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Abstract
Consider a Markov chain (ξv)v∈V ∈ [k]V on the infinite b-ary tree T = (V, E) with irreducible edge
transition matrix M , where b ≥ 2, k ≥ 2 and [k] = {1, . . . , k}. We denote by Ln the level-n vertices
of T . Assume M has a real second-largest (in absolute value) eigenvalue λ with corresponding
real eigenvector ν 6= 0. Letting σv = νξv

, we consider the following root-state estimator, which
was introduced by Mossel and Peres (2003) in the context of the “recontruction problem” on trees:

Sn = (bλ)
−n
∑

x∈Ln

σx .

As noted by Mossel and Peres, when bλ2 > 1 (the so-called Kesten-Stigum reconstruction phase)
the quantity Sn has uniformly bounded variance. Here, we give bounds on the moment-generating
functions of Sn and S2

n when bλ2 > 1. Our results have implications for the inference of evolution-
ary trees.

1 Introduction

We first state our main theorem. Related results and applications are discussed at the end of the
section.

Basic setup. For b ≥ 2, let T = (V, E) be the infinite b-ary tree rooted at ρ. Denote by Tn the
first n ≥ 0 levels of T . Let M = (Mi j)ki, j=1 be a k× k irreducible stochastic matrix with stationary
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distribution π > 0. Assume M has a real second-largest (in absolute value) eigenvalue λ and let
ν 6= 0 be a real right eigenvector corresponding to λ with

k
∑

i=1

πiν
2
i = 1.

Let [k] = {1, . . . , k}. Consider the following Markov process on T : pick a root state ξρ in [k]
according to π; moving away from the root, apply the transition matrix M to each edge indepen-
dently. Denote by (ξv)v∈V the state assignment so obtained and let

σv = νξv
,

for all v ∈ V .

Reconstruction. In the so-called “reconstruction problem,” one seeks—roughly speaking—to in-
fer the state at the root from the states at level n, as n → ∞. This problem has been studied
extensively in probability theory and statistical physics. See e.g. [EKPS00] for background and
references. Here, we are interested in the following root-state estimator introduced in [MP03].
For n≥ 0, let Ln be the vertices of T at level n. Consider the following quantity

Sn =
1

(bλ)n
∑

x∈Ln

σx . (1)

It is easy to show that, for all n≥ 0 and x ∈ Ln,

E[σx |ξρ] = λnσρ, (2)

and, hence,
E[Sn |ξρ] = σρ,

that is, Sn is “unbiased.” Moreover, it was shown in [MP03] that in the so-called Kesten-Stigum
reconstruction phase, that is, when bλ2 > 1, it holds that for all n≥ 0

max
i
E[S2

n |ξρ = i]≤ C <+∞,

where C = C(M) is a constant depending only on M (not on n).

Main results. For n≥ 0, i = 1, . . . , k, and ζ ∈ R, let

Γi
n(ζ) = E[e

ζSn |ξρ = i],

and
eΓi

n(ζ) = E[e
ζS2

n |ξρ = i].

We prove the following. See below for motivation arising from computational biology.

Theorem 1 (Exponential Moment Bound). Assume M is such that bλ2 > 1. Then, there is c =
c(M)<+∞ such that for all n≥ 0, i = 1, . . . , k, and ζ ∈ R, it holds that

Γi
n(ζ)≤ eνiζ+cζ2

<+∞.

Note that νi = E[Sn |ξρ = i].
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Corollary 1. Assume M is such that bλ2 > 1. Then, there is ζ̃= ζ̃(M) ∈ (0,+∞) and eC = eC(M)<
+∞ such that for all n≥ 0, i = 1, . . . , k, and ζ ∈ (−ζ̃, ζ̃), it holds that

eΓi
n(ζ)≤ eC <+∞.

The proofs of Theorem 1 and Corollary 1 can be found in Section 2.

Motivation. Our main theorem was recently used to solve an important mathematical biology
problem which we now briefly discuss. As explained above, the quantity Sn arises naturally as
a “linear” estimator of the root state of the Markov chain [EKPS00, MP03]. In the past few
years, deep connections have been established between this “root” reconstruction problem and
the inference of phylogenies—a central problem in computational biology [SS03, Fel04].
A phylogeny is a tree representing the evolutionary history of a group of organisms, where the
leaves are (typically) modern species and the branchings correspond to past speciation events. To
reconstruct phylogenies, biologists extract DNA sequences from extant species. It is standard in
evolutionary biology to model such collections of “aligned” sequences as ` i.i.d. samples from the
leaves of a Markov chain on a finite tree

S= {(σi
x)x∈Ln

}`i=1, (3)

where ` is the sequence length. In words we assume that the DNA of the ancestral species rep-
resented by the root of the tree is inherited by descendant species, up to random substitutions
occuring along the branches of the tree. In this model, we ignore population-level variation and
consider only a “reference” genome. Each site or position of this reference genome is identified
with a sample of the Markov chain. That is, the number of samples corresponds to the length of
the DNA sequence. The independence assumption is made for convenience. We also ignore other
mutational events, such as insertions and deletions, which are dealt with separately through a
pre-processing phase of multiple sequence alignment. The goal of the phylogenetic reconstruction
problem is to infer the leaf-labelled tree that generated these samples. In particular, developing
reconstruction techniques that require as few samples as possible is of practical importance. Note
that, in general, the tree (which is deterministic but unknown) may not be complete and the
Markov transition matrix may differ across edges.
Classical approaches for reconstructing phylogenies are typically computationally intractable [GF82,
DS86, Day87, CT06, Roc06] or they require impractical sequence lengths [Att99, LC06, SS99,
SS02]. Over the past two decades, however, much progress has been made in the design of com-
putationally efficient reconstruction techniques which require shorter sequence lengths, starting
with the seminal work of Erdös et al. [ESSW99].
The algorithm in [ESSW99], often dubbed the Short Quartet Method (SQM), is based on well-
known distance-matrix techniques which rely on the “evolutionary distance” between each pair of
species, that is, roughly an estimate of the time elapsed since their most recent common ancestor.
In our notation, suppose x , y ∈ Ln are separated by 2m edges and have lowest common ancestor
z ∈ Ln−m. Then, using (2) and conditioning on the state at z, we see that

E[σ1
xσ

1
y] = λ

2m,

and, hence,

d̂(x , y) =− ln
1

`

∑̀

i=1

σi
xσ

i
y → [lnλ

−2]m, (4)
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almost surely, as ` → +∞. In other words, d̂(x , y) is a consistent estimator of the number of
edges separating x and y from z up to a multiplicative constant. From all such pairwise distances,
it is a simple matter to reconstruct the complete binary tree—iteratively merge all closest pairs.
Algorithms have been designed to deal efficiently with more general trees.
Unlike “naive” distance-matrix methods, however, the key behind SQM is that it discards “long”
evolutionary distances whose estimates from sequence comparisons as in (4) are known to be
statistically unreliable. For instance, in the two-state symmetric case, that is, when k = 2 and M
symmetric, we have ν = (+1,−1) and the signal-to-noise ratio for x and y as above is given by

E[σ1
xσ

1
y]

Æ

Var[σ1
xσ

1
y]
=

λ2m

p

1−λ4m
→ 0, (5)

as m → +∞. The SQM algorithm works by first building subtrees of small diameter and, in a
second stage, glueing the pieces back together. In fact this step is not needed for the complete
binary tree, but it is crucial for more general trees. The algorithm is then guaranteed to return the
correct topology with high probability in polynomial time from sequences that grow polynomially
with the number of leaves of the tree.
Another series of theoretical improvements was triggered by an insightful conjecture of Steel
claiming that the reconstruction of phylogenies should be feasible from much shorter sequences
when the corresponding root-state reconstruction problem is “solvable,” in particular, in the Kesten-
Stigum reconstruction phase bλ2 > 1 considered here. Intuitively, the fact that more information
about internal sequences “diffuses” to the leaves should make phylogeny reconstruction easier. The
conjecture was established in the two-state symmetric case by Mossel [Mos04] and Daskalakis et
al. [DMR11]. More precisely it was shown that, when the Markov transition matrix on each branch
satisfies the Kesten-Stigum bound, the phylogeny can be reconstructed in polynomial time from
sequences that grow only logarithmically (instead of polynomially) with the number of leaves. The
main idea of the proof is the “boosting” of standard tree-building techniques through the inference
of ancestral sequences. In the case of the complete binary tree, one could proceed as follows:

1. Merge all closest pairs of leaves.

2. Infer ancestral sequences at the parents of the merged pairs.

3. Use those ancestral sequences to merge all closest pairs of parents.

4. And so on.

To be more precise, in the third step we estimate the evolutionary distance between internal nodes
u and v on level n′ < n using

ˆ̂d(u, v) = − ln
1

`

∑̀

i=1






(bλ)−(n−n′)

∑

x∈Lu
n

σi
x












(bλ)−(n−n′)

∑

x∈Lv
n

σi
x







≡ − ln
1

`

∑̀

i=1

S(u),in−n′S
(v),i
n−n′ , (6)

where Lu
n is the set of nodes on level n below u—assuming for simplicity that λ is known. In

words, we estimate the correlation between the reconstructed sequences at u and v. The key is
that, as long as the ancestral sequences are sufficiently well correlated with the true sequences,
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one only needs to estimate evolutionary distances between pairs of nodes (possibly, internal) with
high signal-to-noise ratio in (5). A more complex algorithm was developed in [DMR11] to deal
with more general trees.
This “boosted” reconstruction algorithm performs a polynomial number of evolutionary distance
estimation, each of which therefore has to be accurate with inverse polynomial probability (in
the number of leaves). In order to achieve such success with a logarithmic number of samples,
one needs exponential concentration on the quantity (6). Proving such concentration necessitates
uniform bounds on the moment-generating functions of Sn and S2

n—our main result. Indeed, using
the notation introduced in (6), by our main result

E
h

exp(ζS(u),1n−n′S
(v),1
n−n′)

i

= E
h

E
h

exp(ζS(u),1n−n′S
(v),1
n−n′) |σ

1
u,σ1

v

ii

≤ E
h

E
h

exp(σ1
v{ζS(u),1n−n′}+ c{ζS(u),1n−n′}

2) |σ1
u,σ1

v

ii

,

which, by the Cauchy-Schwarz inequality and our corollary, is finite for small enough ζ. We can
therefore apply classical large deviations techniques to obtain exponential concentration on the
estimator ˆ̂d. Our main theorem is proved by induction on the number of levels and the particular
form of upper bound we consider allows the recursion to go through.
We note that our main result was recently used by one of us [Roc10], building on [Roc08], to
prove Steel’s conjecture for general k and reversible transition matrices of the form M = etQ in the
Kesten-Stigum phase.

Related results. Moment-generating functions of random variables similar to (1) have been
studied in the context of multi-type branching processes. In particular, Athreya and Vidyashankar [AV95]
have obtained large-deviation results for quantities of the type (in our setting)

Rn = b−nZn ·w−π ·w,

where w ∈ Rk and Zn = (Z (1)n , . . . , Z (k)n ) is the “census” vector, that is,

Z (i)n = |{x ∈ Ln : ξx = i}|,

for all i ∈ [k]. However, note that we are interested in the degenerate case w = ν ⊥ π (see
e.g. [HJ85]) and our results cannot be deduced from [AV95].
Note moreover that our bounds cannot hold when bλ2 < 1. Indeed, in that case, a classical CLT
of Kesten and Stigum [KS66] for multi-type branching processes implies that the quantity

Qn ≡ (bλ2)n/2Sn =
1

bn/2

∑

x∈Ln

σx ,

converges in distribution to a centered Gaussian with a finite variance (independently of the root
state). See [MP03] for more on the Kesten-Stigum CLT and its relation to the reconstruction
problem.

Organization. The proof of our results can be found in Section 2.
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2 Proof

We first prove our main theorem in a neighbourhood around zero.

Lemma 1. Assume M is such that bλ2 > 1. Then, there is c′ = c′(M)<+∞ and ζ0 ∈ (0,+∞) such
that for all n≥ 0, i = 1, . . . , k, and |ζ|< ζ0, it holds that

Γi
n(ζ)≤ eνiζ+c′ζ2

.

Proof. We prove the result by induction on n. For n= 0, note that

Γi
0(ζ) = eνiζ,

so the first step of the induction holds for all c′ > 0 and all ζ ∈ R.
Now assume the result holds for n> 0 with c′ and ζ0 to be determined later. For n≥ 0, i = 1, . . . , k,
and ζ ∈ R, let

γi
n(ζ) = lnΓi

n(ζ).

Let α1, . . . ,αb be the children of ρ and, for ω= 1, . . . , b, denote by Lωn+1 the descendants of αω on
the n+ 1’st level. For ω= 1, . . . , b, let

S(ω)n+1 =
1

(bλ)n
∑

x∈Lωn+1

σx .

Note that conditioned on ξρ, the random vectors

(ξx)x∈L1
n+1

, . . . , (ξx)x∈Lb
n+1

,

are independent and identically distributed. Hence, the variables

S(1)n+1, . . . , S(b)n+1,

are also conditionally independent and identically distributed. Applying the transition matrix to
the first level of the tree and using the induction hypothesis, we have for ζ ∈ (−ζ0,ζ0)

γi
n+1(ζ) = lnE[eζSn+1 |ξρ = i]

= lnE



exp

 

ζ

bλ

b
∑

ω=1

S(ω)n+1

!

�

�

�

�

ξρ = i





= b lnE
�

exp
�

ζ

bλ
S(1)n+1

�
�

�

�

�

ξρ = i

�

= b ln





k
∑

j=1

Mi jE
�

exp
�

ζ

bλ
S(1)n+1

�
�

�

�

�

ξα1
= j

�





= b ln





k
∑

j=1

Mi jΓ
j
n

�

ζ

bλ

�





≤ b ln





k
∑

j=1

Mi je
ν j(

ζ

bλ
)+c′( ζ

bλ
)2



 ,
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where we used that by assumption

|bλ| ≥
1

|λ|
≥ 1,

so that ζ/(bλ) ∈ (−ζ0,ζ0). By a Taylor expansion, as ζ0 goes to zero (in particular ζ0 < 1), we
have

γi
n+1(ζ) ≤ c′

ζ2

bλ2

+b ln





k
∑

j=1

Mi j

�

1+ ν j

�

ζ

bλ

�

+
1

2
ν2

j

�

ζ

bλ

�2

+ |ζ|3
�





≤ c′
ζ2

bλ2

+b ln

�

1+λνi

�

ζ

bλ

�

+
1

2
‖ν‖2

∞

�

ζ

bλ

�2

+ |ζ|3
�

≤ νiζ+
�

c′ +
1

2
‖ν‖2

∞

�

ζ2

bλ2 −
1

2

ν2
i ζ

2

b
+Oζ0

(|ζ|3)

≤ νiζ+
�

c′ +
1

2
‖ν‖2

∞

�

ζ2

bλ2 +Oζ0
(|ζ|3).

Choose c′ > 0 large enough so that

c′ >
�

c′ +
1

2
‖ν‖2

∞

�

1

bλ2 ,

that is,

c′ >
‖ν‖2

∞

2bλ2

�

1−
1

bλ2

�−1

.

Note that c′ is well defined when bλ2 > 1. Then there is ζ0 ∈ (0,+∞) such that for all ζ ∈
(−ζ0,ζ0)

γi
n+1(ζ)≤ νiζ+ c′ζ2.

That concludes the proof.

The following lemma deals with values of ζ away from zero.

Lemma 2. Assume M is such that bλ2 > 1. Let ζ0 ∈ (0,+∞) be as in Lemma 1. Then, there is
c′′ = c′′(M)<+∞ such that for all n≥ 0, i = 1, . . . , k, and |ζ| ≥ ζ0, it holds that

Γi
n(ζ)≤ ec′′ζ2

.

Proof. Let c′ be as in Lemma 1. Let ζ1 ∈ (0,+∞) be such that

ζ1 <
ζ0

|bλ|
. (7)

Choose c′′ > c′ large enough so that
eνiζ+c′ζ2

≤ ec′′ζ2
, (8)
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for all |ζ|> ζ1 and for all i = 1, . . . , k.
Let n≥ 0 and ζ with |ζ| ≥ ζ0 be fixed. Note that, when we relate the exponential moment at level
m to that at level m− 1 with a recursion as in the proof of Lemma 1, the value of ζ is effectively
divided by bλ. Therefore, there are two cases in the proof: either we reach the interval (−ζ0,ζ0)
by the time we reach m= 0 in the recursion; or we do not.

1. First assume that
�

�

�

�

ζ

(bλ)n

�

�

�

�

≥ ζ0, (9)

that is, we do not reach (−ζ0,ζ0). We prove the result by induction on the level m= 0, . . . , n.
At m= 0, we have

Γi
0

�

ζ

(bλ)n

�

= eνi(
ζ

(bλ)n
) ≤ ec′′( ζ

(bλ)n
)2 ,

by (8) and (9) for all i = 1, . . . , k. Assume for the sake of the induction that

Γi
m

�

ζ

(bλ)n−m

�

≤ ec′′( ζ

(bλ)n−m )
2

,

for all i = 1, . . . , k. Using the calculations of Lemma 1, we have

γi
m+1

�

ζ

(bλ)n−(m+1)

�

= b ln





k
∑

j=1

Mi jΓ
j
m

�

1

bλ

ζ

(bλ)n−(m+1)

�





≤ b ln





k
∑

j=1

Mi je
c′′( ζ

(bλ)n−m )
2





= bc′′
�

ζ

(bλ)n−m

�2

=
b

b2λ2 c′′
�

ζ

(bλ)n−(m+1)

�2

≤ c′′
�

ζ

(bλ)n−(m+1)

�2

,

where we used bλ2 > 1 on the last line. The proof of the first case follows by induction, that
is, we have

Γi
n(ζ)≤ ec′′ζ2

,

for all i = 1, . . . , k.

2. Assume now that
�

�

�

�

ζ

(bλ)n

�

�

�

�

< ζ0. (10)

Let m∗ be the largest value in 0, . . . , n such that
�

�

�

�

ζ

(bλ)n−m∗

�

�

�

�

< ζ0. (11)
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The purpose of Assumption (7) above is to make sure that we never “jump” entirely over the
subset of (−ζ0,ζ0) where (8) holds. Indeed, by (7) and

�

�

�

�

ζ

(bλ)n−(m∗+1)

�

�

�

�

≥ ζ0, (12)

it follows that we must also have
�

�

�

�

ζ

(bλ)n−m∗

�

�

�

�

> ζ1. (13)

Hence, by (8) and Lemma 1, we get

Γi
m∗

�

ζ

(bλ)n−m∗

�

≤ e
c′′( ζ

(bλ)n−m∗ )
2

,

for all i = 1, . . . , k. The proof then follows by induction as in the first case above.

Proof of Theorem 1: Let ζ0, c′ and c′′ be as in Lemmas 1 and 2. Choose c > c′′(> c′) large enough
so that

ec′′ζ2
≤ eνiζ+cζ2

, (14)

for all |ζ| ≥ ζ0 and for all i = 1, . . . , k. The result then follows by combining Lemmas 1 and 2. �

Proof of Corollary 1: We use a standard trick relating the exponential moment of the square
to that of a Gaussian. Let X be a standard normal defined on a joint probability space with our
Markov chain, but independent from it. Using Theorem 1 and applying Fubini we have for all
n≥ 0 and i = 1, . . . , k

E[eζS2
n |ξρ = i] = E[e

p
2ζSnX |ξρ = i]

≤ E[eνi

p
2ζX+c2ζX 2

|ξρ = i].

The last expectation is finite for ζ small enough. �
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