-sided setting. This is
not surprising: a careful study of Burkholder’s example in [5] shows that the extremal pair ( f , g)
in (1.3) is symmetric in the sense that P(g∗ ≥ λ) = P((−g)∗ ≥ λ) = 1/2. In other words, half
of the tail of |g|∗ comes from dropping to −λ; however, in (2.5) we do not take this part into
account.
We conclude this section by the observation that the results above yield some new and interesting
sharp estimates for stochastic integrals in which the integrator is a nonnegative submartingale.
To be more precise, suppose that (Ω,F ,P) is complete and is equipped with a right-continuous
filtration (Ft)t≥0. Assume that X = (X t) is an adapted nonnegative cadlag submartingale and let
H = (Ht)t≥0 be a predictable process taking values in [−1, 1]. Let Y = (Yt)t≥0 denote the Itô
integral of H with respect to X , that is,

Yt = X0H0 +

∫ t

0+

HsdXs, t ≥ 0.

Then standard approximation arguments (see [5]) yield the following.

Theorem 2.4. (i) If Y satisfies the one-sided bound

P(Y ∗ ≥ β)≥ p,

where p ∈ [0, 1] is a fixed number, then

||X ||1 ≥ L(x , y − β , p)

and the bound is the best possible.
(ii) For any λ > 0 we have

λP(Y ∗ ≥ λ)≤
8

3
||X ||1

and the constant 8/3 is the best possible.

3 A special function

Consider the following subsets of [0,∞)×R:

D0 ={(x , y) : x + y ≥ 0},
D1 ={(x , y) : (x − 8)/3≤ y <−x},
D2 ={(x , y) : x − 4< y < (x − 8)/3},
D3 =

�

[0,∞)×R
�

\ (D0 ∪ D1 ∪ D2)

and let U : [0,∞)×R→ R be given by

U(x , y) =















1− x if (x , y) ∈ D0,
1

16
(3x + 3y + 8)1/3(−5x + 3y + 8) if (x , y) ∈ D1,

− 1
4

x(6x − 6y − 16)1/3 if (x , y) ∈ D2,
2x

x−y
− x if (x , y) ∈ D3.

(3.1)
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We also introduce the functions φ, ψ : [0,∞)×R→ R by

φ(x , y) =















−1 if (x , y) ∈ D0,
1
4
(3x + 3y + 8)−2/3(−5x − 3y − 8) if (x , y) ∈ D1,

1
2
(6x − 6y − 16)−2/3(−4x + 3y + 8) if (x , y) ∈ D2,

− 2y
(x−y)2

− 1 if (x , y) ∈ D3

and

ψ(x , y) =















0 if (x , y) ∈ D0,
1
4
(3x + 3y + 8)−2/3(x + 3y + 8) if (x , y) ∈ D1,

1
2

x(6x − 6y − 16)−2/3 if (x , y) ∈ D2,
2x

(x−y)2
if (x , y) ∈ D3.

Later on, we will need the following properties of these objects.

Lemma 3.1. (i) The function U is continuous on its domain and of class C1 on the set E = {(x , y) :
x > 0, x + y 6= 0}. Furthermore, φ = Ux and ψ= Uy on E.
(ii) There is an absolute constant A such that for all x ≥ 0 and y ∈ R,

|U(x , y)| ≤ A+ A|x |, |φ(x , y)| ≤ A, |ψ(x , y)| ≤ A.

(iii) For all x ≥ 0 and y ∈ R.
U(x , y)≥ 1{y≥0} − x . (3.2)

(iv) For any x ≥ 0 and y ∈ R,
φ(x , y)≤−|ψ(x , y)|. (3.3)

Proof. (i) This is straightforward and reduces to tedious verification that the function U and its
partial derivatives match appropriately at the common boundaries of the sets D0 − D3. We omit
the details.
(ii) This follows immediately from the formulas for U , φ and ψ above (in fact A= 1 suffices, but
we will not need this).
(iii) Observe that ψ ≥ 0, which gives that the function y 7→ U(x , y) is nondecreasing for a fixed
x . It suffices to note that limy→−∞ U(x , y) =−x and U(x , 0) = 1− x .
(iv) The desired estimate reduces to φ +ψ≤ 0. However, we have

φ(x , y) +ψ(x , y) =















−1 if (x , y) ∈ D0,

−x(3x + 3y + 8)−2/3 if (x , y) ∈ D1,

− 1
4
(6x − 6y − 16)1/3 if (x , y) ∈ D2,

2(x − y)−1 − 1 if (x , y) ∈ D3

and it is evident that all the expressions are nonpositive. �

Lemma 3.2. (i) For any x ≥ 0, y ∈ R and h, k ∈ R satisfying |h| ≥ |k| and x + h≥ 0 we have

U(x + h, y + k)≤ U(x , y) +φ(x , y)h+ψ(x , y)k. (3.4)
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Proof. There is a well-known procedure to establish such an estimate (see e.g. [4]): fix x ≥ 0, y ∈
R, a ∈ [−1,1] and consider a function G = Gx ,y,a : [−x ,∞)→ R given by G(t) = U(x+ t, y+at).
Then the condition (3.4) is equivalent to saying that G is concave. Since U is of class C1 on the
set E (in virtue of part (i) of Lemma 3.1), the concavity is the consequence of the two conditions,
which will be proved below:

(a) G′′(t) ≤ 0 for those t, for which (x + t, y + at) lies in the interior of one of the sets Di ,
i = 0, 1, 2, 3,
(b) G′(t−)≥ G′(t+) for t satisfying x + t > 0 and (x + t, y + at) /∈ E.

By the translation property Gx ,y,a(t + s) = Gx+t,y+at,a(s), valid for all t ≥ −x and s ≥ −t − x , it
suffices to establish (a) and (b) for t = 0. Let us verify the first condition. If (x , y) lies in Do

0, the
interior of D0, then G′′(0) = 0. For (x , y) ∈ Do

1, a little calculation yields

G′′(0) =
1

4
(3x + 3y + 8)−5/3(a+ 1)

�

(a− 3)(−x + 3y + 8) + 8(a− 1)x
�

,

which is nonpositive: this follows from |a| ≤ 1 and −x + 3y + 8 ≥ 0, coming from the definition
of D1. If (x , y) ∈ Do

2, then

G′′(0) = 2(1− a)(6x − 6y − 16)−5/3�− x(a+ 1) + (−x + 3y + 8)
�

≤ 0,

since −x + 3y + 8 ≤ 0, by the definition of D2. Finally, if (x , y) belongs to the interior of D3, we
have

G′′(0) = 4(1− a)(x − y)−3�− (a+ 1)x + (x + y)
�

≤ 0,

because x + y ≤ 0. It remains to check (b). The condition x > 0, (x , y) /∈ E is equivalent to x > 0
and x + y = 0. If (x , y) ∈ ∂ D0 ∩ ∂ D1 (so y = −x ∈ [−2,0)), then after some straightforward
computations,

G′(0−) =
1

8
[(a+ 1)y + 4a− 4]≥

1

4
(a+ 1)− 1≥−1= G′(0+).

On the other hand, if (x , y) ∈ ∂ D3 ∩ ∂ D0 and x > 2, then

G′(0−) =
a+ 1

8x
− 1≥−1= G′(0+)

and we are done. �

Remark 3.3. By (3.3) and the proof of the above lemma, we have that for any y the function
t 7→ U(t, y + t), t ≥ 0, is nonincreasing.

Now we turn to the proof of Theorem 2.1.
Proof of (2.1). We will prove that for any nonnegative integer n we have

P(gn ≥ 0)− || fn||1 ≤ U(x , y). (3.5)

This will yield the claim: to see this, fix ε > 0 and introduce the stopping time τ = inf{n : gn ≥
−ε}. Note that

{g∗ ≥ 0} ⊆ {gn ≥−ε for some n}=
∞
⋃

n=0

{gτ∧n + ε ≥ 0}.
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Obviously, the family ({gτ∧n+ε ≥ 0})n≥0 is nondecreasing. In addition, the modified pair ( f , g ′) =
( fn, gτ∧n + ε)n≥0 still satisfies the domination relation (1.1): this follows from the identity d g ′n =
1{τ≥n}d gn, valid for all n≥ 1. Hence, applying (3.5) to this pair yields

P(g ′n ≥ 0)≤ || fn||1 + U(x , y + ε)≤ || f ||1 + U(x , y + ε)

and, in consequence, P(g∗ ≥ 0) ≤ limn→∞ P(g ′n ≥ 0) ≤ || f ||1 + U(x , y + ε). It suffices to let ε→ 0
to get (2.1).
Thus it remains to establish (3.5). The key observation is that the sequence (U( fn, gn))∞n=0 is an
(Fn)-supermartingale. Indeed, by (3.4), applied to x = fn, y = gn, h= d fn+1 and k = d gn+1, we
get

U( fn+1, gn+1)≤ U( fn, gn) +φ( fn, gn)d fn+1 +ψ( fn, gn)d gn+1. (3.6)

By part (ii) of Lemma 3.1, both sides above are integrable. Apply the conditional expectation with
respect to Fn to obtain that

E(U( fn+1, gn+1)|Fn)≤ U( fn, gn) +φ( fn, gn)E(d fn+1|Fn) +ψ( fn, gn)E(d gn+1|Fn).

By (1.1) and (3.3), we have φ( fn, gn)E(d fn+1|Fn) ≤ −|ψ( fn, gn)E(d gn+1|Fn)|, which gives the
supermartingale property. Now use the majorization (3.2) to get

P(gn ≥ 0)−E| fn| ≤ EU( fn, gn)≤ EU( f0, g0) = U(x , y), (3.7)

which completes the proof. �
Before we proceed, let us mention here how we have constructed the function U . Note that the
assertion of Theorem 2.1 (see also (3.5)) can be rephrased as

U(x , y) = sup{EV ( fn, gn)}. (3.8)

Here V (x , y) = 1{y≥0} − x and the supremum is taken over all n and all pairs ( f , g) starting
from (x , y), such that f is a nonnegative submartingale and (1.1) is satisfied. Repeating the
arguments from [3] and [4], we are led to the corresponding boundary value problem. Namely,
U is the least function on [0,∞)× R which majorizes V on the whole domain and satisfies the
following condition: for any y ∈ R, the functions t 7→ U(t, y + t) and t 7→ U(t, y − t) are concave
and nonincreasing on [0,∞). Some experimentation with these two assumptions leads to (3.1).
For example, to get that U(x , y) = 1 − x on D0, we use the following argument. First, note
that if U1, U2 are any solutions to the above boundary value problem, then so is their minimum
min{U1, U2}. Applying this to U1 = U and U2 given by U2(x , y) = 1− x , we obtain U(x , y)≤ 1− x
for all x ≥ 0, y ∈ R (this bound can also be directly derived from (3.8)). Therefore, equality must
hold for y ≥ 0, since V (x , y) = 1− x for these y . If 0 < x + y < x , then consider the half line H
of slope −1, passing through (x , y). Let u(t) = U(t, y− x − t), t ≥ 0, be the restriction of U to H.
Then u is concave, u(t) = 1− t for small t and u(t) ≥ 1{y−x−t≥0} − t for all t. This implies that
u(t) = 1− t for all t and hence U(x , y) = 1− x if x + y > 0. Finally, the continuity of U along
the lines of slope 1 gives U(x , y) = 1− x on the whole D0. Similar reasoning yields the explicit
formula for U on the remaining Di ’s.

4 Sharpness of (2.1)

Let δ > 0 be a fixed small number, to be specified later. Consider a Markov family ( fn, gn) on
[0,∞)×R, with the transities described as follows.
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(i) The states {(x , y) : y ≥ 0} and {(0, y) : y ≤−8/3} are absorbing.
(ii) For −x ≤ y < 0, the state (x , y) leads to (x + y, 0) or to (x − y, 2y), with probabilities 1/2.
(iii) The state (x , y) ∈ D1, x > 0, leads to (0, y + x) or to ( 3x+3y

4
+ 2 + δ, x+y

4
− 2 − δ), with

probabilities p1 and 1− p1, where p1 = (−x + 3y + 8+ 4δ)/(3x + 3y + 8+ 4δ).
(iv) The state (x , y) ∈ D2, x > 0, leads to (0, y − x) or to ( 3x−3y

2
− 4, x−y

2
− 4), with probabilities

p2 and 1− p2, where p2 = (x − 3y − 8)/(3x − 3y − 8).
(v) The state (x , y) ∈ D3, x > 0, leads to (0, y − x) or to ( x−y

2
, y−x

2
), with probabilities p3 and

1− p3, where p3 =−(x + y)/(x − y).
(vi) The state (0, y), y ∈ (−8/3, 0), leads to (0+ 2δ, y + 2δ).

Let x ≥ 0 and y ∈ R. It is not difficult to check that under the probability measure Px ,y =
P(·|( f0, g0) = (x , y)), the sequence f is a nonnegative submartingale and g satisfies d gn = ±d fn
for n ≥ 1 (so (1.1) is satisfied). In fact, the steps described in (i)–(v) are martingale moves in the
sense that

Ex ,y
�

( fn+1, gn+1)|( fn, gn) = (x
′, y ′)

�

= (x ′, y ′),

provided the conditioning event has nonzero probability and (x ′, y ′) belongs to one of the sets
from (i)–(v). Using this Markov process we will show that the bound (2.1) is optimal. How did
we obtain the transity function? A natural idea which comes into one’s mind is to search for such
a pair ( f , g), for which both estimates in (3.7) become equalities, or "almost" equalities. This
implies that equality must also hold in (3.6), so, in other words, the Markov process must move
according to the following rule. Assume that ( f0, g0) = (x , y), x 6= 0, and let I be the line segment
with endpoints given by the possible values of ( f1, g1). Then U is linear, or "almost" linear when
restricted to I . One easily checks that the steps described in (i)–(v) satisfy this condition.
Set

Pδ(x , y) = Px ,y(g
∗ ≥ 0), Mδ(x , y) = lim

n→∞
Ex ,y fn. (4.1)

Usually we will skip the upper index and write P, M instead of Pδ, Mδ, but it should be kept
in mind that these functions do depend on δ. We will prove that if this parameter is sufficiently
small, then

P(x , y)−M(x , y) is arbitrarily close to U(x , y). (4.2)

This will clearly yield the claim. It is convenient to split the remaining part of the proof into a few
steps.
1◦. The case y ≥ 0. Here (4.2) is trivial: P(x , y) = 1, M(x , y) = x for all δ, and U(x , y) = 1− x .
2◦. The case x = 0, y ≤ −8/3. Again, (4.2) is obvious: P(x , y) = M(x , y) = 0 for all δ, and
U(x , y) = 0.
3◦. The case −x ≤ y < 0. For any δ > 0 and n ≥ 1, it is easy to see that Px ,y(gn ≥ 0) = 1− 2−n

and Ex ,y fn = x . Letting n → ∞, we get P(x , y) = 1 and M(x , y) = x , which yields (4.2), since
U(x , y) = 1− x .
4◦. The case {(x , y) : y = x/3− 8/3, x ∈ (0, 2)} ∪ {(x , y) : x = 0, y ∈ (−8/3,0)}. This is the most
technical part. Let us first deal with

A(x) := P(x , x/3− 8/3), and B(x) := P(0,4x/3− 8/3)

for 0< x < 2. We will prove that

lim
δ→0

A(x) =
2

3

� x

2

�1/3

+
1

3

� x

2

�4/3

, lim
δ→0

B(x) =
4

3

� x

2

�1/3

−
1

3

� x

2

�4/3

. (4.3)
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This will be done by showing that

lim
δ→0

�

A(x) + B(x)
�

= 2(x/2)1/3, lim
δ→0
[2A(x)− B(x)] = (x/2)4/3. (4.4)

To get the first statement above, note that by (iii) and Markov property, we have

P
�

x ,
x

3
−

8

3

�

=
x

x +δ
P
�

x +δ,
x

3
−

8

3
−δ
�

+
δ

x +δ
P
�

0,
4

3
x −

8

3

�

,

which can be rewritten in the form

A(x) =
x

x +δ
P
�

x +δ,
x

3
−

8

3
−δ
�

+
δ

x +δ
B(x). (4.5)

Similarly, using (iv) and Markov property, we get

P
�

x +δ,
x

3
−

8

3
−δ
�

=
x +δ
x + 3δ

A(x + 3δ) +
2δ

x + 3δ
P
�

0,−
2

3
x −

8

3
− 2δ

�

=
x +δ
x + 3δ

A(x + 3δ),

where in the last passage we have used 2◦. Plugging this into (4.5) yields

A(x) =
x

x + 3δ
A(x + 3δ) +

δ

x +δ
B(x). (4.6)

Analogous argumentation, with the use of (iii), (vi) and Markov property, leads to the equation

B(x) =
2δ

x + 3δ
A(x + 3δ) +

x +δ
x + 3δ

B(x + 3δ). (4.7)

Adding (4.6) to (4.7) gives

A(x) +
x

x +δ
B(x) =

x + 2δ

x + 3δ

�

A(x + 3δ) +
x + 3δ

x + 4δ
B(x + 3δ)

�

+ c(x ,δ) ·δ2, (4.8)

where

c(x ,δ) =−
2B(x + 3δ)

(x + 3δ)(x + 4δ)
,

which can be bounded in absolute value by 2/x2. Now we use (4.8) several times: if N is the
largest integer such that x + 3Nδ < 2, then

A(x) +
x

x +δ
B(x) =

x + 2δ

x + 3δ
·

x + 5δ

x + 6δ
· . . . ·

x + 3Nδ−δ
x + 3Nδ

×

×
�

A(x + 3Nδ) +
x + 3Nδ

x + 3Nδ+δ
B(x + 3Nδ)

�

+ cNδ2,
(4.9)

where |c| < 2/x2. Now we will study the limit behavior of the terms on the right as δ→ 0. First,
note that for any k = 1, 2, . . . , N ,

x + 3kδ−δ
x + 3kδ

= exp
�

−
δ

x + 3kδ

�

· exp(d(k)δ2),
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where |d(k)| ≤ 1/x2; consequently,

N
∏

k=1

x + 3kδ−δ
x + 3kδ

= exp

 

−
N
∑

k=1

δ

x + 3kδ

!

exp(d̃Nδ2), (4.10)

for some d̃ satisfying |d̃| ≤ 1/x2. Since N = O(1/δ) for small δ, we conclude that the product in

(4.10) converges to exp(− 1
3

∫ 2

x
t−1dt) = (x/2)1/3 as δ→ 0.

The next step is to show that the expression in the square brackets in (4.9) converges to 2 as δ
tends to 0. First observe that

B(x + 3Nδ) = P
�

0,4x/3+ 4Nδ−
8

3

�

= P
�

2δ, 4x/3+ 4Nδ−
8

3
+ 2δ

�

= 1,

where in the first passage we have used the definition of B, in the second we have exploited (vi),
and the latter is a consequence of 1◦ and 3◦. To show that A(x + 3Nδ) converges to 1, use (4.5),
with x replaced by x + 3Nδ, to get

A(x + 3Nδ) =
x + 3Nδ

x + 3Nδ+δ
P
�

x + 3Nδ+δ,
x + 3Nδ

3
−

8

3
−δ
�

+
δ

x + 3Nδ+δ
.

Note that by the definition of N , the point under P lies in D3, and arbitrarily close to the line
y =−x , if δ is sufficiently small. Thus, by (v) and 3◦,

P
�

x + 3Nδ+δ,
x + 3Nδ

3
−

8

3
−δ
�

can be made arbitrary close to 1, provided δ is small enough. Summarizing, letting δ→ 0 in (4.9)
yields the first limit in (4.4). To get the second one, multiply both sides of (4.7) by 1/2, subtract
it from (4.6) and proceed as previously.
Next we show that C(x) := M(x , x/3− 8/3), D(x) := M(0, 4x/3− 8/3), x ∈ (0,2), satisfy

lim
δ→0

C(x) =
2

3

� x

2

�1/3

+
4

3

� x

2

�4/3

, lim
δ→0

D(x) =
4

3

� x

2

�1/3

−
4

3

� x

2

�4/3

. (4.11)

We proceed exactly in the similar manner: arguing as reviously, C and D satisfy the same system
of equations as A and B, that is, (4.6) and (4.7). The only difference in the further considerations
is that C(x + 3Nδ)→ 2 and D(x + 3Nδ)→ 0 as δ→ 0.
The final step is to combine (4.3) and (4.11). We get

lim
δ→0

�

A(x)− C(x)
�

= U (x , x/3− 8/3) , lim
δ→0

�

B(x)− D(x)
�

= U (0,4x/3− 8/3) ,

as desired.
5◦. The remaining (x , y)’s. Now (4.2) is easily deduced from the previous cases using Markov
property: the point (x , y) leads, in at most two steps, to the state for which we have already
calculated the (limiting) values of P and M . For example, if (x , y) ∈ D3, we have

P(x , y) = p3P(0, y − x) + (1− p3)P
�

x − y

2
,

y − x

2

�

= 1− p3 =
2x

x − y
,

M(x , y) = p3M(0, y − x) + (1− p3)M
�

x − y

2
,

y − x

2

�

= x ,
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in view of 1◦ and 3◦. Since U(x , y) = P(x , y) − M(x , y), (4.2) follows. The other states are
checked similarly. The proof of the sharpness is complete.

We conclude this section with an observation which follows immediately from the above consid-
erations. It will be needed later in the proof of Theorem 2.2.

Remark 4.1. The function Q : [0,∞)×R→ [0,1], given by Q(x , y) = limδ→0 P(x , y), is continuous.

5 Applications

We start with the following auxiliary fact.

Lemma 5.1. (i) Suppose that

y <−x < 0 and
�

4x

x − 3y

�1/3 2x − 2y

x − 3y
< t < 1. (5.1)

Then there is a unique positive number C0 = C0(x , y, t) satisfying C0 ≤ 8/(x − 3y) (equivalently,
(C0 x , C0 y) ∈ D1) and

1

16
C2

0 (x + y)(5x − 3y) + C0(x + y) + 4= t(3C0(x + y) + 8)2/3. (5.2)

(ii) Suppose that

y <−x < 0 and
2x

x − y
< t ≤

�

4x

x − 3y

�1/3 2x − 2y

x − 3y
. (5.3)

Then there is a unique positive number C1 = C1(x , y, t) such that 8/(x − 3y) ≤ C1 ≤ 4/(x − y)
(equivalently, (C1 x , C1 y) ∈ D2) and

C2
1 x(x − y) = 2t(6C1(x − y)− 16)2/3.

Proof. We will only prove (i), the second part can be established essentially in the same manner.
Let

F(C) =
1

16
C2(x + y)(5x − 3y) + C(x + y) + 4− t(3C(x + y) + 8)2/3.

It can be verified readily that F ′ is convex and satisfies F ′(0+) = (x + y)(1− t) < 0: thus F is
either decreasing on (0,8/(x − 3y)), or decreasing on (0, x0) and increasing on (x0, 8/(x − 3y)
for some x0 from (0, 8/(x −3y)). To complete the proof, it suffices to note that F(0) = 4−4t > 0
and

F
�

8

x − 3y

�

= 4
�

4x

x − 3y

�2/3
�

�

4x

x − 3y

�1/3 2x − 2y

x − 3y
− t

�

< 0. �

Let L : [0,∞)×R× [0,1]→ R be given by

L(x , y, t) =



















(x − y)/2 if t = 1,
t

C0
− (3C0(x + y) + 8)1/3(−5x+3y

16
+ 1

2C0
) if (5.1) holds,

t
C1
+ C1 x

4

�

x(x−y)
2t

�1/2
if (5.3) holds,

x if t ≤ 2x
x−y

.

(5.4)
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Proof of (2.3) and (2.4). Clearly, it suffices to prove the inequality for β = 0, replacing ( f , g) by
( f , g − β), if necessary. Let C > 0 be an arbitrary constant. Application of (2.1) to the sequences
C f , C g yields P(g∗ ≥ 0)− C || f ||1 ≤ U(C x , C y), which, by (2.2), leads to the bound

|| f ||1 ≥
t − U(C x , C y)

C
. (5.5)

If one maximizes the right-hand side over C , one gets precisely L(x , y, t). This follows from a
straightforward but lengthy analysis of the derivative with an aid of the previous lemma. We omit
the details. To get (2.4), note that for fixed x and t, the function L(x , ·, t) is nonincreasing. This
follows immediately from (5.5) and the fact that U(x , ·) is nondecreasing, which we have already
exploited. �
Sharpness of (2.3) As previously, we may restrict ourselves to β = 0. Fix x ≥ 0, y ∈ R and
t ∈ [0,1]. If x + y ≥ 0, then the examples studied in 1◦ and 3◦ in the preceding section give
equality in (2.3). Hence we may and do assume that x + y < 0. Consider three cases.
(i) Suppose that t ≤ 2x/(x − y). Take C > 0 such that (C x , C y) ∈ D3 and take the Markov
pair ( f , g), with ( f0, g0) = (C x , C y), from the previous section. Then the pair ( f /C , g/C) gives
equality in (2.3) (see 5◦).
(ii) Let 2x/(x − y) < t < 1 and take 0 < ε < 1− t. Recall the function Q defined in Remark 4.1.
First we will show that

Q(C x , C y) = t + ε for some C = C(ε, t)> 0. (5.6)

Indeed, for large C we have (C x , C y) ∈ D3, so P(C x , C y) = 2x/(x − y) regardless of the value
of δ (see 5◦), and, in consequence, Q(C x , C y) = 2x/(x − y). Similarly, P(0, 0) = 1 for any δ, so
Q(0,0) = 1. Thus (5.6) follows from Remark 4.1. Another observation, to be needed at the end of
the proof, is that

lim inf
ε→0

C(ε, t)> 0. (5.7)

Otherwise, we would have a contradiction with (5.6), Remark 4.1 and the equality Q(0,0) = 1.
Now fix δ > 0 and consider a Markov pair ( f , g), starting from (C x , C y), studied in the previous
section. If δ is taken sufficiently small, then the following two conditions are satisfied: first, by
(4.2), we have P(g∗ ≥ 0)− || f ||1 ≥ U(C x , C y)− ε; second, by the definition of Q, P(g∗ ≥ 0) =
P(C x , C y) ∈ (t, t+2ε). In other words, for this choice of δ, the pair ( f /C , g/C) starts from (x , y),
satisfies (1.1), we have P((g/C)∗ ≥ 0)≥ t and

|| f /C ||1 ≤ (t − U(C x , C y) + 3ε)/C ≤ L(x , y, t) + 3ε/C .

To get the claim, it suffices to note that ε was arbitrary and that (5.7) holds.
(iii) Finally, assume that t = 1. Then the following Markov pair ( f , g), starting from (x , y), gives
equality in (2.3):

• For y ≥ 0, the state (0, y) is absorbing.

• if x 6= 0, then (x , y) leads to (0, y + x) and (2x , y − x), with probabilities 1/2.

• if y < 0, the state (0, y) leads to (−y/2, y/2).

The analysis is similar to the one presented in the case 3◦ in the previous section. The details are
left to the reader. �
We turn to the proof of the weak type inequality from Theorem 2.3.
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Proof of Theorem 2.3. Fix λ > 0 and apply Theorem 2.1 to martingales 8 f /(3λ) and 8g/(3λ)−
8/3, conditionally on F0. Taking expectation of both sides, we get

P(g∗ ≥ λ) = P
�

�

8g

3λ
−

8

3

�∗

≥ 0

�

≤
�

�

�

�

�

�

�

�

8 f

3λ

�

�

�

�

�

�

�

�

1

+EU
�

8 f0

3λ
,
8g0

3λ
−

8

3

�

.

Thus it suffices to show that for all points (x , y) ∈ [0,∞)×R satisfying |y| ≤ |x | we have

U
�

x , y −
8

3

�

≤ 0 (5.8)

and that the equality holds for at least one such point. This is straightforward: as already men-
tioned above, the function y 7→ U(x , y) is nondecreasing, so

U
�

x , y −
8

3

�

≤ U
�

x , x −
8

3

�

≤ U
�

0,−
8

3

�

= 0,

where, in the latter inequality, we have used Remark 3.3. �
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