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Abstract
We prove the existence of a solution for the Kolmogorov equation associated with a reflection
problem for 2-D stochastic Navier-Stokes equations with periodic spatial conditions and the corre-
sponding stream flow in a closed ball of a Sobolev space of the torus T2.

1 Introduction

We consider here the 2-D stochastic Navier-Stokes equation for an incompressible non-viscous
fluid

�

dX − ν∆X d t + (X · ∇)X d t =∇p d t + dWt
∇ · X = 0 (1)

This equation is considered on a 2-D torus, that we identify with the square T2 = [0, 2π]×[0,2π]
and with periodic boundary conditions.
Here ν is the viscosity of the fluid, X is the velocity field, p is the pressure and W is a cylindrical
Wiener process.

If we denote by φ : T2→R the corresponding stream function, that is

X =∇⊥φ, −∆φ = curl X , φ(ξ+ 2π)≡ φ(ξ) (2)
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where ∇⊥ = (−D2, D1), curl X = D2X1 − D1X2, X = (X1, X2) we may rewrite (1) in terms of the
stream function φ (see [1], [2])

d(∇⊥φ)− ν∆∇⊥φ d t + (∇⊥φ · ∇)∇⊥φ d t =∇p d t + dWt (3)

and formulate for (1) the corresponding reflection problem on the set

K = {φ ∈ H1−α(T;R2) : ‖φ‖1−α ≤ `} (4)

where H1−α is the Sobolev space of order 1 − α with α > 3
2
, with respect to the natural Gibbs

measure µ given by enstrophy (see Section 2 below.)
More precisely, we shall prove that the Kolmogorov equation associated with (1), (2) and (4) has
at least one solution ϕ : T2 → R. In terms of coordinates u j =

1
2π

∫

T2 ei j·ξφ(ξ) dξ this equation
has the form

¨

λϕ− Lϕ = f in �K
∂ ϕ

∂ n
= 0 on ∂ K .

(5)

where L is the Kolmogorov operator

Lϕ(u) =
∑

k∈Z2

�

1

2k2 D2
kϕ(u)− νk2uk Dkϕ(u)− Bk(u)Dkϕ(u)

�

, (6)

defined on a space FC2
b of cylindrical smooth functions. (The function Bk is defined in (10).)

The main result of this work, Theorem 1 below, amounts to saying that the Neumann problem (5)
has at least one weak solution ϕ, but the uniqueness of this solution remains open. It should be
said that the uniqueness is still an open problem in the case K = H1−α and it is equivalent in the
later case with the unique extension of operator L fromFC2

b to an m-dissipative operator in L2(µ)
see [3]. We mention, however, that L is essentially m-dissipative in L1(µ) when the viscosity ν is
sufficiently large (Stannat [11]). It should mention also that in this way the study of stochastic
process X = X t reduces to a linear infinite dimensional equation in the space H1−α associated to
the operator L.

There is a large number of works devoted to infinite dimensional stochastic reflection problems
but most of them are, except a few notable works, concerned with Wiener processes W with finite
covariance. So the existence theory for (13) is still open.
Here following the way developped in [5], [6], we will treat instead of (1) its associated Kol-
mogorov equation which as noted in Introduction will lead to an infinite dimensional Neumann
problem on the convex K . (The Kolmogorov equation [6] in the special case K = H1−α was
previously studied by Flandoli and Gozzi [9].)

Previous results on infinite dimensional reflection problems, starting from [10] are essentially
concerned with reversible systems. We believe that the present paper is the first attempt to study
non symmetric infinite dimensional Kolmogorov operators with Neumann boundary conditions.

2 The functional setting

Consider the Sobolev space of order p ∈R defined by

H p =







y(ξ) =
1

2π

∑

j∈Z2
+

u je
i j·ξ :

∑

j∈Z2
+

j2p |u j |2 <+∞






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where j = ( j1, j2) and Z2
+ = { j ∈ Z

2 : j1 > 0 or j1 = 0, j2 > 0}. We set also Z2
0 = Z

2 \ {(0, 0)},
j2 = j2

1 + j2
2 and set u = {u j} j∈Z2

0
, u j = ū− j for j ∈ Z2

0 \Z
2
+. The space H p is a complex Hilbert

space with the scalar product

〈y1, y2〉p =
∑

j∈Z2
+

j2p(y1) j( ȳ2) j , y j =
1

2π

∫

T2

y(ξ)ei j·ξ dξ.

Consider the Gibbs measure µ= µν given by the enstrophy, that is

dµ(u) =
∏

j∈Z2
+

dµi(u j), dµ j(z) =
ν j4

2π
exp
�

− 1
2
ν j4|z|2

�

d xd y, z = x + iy.

We recall (see [1], [3]) that for α > 0 we have
∫

H

|u|21−α dµ(u)<∞,

and so the probability measure µ is supported by H p, p < 1. For each q ≥ 1 we denote the space
Lq(Λ,µ) by Lq(µ).
We denote by H1,2(Hδ,µ) the completion of the space FC2

b in the norm

‖ϕ‖2
δ =

∑

j∈Z2
0

| j|2δ
∫

H

|D jϕ|2 dµ+

∫

H

|ϕ|2 dµ.

Given a closed convex subset K ⊂ Hδ with smooth boundary we denote by H1,2
δ
(K ,µ) the space

{ϕ
�

�

K : ϕ ∈ H1,2(Hδ,µ)} with the norm

‖ϕ‖2
H1,2(K ,µ) =

∑

j∈Z2
0

| j|2δ
∫

K

|D jϕ|2 dµ+

∫

K

|ϕ|2 dµ.

There is a standard way (see [1], [2]) to reduce equation (1) to a differential equation in H1−α

we briefly present below. Namely applying the curl operator into (3) we get for ψ = curl X the
equation

dψ− ν∆ψ d t + curl [(∇⊥φ · ∇)∇⊥φ] d t = d curl Wt .

Now, we expand φ in Fourier series

φ(t,ξ) =
1

2π

∑

j∈Z2
0

u j(t)e
i j·ξ (7)

and take W to be the cylindrical Wiener process

Wt =
1

2π

∑

j∈Z2
0

| j|−1∇⊥(ei j·ξ)Wj(t) (8)

where {Wj} j∈Z2
0

are independent Brownian motions in a probability space {Ω,F ,P, {Ft}t≥0}. We
note that

curl Wt =−
1

2π

∑

j∈Z2
0

| j| ei j·ξWj(t)
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By (7) we have

ψ(t,ξ) =
1

2π

∑

j∈Z2
0

j2 u j(t)e
i j·ξ, ∆ψ(t,ξ) =−

1

2π

∑

j∈Z2
0

( j2)2 u j(t)e
i j·ξ

and (see [2])
curl [(∇⊥φ · ∇)∇⊥φ] =

∑

j∈Z2
0

j2B j(u).

Then (1) reduces to

du j(t) + ν j2u j(t) d t − B j(u(t)) d t = | j|−1dWj(t). (9)

Here we have used the notation

B j(u) =
∑

h6=0
h6= j

αh, j u j u j−h, αh, j =
1

2π

h

j−2( j · h⊥)( j · h)−
1

2
h⊥ · j

i

, (10)

and h⊥ = (−h2, h1), h= (h1, h2). Since the function φ is real valued one must have uk = ū−k and
this implies B̄k = B−k for all k.
It turns out that if p <−1 then the vector field B = {B j} j∈Z2

0
is Lq-integrable in the norm | · |p with

respect to the Gibbs measure µ for all q ≥ 1.
One also has (see [7])

∑

j∈Z2
0

j2p

�
∫

|B j(u)|2q dµ

�
1
2

<∞. (11)

Moreover, the measure µ is infinitesimally invariant for B (see [1], [7].)
Equation (9) can be written in H1−α as

du+ νQAu d t − Bu d t = dWt (12)

where
Au= {k−(1+α)uk}k∈Z2

0
, Wt = {| j|−1Wj(t)} j∈Z2

0
, Qv = {k3+αvk}k∈Z2

0
.

We recall (see [1]) that A is a Hilbert-Schmidt operator on H2 and |Au|2 = |u|1−α.
Now, we associate with (12) the stochastic variational inequality

du+ νQAu d t − B(u) d t + R∂ IK(u) d t 3 dWt (13)

where Rv = {k−2αvk}k∈Z2
0
, K is a smooth closed and convex subset of H = H1−α and ∂ IK : K → 2H

is the normal cone to K . Formally (13) can be written as







du(t) + νQAu(t) d t − Bu(t) d t = dWt
du(t) + νQAu(t) d t − Bu(t) d t +λ(t)RnK(u(t)) = dWt
u(t) ∈ K ∀t ≥ 0

in {t | u(t) ∈ �K}
in {t | u(t) ∈ ∂ K}

where λ(t)≥ 0 and nK(u) is the unit exterior normal to ∂ K .



308 Electronic Communications in Probability

Coming back to equation (1) and taking into account (2) the variational inequality (13) can be
rewritten in terms of the velocity field X under the form

�

dX − ν∆X d t + (X · ∇)X d t + NK (X ) d t 3 ∇p d t + dWt
∇ · X = 0, X = 0 on ∂ O (14)

where NK (X ) is the normal cone to the closed convex set K of {X ∈
�

L2(0, 2π)
�2;∇ · X =

0, X (0) = X (2π)} defined by,

K = {X : {〈φ, e−i j·ξ〉L2(T2)} j∈Z2
0
∈ K , φ = (−∆)−1curl X }.

This is the reflection problem to the boundary of K on the oblique normal direction NK (x). In
the special case of K given by (4) its meaning is that the stream value φ of the fluid is constrained
to the set ‖φ‖1−α ≤ ` and when φ reaches the boundary ∂ K in the dynamic of fluid arises a
convective acceleration oriented toward interior of K along an oblique direction. Indeed we have
by definition of the normal cone NK (X ),

NK (X ) =
n

η ∈
�

L2(0,2π)
�2;

∫ 2π

0

∫ 2π

0

η(ξ)(X (ξ)− Y (ξ))dξ≥ 0 ∀Y ∈K
o

Recalling that by (2), (7),

X =
i

2π

∑

j∈Z2
0

j⊥ u j ei j·ξ

and setting

η=
i

2π

∑

j∈Z2
0

j⊥η j ei j·ξ, Y =
i

2π

∑

j∈Z2
0

j⊥ v j ei j·ξ

where {η j} j , {v j} j ∈ H1−α, we see that

NK (X ) =
n

η;
∑

j∈Z2
0

| j|2η j (ū j − v̄ j)≥ 0,∀{v j} j ∈ K
o

On the other hand, the normal cone NK(u) to K in H1−α is given by

NK(u) =
n

η̃= {η̃ j} j;
∑

j∈Z2
0

j2(1−α) η̃ j (ū j − v̄ j)≥ 0,∀ũ= {u j} j ∈ K
o

Hence
NK (X ) =

n

η; 〈η, ei j·ξ〉L2(T2) = η j = j−2αη̃ j; {η̃ j} j ∈ NK(u)
o

and taking into account (13) and definition of K this yields (14) as claimed.

3 The Kolmogorov equation

Consider the Kolmogorov operator L corresponding to (9) which is defined by (6) on the space
FC2

b of cylindrical C2-functions

FC2
b = {ϕ = ϕ(u j1 , u j2 , . . . , u jn) : n≥ 1, j1, u j2 , . . . , u jn ∈Z

2
0, ϕ ∈ C2

b (C
n)}.
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We recall (see e.g., [1], [2], [3]) that the measure µ is invariant for operator L. As noticed earlier
the essential m-dissipativity of L in the space L2(µ) is still an open problem.
Our aim here is to study the Neumann problem

¨

λϕ− Lϕ = f
∂ ϕ

∂ n
= 0

in �K
on ∂ K =: Σ (15)

considered in some generalized sense to be precised below.

Definition 1. The function ϕ : K →R is said to be weak solution to (15) if

∫

K

|ϕ|2 dµ <∞,
∑

j∈Z2
0

j−2

∫

K

|D jϕ|2 dµ <∞, (16)

and

λ

∫

K

ϕψ dµ+
1

2

∑

j∈Z2
0

j−2

∫

K

D jϕ D jψ dµ

−
∑

j∈Z2
0

∫

K

B j(u)D jψ(u)ϕ(u) dµ(u) =

∫

K

f ψ dµ (17)

for all real valued ψ ∈ FC2
b .

It is readily seen by (11) that (14) makes sense for all ψ ∈ FC2
b .

Theorem 1 below is the main result.

Theorem 1. Assume that α > 3
2

and

K = {u ∈ H1−α : |u|1−α ≤ `} (18)

then for each real valued f ∈ L2(K ,µ) problem (5) has at least one weak solution ϕ ∈ H1,2
−1 (K ,µ)

and the following estimates hold

λ

∫

K

|ϕ|2 dµ+
1

2

∑

j∈Z2
0

j−2

∫

K

|D jϕ|2 dµ≤ C

∫

K

| f |2 dµ (19)

∫

K

|ϕ|2 dµ≤
1

λ2

∫

K

| f |2 dµ. (20)

In (17) as well as in (16),(19) by D jϕ we mean of course the distributional derivative D j of
function ϕ which belongs to L2(µ).

Remark 1. If ϕ is a smooth solution to elliptic problem (15) then it is easily seen via integration
by parts that ϕ is also weak solution in the sense of Definition 1.
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4 Proof of Theorem 1

To prove Theorem 1 we consider the approximating equation

λϕε − Lϕε +
∑

j∈Z2
0

j−4 βεj D jϕε = f , (21)

where L is given by (6) and

βε(u) =
1

ε
(u−ΠKu) =

u

ε

�

1−
`

|u|1−α

�

, u ∈ H.

(Here ΠK is the projection on K .) We introduce also the measure

dµε(u) =
∏

k

e−
k4 d2

K (u)

2ε dµk(u)

and note that

D j

�

e−
j4 d2

K (u)

2ε

�

=− j4 βεj (u) e
−

j4 d2
K (u)

ε .

It should be mentioned that equation (21) in spite of its apparent simplicity is still unsolvable for
all f ∈ L2(µ) and the reason is that as mentioned earlier we dont know whether the operator L is
essentially m-dissipative. In order to circumvent this we shall define just a weak solution concept
for (21) and prove the existence of such a solution.

Definition 2. The function ϕε : H = H1−α → R is said to be weak solution to equation (21) if the
following conditions hold, ϕε ∈ H1,2

−1 (µ), that is
∫

ϕ2
ε dµε <∞,

∑

k∈Z2
0

k−2

∫

|Dϕε|2 dµε <∞ (22)

and

λ

∫

ϕεψ dµε +
∑

k∈Z2
0

k−2

∫

H

Dkϕε Dkψ dµε+

+
∑

k∈Z2
0

∫

Bk(u)Dkψϕε dµε =

∫

f ψ dµε (23)

for all real valued cylindrical functions ψ ∈ FC2
b .

We note that Definition 2 is in the spirit of Definition 1 and that if ϕε is a smooth solution to (21)
then we see by (21) via integration by parts that ϕε satisfies also (23). We note that

∑

k∈Z2
0

∫

Bk(u)Dkϕεψ dµε =

−
∑

k∈Z2
0

∫

Bk(u)Dkψϕε dµε −
∑

k∈Z2
0

∫

ψϕε[DkBk(u) + k4 Bk(u) β̄
ε
k ] dµε =

−
∑

k∈Z2
0

∫

Bk(u)ϕε Dkψ dµε (24)
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because by enstrophy invariance we have (see e.g., [1], [2])
∑

k∈Z2
0

k4 ūk Bk(u)≡ 0, DkBk(u)≡ 0, ∀k ∈Z2
0, (25)

and

βεk (u) =
uk

ε

�

1−
`

|u|1−α

�

, ∀k ∈Z2
0. (26)

Proposition 1. For each f ∈ L2(µ), λ > 0 equation (19) has at least one weak solution ϕε which
satisfies the estimates

∫

|ϕε|2 dµε ≤
1

λ2

∫

| f |2 dµε, ∀ε > 0, (27)

∑

k∈Z2
0

k−2

∫

|Dkϕε|2 dµε ≤ C

∫

| f |2 dµε, ∀ε > 0. (28)

Proof. We shall use the Galerkin scheme for equation (21). Namely, we introduce the finite di-
mensional approximation Bn

k of Bk (see [1])

Bn
k (u) =

∑

k, j−k∈In

[ 1
j2 (k

⊥ · j)(k · j)− 1
2
k⊥ · j)]uk u j−k

and In = {m ∈Z2
0 : 0< |m| ≤ n}.

Then Bn = {Bn
k (u)}k∈In

, like B, has the properties (25) and the operator

Lnϕ =
∑

j∈In

[ 1
2 j2 D2

jϕ− ν j2u j D jϕ],

defined on the space of smooth functions ϕ = ϕ(u1, u2, . . . , un) has the invariant measure µn =
∏

| j|≤nµ j .
Then we consider the equation

λϕn
ε − Lnϕ

n
ε +
∑

k∈In

Bn
k Dkϕ

n
ε +
∑

k∈In

k−4(βn
k )
ε Dkϕ

n
ε = f , in Hn (29)

where (βn
k )
ε = 1

ε

�

1− `

|u|Hn

�

uk and Hn = {u j : j ∈ In}.
By standard existence theory for Kolmogorov equations associated with stochastic differential
equations, the equation (29) has a unique solution ϕn

ε which is precisely the function

ϕn
ε (u

0) = E

∫ ∞

0

e−λt f (X n
ε (t, u0)) d t,

and X n
ε = {u

n
j : j ∈ In} is the solution to stochastic equation (see [3])

duεj + ν j2 uεj d t − Bn
j (u

ε) d t = 1
| j| dWj , j ∈ In,

uεj (0) = u0
j , j ∈ In.

We may assume therefore that ϕε is smooth and so multiplying (29) by ϕn
ε and integrating with

respect to the measure

µn
ε =
∏

k∈In

e−
k2 d2

K
ε µk,
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we obtain that

λ

∫

|ϕn
ε |

2 dµε +
1
2

∑

k∈In

k−2

∫

|Dkϕ
n
ε |

2 dµε+

1
2

∑

k∈In

∫

Bn
k (u)Dk|ϕn

ε |
2 dµε =

∫

f ϕn
ε dµε. (30)

On the other hand, taking into account that by (25) we have
∑

k∈In

k4 Bn
k ūk ≡ 0, DkBn

k ≡ 0, ∀k ∈Z2
0,

and it follows as in (24) that
∑

k∈In

∫

Bn
k (u)D

n
k |ϕ

n
ε |

2 dµε = 0

and so by (30) we have that

λ

∫

|ϕn
ε |

2 dµε +
1
2

∑

k∈In

k−2

∫

|Dkϕ
n
ε |

2 dµε =

∫

f ϕn
ε dµε ≤

�

∫

| f |2 dµε
�

1
2
�

∫

|ϕn
ε |

2 dµε
�

1
2 . (31)

Hence, on a subsequence, again denoted by {n} we have for n→∞

ϕn
ε → ϕε weakly in L2(µε) (32)

{Dkϕ
n
ε } → {Dkϕε} weakly in L2(µε) (33)

and letting n tend to infinity into the weak form of (29), that is

λ

∫

ϕn
ε ψ dµε +

1
2

∑

k∈In

k−2

∫

Dkϕ
n
ε Dkψ dµε

−
∑

k∈In

∫

Bn
k (u)Dkψϕ

n
ε dµε =

∫

f ψ dµε (34)

and recalling that {Bn
k} is strongly convergent to {Bk} in L2(µ) (see Lemma 1.3.2 in [7]) we infer

that ϕε is solution to (21) as claimed. Estimates (27), (28) follows by (31), (32), (33). This
complete the proof of Proposition 1.

Proof of Theorem 1 (continued). Let ϕε be a solution to (19). By estimates (27), (28) we have for
ε→ 0

ϕε → ϕ weakly in L2(K ,µ),

{Dkϕε} → {Dkϕ} weakly in L2(K ,µ; H2).

Then, letting ε tend to zero into (23) we see that ϕ satisfies (17) for all ψ ∈ FC2
b . Estimates (19),

(20) follow by (27), (28). This completes the proof. �
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Remark 2. Letting ε tend to zero into (29) it follows via integration by parts formula by a similar
argument as in [5] that ϕn

ε → ϕ
n, D jϕ

n
ε → D jϕ

n in L2(Hn,µ)where ϕn is the solution to Neumann
boundary value problem

(

λϕn − ν∆ϕn + Bn(un) · Dϕn = f in �Kn
∂ ϕn

∂ nKn
= 0 on ∂ Kn.

where Kn = K ∪Hn. Moreover, by elliptic regularity, ϕn ∈ H2(�Kn).
On the other hand, it is clear by the above energetic estimates in H1−α that for n → ∞ {ϕn} is
convergent to a weak solution ϕ to (15). However, this solution is not necessarily that given by
approximating process ϕε.
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