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Abstract
We consider the geometry of random interlacements on the d-dimensional lattice. We use ideas
from stochastic dimension theory developed in [BKPS04] to prove the following: Given that two
vertices x , y belong to the interlacement set, it is possible to find a path between x and y contained
in the trace left by at most dd/2e trajectories from the underlying Poisson point process. Moreover,
this result is sharp in the sense that there are pairs of points in the interlacement set which cannot
be connected by a path using the traces of at most dd/2e − 1 trajectories.

1 Introduction

The model of random interlacements was introduced by Sznitman in [Szn10], on the graph Zd ,
d ≥ 3. Informally, the random interlacement is the trace left by a Poisson point process on the
space of doubly infinite trajectories modulo time shift on Zd . The intensity measure of the Poisson
process is given by uν , u > 0 and ν is a measure on the space of doubly infinite trajectories,
see (7) below. This is a site percolation model that exhibits infinite-range dependence, which for
example presents serious complications when trying to adapt techniques developed for standard
independent site percolation.
In [Szn10], it was proved that the random interlacement on Zd is always a connected set. In this
paper we prove a stronger statement (for precise formulation, see Theorem 2.2):

Given that two vertices x , y ∈ Zd belong to the interlacement set, it is a.s. possible to find a path
between x and y contained in the trace left by at most dd/2e trajectories from the underlying Poisson
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point process. Moreover, this result is sharp in the sense that a.s. there are pairs of points in the inter-
lacement set which cannot be connected by a path using the traces of at most dd/2e − 1 trajectories.

Our method is based on the concept of stochastic dimension (see Section 2.2 below) introduced
by Benjamini, Kesten, Peres and Schramm, [BKPS04]. They studied the geometry of the so called
uniform spanning forest, and here we show how their techniques can be adapted to the study of
the geometry of the random interlacements.
In Section 2.1 we introduce the model of random interlacements more precisely. In Section 2.2
we give the required background on stochastic dimension and random relations from [BKPS04].
Finally the precise statement and proof of Theorem 2.2 is split in two parts: the lower bound is
given in Section 5 and the upper bound in Section 4.
Throughout the paper, c and c′ will denote dimension dependant constants, and their values may
change from place to place. Dependence of additional parameters will be indicated, for example
c(u) will stand for a constant depending on d and u.
During the last stages of this research we have learned that B. Rath and A. Sapozhnikov, see
[RS10], have solved this problem independently. Their proof is significantly different from the
proof we present in this paper.

2 Preliminaries

In this section we recall the model of random interlacements from [Szn10] and the concept of
stochastic dimension from [BKPS04].

2.1 Random interlacements

Let W and W+ be the spaces of doubly infinite and infinite trajectories in Zd that spend only a
finite amount of time in finite subsets of Zd :

W = {γ : Z→Zd ; |γ(n)− γ(n+ 1)|= 1, ∀n ∈Z; lim
n→±∞

|γ(n)|=∞},

W+ = {γ :N→Zd ; |γ(n)− γ(n+ 1)|= 1, ∀n ∈Z; lim
n→∞
|γ(n)|=∞}.

The canonical coordinates onW andW+ will be denoted by Xn, n ∈Z and Xn, n ∈N respectively.
Here we use the convention that N includes 0. We endow W and W+ with the sigma-algebras W
andW+, respectively which are generated by the canonical coordinates. For γ ∈W , let range(γ) =
γ(Z). Furthermore, consider the space W ∗ of trajectories in W modulo time shift:

W ∗ =W/∼, where w ∼ w′⇐⇒ w(·) = w′(·+ k) for some k ∈Z.

Let π∗ be the canonical projection from W to W ∗, and let W ∗ be the sigma-algebra on W ∗ given
by {A⊂W ∗ : (π∗)−1(A) ∈ W}. Given K ⊂ Zd and γ ∈W+, let H̃K(γ) denote the hitting time of K
by γ:

H̃K(γ) = inf{n≥ 1 : Xn(γ) ∈ K}. (1)

For x ∈Zd , let Px be the law on (W+,W+) corresponding to simple random walk started at x , and
for K ⊂ Zd , let PK

x be the law of simple random walk, conditioned on not hitting K . Define the
equilibrium measure of K:

eK(x) =
�

Px[H̃K =∞], x ∈ K
0, x /∈ K . (2)
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Define the capacity of a set K ⊂Zd as

cap(K) =
∑

x∈Zd

eK(x). (3)

The normalized equilibrium measure of K is defined as

ẽK(·) = eK(·)/cap(K). (4)

For x , y ∈Zd we let |x− y|= ‖x− y‖1. We will repeatedly make use of the following well-known
estimates of hitting-probabilities. For any x , y ∈Zd with |x − y| ≥ 1,

c|x − y|−(d−2) ≤ Px[H̃ y <∞]≤ c′|x − y|−(d−2), (5)

see for example Theorem 4.3.1 in [LL10]. Next we define a Poisson point process on W ∗ ×R+.
The intensity measure of the Poisson point process is given by the product of a certain measure ν
and the Lebesque measure on R+. The measure ν was constructed by Sznitman in [Szn10], and
now we characterize it. For K ⊂ Zd , let WK denote the set of trajectories in W that enter K . Let
W ∗

K = π
∗(WK) be the set of trajectories in W ∗ that intersect K . Define QK to be the finite measure

on WK such that for A, B ∈W+ and x ∈Zd ,

QK[(X−n)n≥0 ∈ A, X0 = x , (Xn)n≥0 ∈ B] = PK
x [A]eK(x)Px[B]. (6)

The measure ν is the unique σ-finite measure such that

1W ∗
K
ν = π∗ ◦QK , ∀K ⊂Zd finite. (7)

The existence and uniqueness of the measure was proved in Theorem 1.1 of [Szn10]. Consider
the set of point measures in W ∗ ×R+:

Ω =
�

ω=
∞
∑

i=1

δ(w∗i ,ui); w∗i ∈W ∗, ui ∈R+,

ω(W ∗
K × [0, u])<∞, for every finite K ⊂Zd and u ∈R+

�

.

(8)

Also consider the space of point measures on W ∗:

Ω̃ =

(

σ =
∞
∑

i=1

δw∗i
; w∗i ∈W ∗, σ(W ∗

K )<∞, for every finite K ⊂Zd

)

. (9)

For u> u′ ≥ 0, we define the mapping ωu′,u from Ω into Ω̃ by

ωu′,u =
∞
∑

i=1

δw∗i
1{u′ ≤ ui ≤ u}, for ω=

∞
∑

i=1

δ(w∗i ,ui) ∈ Ω. (10)

If u′ = 0, we write ωu. Sometimes we will refer trajectories in ωu, rather than in the support
of ωu. On Ω we let P be the law of a Poisson point process with intensity measure given by
ν(dw∗)d x . Observe that under P, the point process ωu,u′ is a Poisson point process on Ω̃ with
intensity measure (u− u′)ν(dw∗). Given σ ∈ Ω̃, we define

I (σ) =
⋃

w∗∈supp(σ)

w∗(Z). (11)
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For 0≤ u′ ≤ u, we define
I u′,u = I (ωu′,u), (12)

which we call the random interlacement set between levels u′ and u. In case u′ = 0, we write I u.
For a point process σ on Ω, we let σ|A stand for σ restricted to A⊂W ∗.

2.2 Stochastic dimension

In this section, we recall some definitions and results from [BKPS04] and adapt them to our needs.
For x , y ∈ Zd , let 〈x y〉 = 1+ |x − y|. Suppose W ⊂ Zd is finite and that τ is a tree on W . Let
〈τ〉 = Π{x ,y}∈τ〈x y〉. Finally let 〈W 〉 = minτ〈τ〉 where the minimum is taken over all trees on the
vertex set W . For example, for n vertices x1, ..., xn, 〈x1...xn〉 is the minimum of nn−2 products with
n− 1 factors in each.

Definition 2.1. Let R be a random subset of Zd ×Zd with distribution P. We will think of R as a
relation and for (x , y) ∈ Zd ×Zd , we write xR y if (x , y) ∈ R . Let α ∈ [0, d). We say that R has
stochastic dimension d −α if there exists a constant c = c(R)<∞ such that

c P[xR y]≥ 〈x y〉−α, (13)

and
P[xR y, zR v]≤ c〈x y〉−α〈zv〉−α + c〈x yzv〉−α, (14)

for all x , y, z, v ∈Zd .
If R has stochastic dimension d −α, then we write dimS(R) = d −α.

Observe that infx ,y∈Zd P[xR y]> 0 if and only if dimS(R) = d.

Definition 2.2. Let R andM be any two random relations. We define the composition RM to be
the set of all (x , z) ∈ Zd ×Zd such that there exists some y ∈ Zd for which xR y and yM z holds.
The n-fold composition of a relation R will be denoted by R (n).

Next we restate Theorem 2.4 of [BKPS04], which we will use extensively.

Theorem 2.1. Let L ,R ⊂Zd be two independent random relations. Then

dimS(LR) =min
�

dimS(L ) + dimS(R), d
	

,

when dimS(L ) and dimS(R) exist.

For each x ∈ Zd , we choose a trajectory wx ∈ W+ according to Px . Also assume that wx and w y
are independent for x 6= y and that the collection (wx)x∈Z is independent of ω.
We will take interest in several particular relations, defined in terms of ω and the collection
(wx)x∈Zd . For ω=

∑∞
i=1 δ(w∗i ,ui) ∈ Ω, t2 ≥ t1 ≥ 0, and n ∈N let

1.
Mt1,t2

=
�

(x , y) ∈Zd ×Zd : ∃γ ∈ supp(ωt1,t2
) : x , y ∈ γ(Z)

	

. (15)

If t1 = 0, we will writeMt2
as shorthand forMt1,t2

.

2. L = {(x , y) ∈Zd ×Zd : y ∈ range(wx)}

3. R = {(x , y) ∈Zd ×Zd : x ∈ range(w y)}
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4.

Cn,u =L

 

n−1
∏

i=2

Mu(i−1)/n,ui/n

!

R , n≥ 3. (16)

Theorem 2.2. For any d ≥ 3, u> 0 and all x , y ∈Zd ,

P

�

xM
d d

2
e

u y
�

�x , y ∈ I u
�

= 1.

In addition we have

P

�

∃x , y ∈ I u, y /∈ {z : xM
d d

2
e−1

u z}
�

= 1.

For d = 3, 4 the theorem follows easily from the fact that two independent simple random walk
trajectories intersect each other almost surely, and we omit the details of these two cases. From
now on, we will assume that d ≥ 5. A key step in the proof of our main theorem, is to show that
for every x , y ∈Zd and u> 0, we have P[xCdd/2e,u y] = 1.

Proposition 2.3. Under P, for any 0≤ t1 < t2 <∞, the relationMt1,t2
has stochastic dimension 2.

Proof. Clearly, it is enough to consider the case t1 = 0 and t2 = u ∈ (0,∞). First recall that
the trajectories in supp(ωu) that intersect x ∈ Zd can be sampled in the following way (see for
example Theorem 1.1 and Proposition 1.3 of [Szn10]):

1. Sample a Poisson random number N with mean ucap(x)

2. Then sample N independent double sided infinite trajectories, where each such trajectory is
given by a simple random walk path started at x , together with a simple random walk path
started at x conditioned on never returning to x .

We now establish a lower bound of P[xMu y]. Since any trajectory in supp(ωu) intersecting x
contains a simple random walk trajectory started at x , we obtain that

P[xMu y]
(5)
≥ c〈x y〉−(d−2). (17)

Thus the condition (13) is established and it remains to establish the more complicated condi-
tion (14). For this, fix distinct vertices x , y, z, v ∈ Zd and put K = {x , y, z, v}. Our next task is to
find an upper bound of P[xMu y, zMuv]. For ωu =

∑

i≥0 δw∗i
, we let ω̂u =

∑

i≥0 δw∗i
1{range(w∗i )⊃K}.

We now write

P[xMu y, zMuv] = P[xMu y, zMuv, ω̂u = 0] +P[xMu y, zMuv, ω̂u 6= 0], (18)

and deal with the two terms on the right hand side of (18) separately. For a point measure
ω̃ ≤ ωu, we write "xMu y in ω̃" if there is a trajectory in supp(ω̃) whose range contains both x
and y . Observe that if w∗ ∈ supp(ωu − ω̂u) and x , y ∈ range(w∗), then at least one of z or v
does not belong to range(w∗). Hence, the events {xMu y in ωu− ω̂u} and {zMuv in ωu− ω̂u} are
defined in terms of disjoint sets of trajectories, and thus they are independent under P. We get
that

P[xMu y, zMuv, ω̂u = 0] = P[xMu y in ωu − ω̂u, zMuv in ωu − ω̂u, ω̂u = 0]
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≤ P[xMu y in ωu − ω̂u, zMuv in ωu − ω̂u]
= P[xMu y in ωu − ω̂u]P[zMuv in ωu − ω̂u]
≤ P[xMu y]P[zMuv]
(5)
≤ c(u)(〈x y〉〈z v〉)−(d−2). (19)

where in the second equality we used the independence that was mentioned above. In addition,
we have

P[xMu y, zMuv, ω̂u 6= 0] = P[ω̂u 6= 0]. (20)

We now find an upper bound on P[ω̂u 6= 0]. In view of (19), (20) and (18), in order to estab-
lish (14) with α= d − 2, it is sufficient to show that

P[ω̂u 6= 0]≤ c(u)〈x yzv〉−(d−2). (21)

Recall that the law of a simple random walk started at x conditioned on never returning to x is
dominated by the law of a simple random walk started at x (this follows from the fact that the
trajectory of a simple random walk after the last time it visits x has the same distribution as a the
trajectory of a simple random walk conditioned on not returning to x). Using this and the method
described above of sampling the trajectories from ωu containing x , we obtain that P[ω̂u 6= 0] is
bounded from above by the probability that at least one of N independent double sided simple
random walks started at x hits each of y, z, v. Here N again is a Poisson random variable with
mean ucap(x). We obtain that

P[ω̂ 6= 0] = 1− exp(−ucap(x)P⊗2
x [{y, z, v} ⊂ (X ′n)n≥0 ∪ (Xn)n≥0])

≤ ucap(x)P⊗2
x [{y, z, v} ⊂ (X ′n)n≥0 ∪ (Xn)n≥0], (22)

where we in the last inequality made use of the inequality 1 − exp(−x) ≤ x for x ≥ 0. Here,
P⊗2

x [{y, z, v} ⊂ (X ′n)n≥0 ∪ (Xn)n≥0] is the probability that a double sided simple random walk
starting at x hits each of y, z, v. In order to bound this probability, we first obtain some quite
standard hitting estimates. We have

Px[H y <∞, Hz <∞, Hv <∞] =
∑

x1,x2,x3∈
perm(z,y,v)

Px[Hx1
< Hx2

< Hx3
<∞]

≤
∑

x1,x2,x3∈
perm(z,y,v)

Px[Hx1
<∞]Px1

[Hx2
<∞]Px2

[Hx3
<∞]

(5)
≤ c

∑

x1,x2,x3∈
perm(z,y,v)

�

〈x x1〉〈x1 x2〉〈x2 x3〉
�−(d−2)

≤ c〈K〉−(d−2),

(23)

where the sums are over all permutations of z, y, v. Similarly, for any choice of x1 and x2 from
{y, z, v} with x1 6= x2,

Px[Hx1
<∞, Hx2

<∞]≤ c((〈x x1〉〈x1 x2〉)−(d−2) + (〈x x2〉〈x2 x1〉)−(d−2)) (24)

and
Px[Hx1

<∞]≤ c〈x x1〉−(d−2). (25)
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Now set A= {{y, z, v} ⊂ (Xn)n≥0}, A′ = {{y, z, v} ⊂ (X ′n)n≥0},

B =
⋃

t=y,z,v

{t ∈ (Xn)n≥0, K \ {t} ⊂ (X ′n)n≥0}, (26)

and
B′ =

⋃

t=y,z,v

{t ∈ (X ′n)n≥0, K \ {t} ⊂ (Xn)n≥0}. (27)

Observe that

{{y, z, v} ⊂ (X ′n)n≥0 ∪ (Xn)n≥0} ⊂ A∪ A′ ∪ B ∪ B′. (28)

We have

Px[A] = Px[A
′]

(23)
≤ c〈K〉−(d−2). (29)

Using the independence between (Xn)n≥0 and (X ′n)n≥0, it readily follows that

P⊗2
x [B] = P⊗2

x [B
′]

(24), (25)
≤ c〈K〉−(d−2). (30)

From (28), (29) and (30) and a union bound, we obtain

P⊗2
x [{y, z, v} ⊂ (X ′n)n≥0 ∪ (Xn)n≥0]≤ c〈K〉−(d−2). (31)

Combining (22) and (31) gives (21), finishing the proof of the proposition.

Now recall the definition of the walks (wx)x∈Zd from Section 2.2.

Lemma 2.4. The relations L and R have stochastic dimension 2.

Proof. We start with the relation L . For x , y ∈Zd , we have

P[xL y] = P[y ∈ range(wx)] = Px[H̃ y <∞] (32)

From (32) and (5), we obtain

c〈x y〉−(d−2) ≤ P[xL y]≤ c′〈x y〉−(d−2) (33)

In addition, for x , y, z, w ∈Zd with x 6= y , using the independence between the walks wx and w y ,
we get

P[xL z, yLw] = P[xL z]P[yLw]
(33)
≤ c〈xz〉−(d−2)〈yw〉−(d−2). (34)

In the case x = y , we obtain

P[xL z, yLw]≤ c((〈xz〉〈zw〉)−(d−2) + (〈xw〉〈zw〉)−(d−2)). (35)

From (33), (35) and (34) we obtain dimS(L ) = 2. The proof of the statement dimS(R) = 2 is
shown by the same arguments.

Lemma 2.5. For any u> 0 and n≥ 3, dimS(Cn,u) =min(2n, d).
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Proof. We have

dimS(Cn,u) = dimS

 

L

 

n−1
∏

i=2

Mu(i−1)/n,ui/n

!

R

!

=min

 

dimS(L ) +
n−1
∑

i=2

dimS(Mu(i−1)/n,ui/n) + dimS(R), d

!

=min (2+ 2(n− 2) + 2, d)
=min(2n, d), (36)

where we in the second equality used the independence of the relations and Theorem 2.1, and for
the third equality used Lemma 2.4 and Proposition 2.3.

3 Tail trivialities

The proof of the upper bound of Theorem 2.2, which will be given in Section 4 below, will rely on
the use of Corollary 3.4 of [BKPS04]. To be able to use that corollary, we first must discuss tail
trivialities of the stochastic relations we work with.

Definition 3.1. Let E be a random relation and v ∈Zd . Define the left tail field corresponding to the
vertex v to be

F L
E (v) =

⋂

K⊂Zd finite

σ{vE x : x /∈ K}. (37)

We say that E is left tail trivial if F L
E (v) is trivial for every v ∈Zd .

Definition 3.2. Let E be a random relation and v ∈ Zd . Define the right tail field corresponding to
the vertex v be

F R
E (v) =

⋂

K⊂Zd finite

σ{xE v : x /∈ K}. (38)

We say that E is right tail trivial if F R
E (v) is trivial for every v ∈Zd .

Definition 3.3. Let E be a random relation. Define the remote tail field to be

F Rem
E =

⋂

K1,K2⊂Zd finite

σ{xE y : x /∈ K1, y /∈ K2}. (39)

We say that E is remote tail trivial if F Rem
E is trivial.

3.1 Left and right tail trivialities

Recall the definition of the walks (wx)x∈Zd Section 2.2.

Lemma 3.1. The relation L is left tail trivial. The relation R is right tail trivial.

Proof. We start with the relation L . For any x ∈Zd , we have

F L
L (x) =

⋂

R>1

σ
�

range(wx)∩ B(x , R)c
	

⊂
⋂

R>1

σ
�

(wx(i))i≥R
	

. (40)

Since the σ-algebra on the right hand side of (40) is trivial ([Dur10] Theorem 6.7.5), F L
L (x)

is trivial for every x ∈ Zd . Hence, L is left tail trivial. Similarly, we obtain that R is right tail
trivial.
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3.2 Remote tail triviality

We omit the details of the following lemma.

Lemma 3.2. Fix µ0 ∈R+ and s ∈N. For µ > µ0, let X ∼ Pois(µ−µ0) and Y ∼ Pois(µ). Then

∞
∑

t=0

|P[X = t − s]− P[Y = t]| → 0 as µ→∞. (41)

Definition 3.4. For a set K ⊂Zd denote by ηK =ω(W ∗
K ) = |{w ∈ supp(ω) : w ∩ K 6= φ}|.

Lemma 3.3. Let K ⊂ Zd be a finite set. Denote by B = B(0,ρ), the ball of radius ρ around 0. Then
for any s ∈N,

∞
∑

t=0

�

�P[ηB = t|ηK = s]−P[ηB = t]
�

�→ 0 as ρ→∞.

Proof. Write ηB = (ηB−ηK)+ηK . Observe that ηB−ηK and ηK are independent random variables
with distributions Pois(ucap(B)− ucap(K)) and Pois(ucap(K)) respectively. Consequently

P[ηB = t|ηK = s] = P[ηB −ηK = t − s]. (42)

Since ucap(B) → ∞ as ρ → ∞, the lemma follows from (42) and Lemma 3.3, with the choices
µ0 = ucap(K), µ= ucap(B), X = ηB −ηK and Y = ηB.

We will need the following lemma, easily deduced from [LL10] Proposition 2.4.2 and Theorem
A.4.5. For every x ∈Zd , denote by par(x) =

∑d
j=1 x j , and even(x) = δpar(x) is even.

Lemma 3.4. Let k > 0, r > 0, ε > 0 and K = B(0, r)⊂Zd . For every

(x i , yi)
k
i=1 ∈ ∂ K × ∂ K

we can define 2k random walks (X i
n)

k
i=1, (Y i

n)
k
i=1, conditioned on never returning to K, on the same

probability space with initial starting points X i
0 = x i , Y i

0 = yi for all 1≤ i ≤ k such that ((X i
n)n≥0, (Y i

n)n≥0)ki=1
are independent and there is a n= n(k,ε, K)> 0 large enough for which

P[∀1≤ i ≤ k, X i
m = Y i

m+even(x i−yi)
for all m≥ n]≥ 1− ε.

Lemma 3.5. Let u> 0. The relationMu is remote tail trivial.

Proof. First we show that it is enough to prove that F Rem
Mu

is independent of FK = σ{xMu y :

x , y ∈ K} for every finite K ⊂ Zd . So assume this independence. Let A ∈ F R
Mu

and let Kn be

finite sets such that Kn ⊂ Kn+1 for every n and ∪nKn = Zd . Let Mn = P[A|FKn
]. Then Mn

is a martingale and Mn = P[A] a.s, since we assumed independence. From Doob’s martingale
convergence theorem we get that Mn→ 1A a.s and thus P[A] ∈ {0, 1}.
Let K ⊂ Zd be finite. Suppose A ∈F Rem

Mu
, B ∈FK and that P[B] > 0. According to the above, to

obtain the remote tail triviality ofMu it is sufficient to show that

P[A|B] = P[A]. (43)
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Let 0 < r1 < r2 be such that K ⊂ B(0, r1). Later, r1 and r2 will be chosen to be large. Fix ε > 0.
Let N = ηB(0,r1). Let C = C(K)> 0 and D = D(r1)> 0 be so large that

P[ηK ≥ C]< εP[B] and P[N ≥ D]< εP[B]. (44)

Recall thatωu|W ∗
B(0,r1)
=
∑N

i=1 δπ∗(wi) where N is Pois(ucap(B(0, r1))) distributed and conditioned on

N , (wi(0))Ni=1 are i.i.d. with distribution ẽB(0,r1)(·), ((wi(k))k≥0)Ni=1 are independent simple random
walks, and ((wi(k))k≤0)Ni=1 are independent simple random walks conditioned on never returning
to B(0, r1) (see for example Theorem 1.1 and Proposition 1.3 of [Szn10], or (6) in Section 2.1
above). Letting τi be the last time (wi(k))k≥0 visits B(0, r1), we have have that ((wi(k))k≥τi

)Ni=1
are independent simple random walks conditioned on never returning to B(0, r1). We define the
vector

ξ̄=
�

w1(0), . . . , wN (0), w1(τ1), . . . , wN (τN )
�

∈ ∂ (B(0, r1))
2N .

Let κ+i = inf{k > τi : wi(k) ∈ ∂ B(0, r2)} and let κ−i = sup{k < 0 : wi(k) ∈ ∂ B(0, r2)}. Define the
vector

γ̄=
�

w1(κ
+
1 ), . . . , wN (κ

+
N ), w1(κ

−
1 ), . . . , wN (κ

−
N )
�

∈ ∂ (B(0, r2))
2N .

Observe that since A belongs to F Rem
Mu

and |κ+i − κ
−
i | < ∞ for i = 1, ..., N a.s., we get that A is

determined by ((wi(k))k≥κ+i )
N
i=1 and ((wi(k))k≤κ−i )

N
i=1 and ωu|W ∗\W ∗

B(0,r1)
. On the other hand, B is

determined by ((wi(k))0≤k≤τi
)Ni=1 where 0 < κ−i < τi < κ

+
i for i = 1, ..., N . In addition, condi-

tioned on N and γ̄ we have that ((wi(k))k≥κ+i )
N
i=1, ((wi(k))k≤κ−i )

N
i=1 and ((wi(k))κ−i ≤k≤κ+i )

N
i=1 are

conditionally independent. Therefore, conditioned on N and γ̄, the events A and B are condition-
ally independent. It follows that for any n ∈N and any x̄ ∈ (∂ B(0, r2))2n

P[A∩ B|N = n, γ̄= x̄] = P[A|N = n, γ̄= x̄]P[B|N = n, γ̄= x̄]. (45)

From (45) we easily deduce

P[A|B, N = n, γ̄= x̄] = P[A|N = n, γ̄= x̄]. (46)

Therefore,

|P[A|B]−P[A]|=

�

�

�

�

�

�

∞
∑

n=0

∑

x̄∈(∂ B(0,r2))2n

P[A|B, N = n, γ̄= x̄]P[N = n, γ̄= x̄ |B]−P[A]

�

�

�

�

�

�

(46)
=

�

�

�

�

�

�

∞
∑

n=0

∑

x̄∈(∂ B(0,r2))2n

P[A|N = n, γ̄= x̄]
�

P[N = n, γ̄= x̄ |B]−P[N = n, γ̄= x̄]
�

�

�

�

�

�

�

≤
∞
∑

n=0

∑

x̄∈(∂ B(0,r2))2n

�

�P[N = n, γ̄= x̄ |B]−P[N = n, γ̄= x̄]
�

� .

(47)

Hence, to obtain (43) it will be enough to show that the double sum appearing in the right hand
side of (47) can be made arbitrarily small by choosing r1 sufficiently large, and then r2 sufficiently
large. This will be done in several steps.
Using Lemma 3.3 we can choose r1 big enough such that for every m< C ,

∞
∑

n=0

|P[N = n|ηK = m]−P[N = n]|< ε/C . (48)
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Also observe that since N depends only on ωu|W ∗
K

through ηK , we have

P[N = n|B,ηK = m] = P[N = n|ηK = m]. (49)

This gives
∞
∑

n=0

|P[N = n|B]−P[N = n]|

=
∞
∑

n=0

|
∞
∑

m=0

�

P[N = n|B,ηK = m]−P[N = n]
�

P[ηK = m|B]|

(49)
≤

∞
∑

n=0

C−1
∑

m=0

�

�P[N = n|ηK = m]−P[N = n]
�

�P[ηK = m|B]

+
∞
∑

n=0

∞
∑

m=C

|P[N = n|ηK = m]−P[N = n]|P[ηK = m|B].

(50)

We now estimate the last two lines of (50) separately. We have

∞
∑

n=0

C−1
∑

m=0

�

�P[N = n|ηK = m]−P[N = n]
�

�P[ηK = m|B]
(48)
≤ ε. (51)

For the last line of (50), we get

∞
∑

n=0

∞
∑

m=C

|P[N = n|ηK = m]−P[N = n]|P[ηK = m|B]

≤
∞
∑

n=0

∞
∑

m=C

P[N = n|ηK = m]P[ηK = m|B] +
∞
∑

n=0

∞
∑

m=C

P[N = n]P[ηK = m|B]

≤
∞
∑

n=0

∞
∑

m=C

P[N = n,ηK = m]
P[B]

+P[ηK ≥ C |B]≤
P[ηK ≥ C]
P[B]

+
P[ηK ≥ C]
P[B]

(44)
≤ 2ε.

(52)

Combining (50), (51) and (52) we obtain that

∞
∑

n=0

|P[N = n|B]−P[N = n]| ≤ 3ε. (53)

Applying Lemma 3.4 to both backward and forward paths, we can choose r2 > r1 large enough so
that for any n≤ D and for any ȳ ∈ (∂ B(0, r1))2n ,

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n, ξ̄= ȳ]−P[γ̄= x̄ |N = n]
�

�=

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |N = n, ξ̄= ȳ]−P[γ̄= x̄ |N = n]
�

�< ε,
(54)
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where the first equality can be shown in a way similar to (49). Thus, for any n≤ D,
∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]−P[γ̄= x̄ |N = n]
�

�

≤
∑

x̄∈∂ B(0,r2)2n

∑

ȳ∈∂ B(0,r1)2n

�

�P[γ̄= x̄ |B, N = n, ξ̄= ȳ]−P[γ̄= x̄ |N = n]
�

�P[ξ̄= ȳ|B, N = n]

=
∑

ȳ∈∂ B(0,r1)2n

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n, ξ̄= ȳ]−P[γ̄= x̄ |N = n]
�

�P[ξ̄= ȳ|B, N = n]

(54)
< ε.

(55)

We now have what we need to bound the right hand side of (47):
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[N = n, γ̄= x̄ |B]−P[N = n, γ̄= x̄]
�

�

=
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]P[N = n|B]−P[γ̄= x̄ |N = n]P[N = n]
�

�

≤
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]P[N = n|B]−P[γ̄= x̄ |N = n]P[N = n|B]
�

�

+
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |N = n]P[N = n|B]−P[γ̄= x̄ |N = n]P[N = n]
�

�

(56)

We now estimate the two last lines in (56) separately. We have
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]P[N = n|B]−P[γ̄= x̄ |N = n]P[N = n|B]
�

�

≤
D
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]−P[γ̄= x̄ |N = n]
�

�P[N = n|B]

+
∞
∑

n=D

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |B, N = n]−P[γ̄= x̄ |N = n]
�

�P[N = n|B]

(55)
≤ ε+ 2P[N ≥ D|B]≤ ε+ 2

P[N ≥ D]
P[B]

(44)
≤ 3ε,

(57)

where the first inequality follows from the triangle inequality. For the second line of (56) we get
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[γ̄= x̄ |N = n]P[N = n|B]−P[γ̄= x̄ |N = n]P[N = n]
�

�

=
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

P[γ̄= x̄ |N = n] |P[N = n|B]−P[N = n]|
(53)
≤ 3ε.

(58)

From (56), (57) and (58), we obtain
∞
∑

n=0

∑

x̄∈∂ B(0,r2)2n

�

�P[N = n, γ̄= x̄ |B]−P[N = n, γ̄= x̄]
�

�≤ 6ε. (59)
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Since ε > 0 is arbitrary, we deduce that P[A|B] = P[A] from (47) and (59). The triviality of the
sigma algebra F Rem

Mu
is therefore established.

4 Upper bound

In this section, we provide the proof of the upper bound of Theorem 2.2. Throughout this section,
fix n= dd/2e and fix u ∈ (0,∞). Recall the definition of the trajectories (wx)x∈Zd from Section 2.2.
We have proved in Lemma 2.5 that the random relation Cn,u has stochastic dimension d, and
therefore infx ,y∈Zd P[xCn,u y]> 0. SinceL is left tail trivial,R is right tail trivial and the relations
Mu(i−1)/n,ui/n are remote tail trivial for i = 1, ..., n, we obtain from Corollary 3.4 of [BKPS04] that

P[xCn,u y] = 1 for every x , y ∈Zd . (60)

Now fix x and y and let A1 be the event that x ∈ I u/n and A2 be the event that y ∈ I (n−1)u/n,u.
Put A= A1 ∩ A2. We now use (60) to argue that

P

�

xM (n)
u y

�

�

�

�

A

�

= 1. (61)

To see this, first observe that A is the event that ω0,u/n(W ∗
x ) ≥ 1 and ωu(n−1)/n,u(W ∗

y ) ≥ 1. Con-
sequently, on A, I (ωu/n|W ∗

x
) contains at least one trace of a simple random walk started at x

and hence stochastically dominates range(wx). In the same way, I (ωu(n−1)/n,u/n|W ∗
y
) stochastically

dominates range(w y). Thus we obtain

P

�

xM (n)
u y

�

�

�

�

A

�

≥ P



x

 

n
∏

i=1

Mu(i−1)/n,ui/n

!

y

�

�

�

�

A



≥ P[xCn,u y] = 1, (62)

giving (61). Equation (61) implies that if x ∈ I u/n and y ∈ I (n−1)u/n,u, then x and y are P-a.s.
connected in the ranges of at most dd/2e trajectories from supp(ωu).
Now let I1 = [t1, t2] ⊂ [0, u] and I2 = [t3, t4] ⊂ [0, u] be disjoint intervals. Let AI1,I2

be the event
that x ∈ I t1,t2 and y ∈ I t3,t4 . The proof of (61) is easily modified to obtain

P

�

xM (n)
u y

�

�

�

�

AI1,I2

�

= 1. (63)

Observe that up to a set of measure 0, we have

{x ∈ I u, y ∈ I u}= {xMu y} ∪







⋃

I1,I2

{x ∈ I t1,t2 , y ∈ I t3,t4}






, (64)

where the union is over all disjoint intervals I1 = [t1, t2], I2 = [t3, t4] ⊂ [0, u] with rational
distinct endpoints. Observe that all the events in the countable union on the right hand side
of (64) have positive probability. In addition, due to (63), conditioned on any of them, we have
xM (n)

u y a.s. Therefore, we finally conclude that

P

�

xM (n)
u y

�

�

�

�

x , y ∈ I u

�

= 1, (65)

finishing the proof of the upper bound of Theorem 2.2.



Geometry of the random interlacement 541

5 Lower bound

In this section, we provide the proof of the lower bound of Theorem 2.2. More precisely, we show
that with probability one, there are vertices x and y contained in I u that are not connected by a
path using at most d d

2
e − 1 trajectories from supp(ωu).

We introduce a decomposition of ωu as follows. Let ω0
u be the point measure supported on those

w∗i ∈ supp(ωu) for which 0 ∈ w∗i (Z). Then proceed inductively: given ω0
u, ...,ωk−1

u , define ωk
u

to be the point measure supported on those w∗i ∈ supp(ωu) such that w∗i /∈ supp(
∑k−1

i=0 ω
i
u) and

w∗i (Z)∩
�

∪w∗i ∈supp(ωk−1
u )wi(Z)

�

6= ;.
For k = 0, 1, ..., define

Vk =
⋃

w∗∈supp(
∑k

i=0ω
i
u)

w∗(Z).

In addition, let V−1 = {0} and V−2 = ;. Observe that with this notation,

ωk
u =ωu|(W ∗

Vk−1
\W ∗

Vk−2
), k = 0,1, ...

Hereωu|A denotesωu restricted to the set of trajectories A⊂W ∗. We also observe that conditioned
on ω0

u, ...,ωk−1
u , under P,

ωk
u is a Poisson point process on W ∗ with intensity measure u1W ∗

Vk−1
\W ∗

Vk−2
ν(dw∗), (66)

see the Appendix for details. We now construct the vector (ω̄0
u, ..., ω̄k

u) with the same law as the
vector (ω0

u, ...,ωk
u) in the following way. Suppose σ0,σ1, ... are i.i.d. with the same law as ωu. Let

ω̄0
u = σ0|W ∗

{0}
and then proceed inductively as follows: Given ω̄0

u, ..., ω̄k
u, define

V̄k =
⋃

w∗∈supp(
∑k

i=0 ω̄
i
u)

w∗(Z),

and let V̄−1 = {0} and V̄−2 = ;. Then let

ω̄k+1
u = σk+1|(W ∗

V̄k
\W ∗

V̄k−1
).

Using (66) one checks that in this procedure, for any k ≥ 0, the vector (ω̄0
u, ..., ω̄k

u) has the same
law as (ω0

u, ...,ωk
u).

Let m= d d
2
e − 1. We now get that

P[0M (m)
u x] = P

�

0
Vm−1←→ x

�

= P⊗n
�

0
V̄m−1←→ x

�

. (67)

The event
�

0
V̄m−1←→ x

�

is the event that there is some l ≤ m−1 and trajectories γi ∈ ω̄i
u, i = 0, ..., l,

such that γi(Z)∩ γi+1(Z) 6= ;, 0 ∈ γ0(Z) and x ∈ γl(Z). Since ω̄i
u ≤ σi , we obtain

P⊗n
�

0
V̄m−1←→ x

�

≤
m−1
∑

l=0

P⊗l



0
l
∏

i=0

�

Mu(σi)
�

x



 , (68)
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where we use the notationMu(σi) for the random relation defined in the same way asMu, but
using σi instead of ωu. Now use the independence of the σi ’s, Theorem 2.1, and the fact that
dimS (Mu(σi)) = 2, to obtain that for any l ≤ m− 1,

dimS

 

l
∏

i=0

�

Mu(σi)
�

!

≤ 2m< d. (69)

Therefore by (67), (68) and (69),

P[0M (m)
u x]→ 0 as |x | →∞. (70)

Put ω̂m
u =

∑m
i=0ω

i
u. Observe that Equation (70) can be restated using the notation of (11) as

P
�

x ∈ I (ω̂m−1
u )

�

→ 0 as |x | →∞. (71)

For n≥ 1, let xn = ne1. For n≥ 1, we define the events An = {xn ∈ I u(ω̂m−1
u )} and Bn = {xn ∈ I u}

Using (71) we can find a sequence (nk)∞k=1 such that

∞
∑

k=1

P[Ank
]<∞. (72)

By the Borel-Cantelli lemma,

P[Ank
i.o.] = 0. (73)

On the other hand, by ergodicity (see Theorem 2.1 in [Szn10]), we have

lim
n→∞

1

n

n
∑

k=1

1Bnk
= P[0 ∈ I u] a.s. (74)

Since P[0 ∈ I u]> 0, Equation (74) implies that

P[Bnk
i.o.] = 1. (75)

From equations (73) and (75) it readily follows that P[∪i≥1(Bi \ Ai)] = 1, which implies

P[∃y ∈ I u, y /∈ {z : 0M dd/2e−1
u z}] = 1. (76)

Since the law of I u is invariant under the translations of Zd , we get that for any x ∈Zd ,

P[∃y ∈ I u, y /∈ {z : xM dd/2e−1
u z}] = 1. (77)

Observe that
{∃x ,y ∈ I u, y /∈ {z : xM dd/2e−1

u z}}

=
⋃

x∈Zd

{∃y ∈ I u, y /∈ {z : xM dd/2e−1
u z}} ∩ {x ∈ I u}. (78)

Using (77), we see that the probability of the event in the left hand side of (78) equalsP[∪x∈Zd {x ∈
I u}] = 1. Thus (78) gives

P[∃x ,y ∈ I u, y /∈ {z : xM dd/2e−1
u z}] = 1, (79)

and the proof the lower bound is complete.
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6 Open questions

The following question was asked by Itai Benjamini: Given two points x , y ∈ Zd , estimate the
probability that x and y are connected by at most

 

d
2

£

trajectories intersecting a ball of radius r
around the origin.
Answering the first question can help solve the question of how one finds the

 

d
2

£

trajectories
connecting two points in an efficient manner.
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7 Appendix

Here we show a technical lemma (Lemma 7.2 below) needed in the proof of the lower bound in
Section 5. For the proof of Lemma 7.2, we need the following lemma, which is standard and we
state without proof.

Lemma 7.1. Let X be a Poisson point process on W ∗, with intensity measure ρ. Let A ⊂ W ∗ be
chosen at random independently of X . Then, conditioned on A, the point processes 1AX and 1Ac X are
independent Poisson point processes on W ∗ with intensity measures 1Aρ and 1Acρ respectively.

Write ωu =
∑∞

k=0ω
k
u where ωk

u is defined in the end of Section 2.1. Put V−2 = ; and V−1 = {0}
and

Vk = I

 

k
∑

i=0

ωi
u

!

, k = 0, 1, ... (80)

Recall that
ωk

u =ωu|(W ∗
Vk−1
\W ∗

Vk−2
), k = 0,1, ... (81)

Introduce the point process
ω̃k

u =ωu|W ∗\W ∗
Vk−1

, k = 0,1, ... (82)

For k ≥ 0, write Pk for P conditioned on ω0
u, ..,ωk

u.

Lemma 7.2. Fix k ≥ 0. Then, conditioned on ω0
u, ...,ωk−1

u , the point processes ωk
u and ω̃k

u are
independent Poisson point processes on W ∗, with intensity measures

u1(W ∗
Vk−1
\W ∗

Vk−2
)ν(dw∗) (83)

and
u1(W ∗\W ∗

Vk−1
)ν(dw∗), (84)

respectively.

Proof. We will proceed by induction. First consider the case k = 0. We have ω0
u = ωu|W ∗

{0}
and

ω̃0
u = ω|W ∗\W ∗

{0}
. The sets of trajectories W ∗

{0} and W ∗ \W ∗
{0} are non-random. Therefore we get

that, using for example Proposition 3.6 in [Res08], ω0
u and ω̃0

u are Poisson point processes with
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intensity measures that agree with (83) and (84) respectively. In addition, the sets of trajectories
W ∗
{0} and W ∗ \W ∗

{0} are disjoint, and therefore ω0
u and ω̃0

u are independent.
Now fix some k ≥ 0 and assume that the assertion of the lemma is true for k. Observe that we
have

ωk+1
u = ω̃k

u|W ∗
I (ωk

u)
(85)

and
ω̃k+1

u = ω̃k
u|W ∗\W ∗

I (ωk
u)

. (86)

By the induction assumption, ωk
u and ω̃k

u are independent Poisson process under Pk−1. In partic-
ular, under Pk−1, ω̃k

u and W ∗
I (ωk

u)
are independent. Therefore, using Lemma 7.1 and (85), we see

that if we further condition on ωk
u, the point process ωk+1

u is a Poisson point process on W ∗ with
intensity measure given by u1W ∗

I (ωk
u)
1(W ∗\W ∗

Vk−1
)ν(dw∗). However,

u1W ∗
I (ωk

u)
1(W ∗\W ∗

Vk−1
)ν(dw∗) = u1(W ∗

Vk
\W ∗

Vk−1
)ν(dw∗), (87)

and therefore the claim regarding ωk+1
u established. The claim regarding ω̃k+1

u follows similarly,
by noting that

u1W ∗\W ∗
I (ωk

u)
1(W ∗\W ∗

Vk−1
)ν(dw∗) = u1(W ∗\W ∗

Vk
)ν(dw∗). (88)

Finally, the independence between ωk+1
u and ω̃k+1

u under Pk follows from Lemma 7.1.
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