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Abstract
The objective of this paper is to establish explicit concentration inequalities for the Glauber dy-
namics related with continuum or discrete Gibbs measures. At first we establish the optimal
transportation-information W1 I -inequality for the M/M/∞-queue associated with the Poisson
measure, which improves several previous known results. Under the Dobrushin’s uniqueness con-
dition, we obtain some explicit W1 I -inequalities for Gibbs measures both in the continuum and in
the discrete lattice. Our method is a combination of Lipschitzian spectral gap, the Lyapunov test
function approach and the tensorization technique.

1 Introduction

1.1 Transportation-information inequalities W1I

Let X be a Polish space equipped with the Borel σ-fieldB , and let d be a lower semi-continuous
metric on the product space X ×X (which does not necessarily generate the topology of X ). Let
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Transportation-information inequalities 601

M1(X ) be the space of all probability measures on X . Given p ≥ 1 and two probability measures
µ and ν on X , we define the quantity

Wp,d(µ,ν) = inf
�
∫∫

d(x , y)pdπ(x , y)
�1/p

,

where the infimum is taken over all probability measures π on the product space X ×X with
marginal distributions µ and ν (say coupling of (µ,ν)). This infimum is finite once µ and ν belong
to M p

1 (X , d) := {ν ∈ M1(X );
∫

d p(x , x0)dν < +∞}, where x0 is some fixed point of X . This
quantity is commonly referred to be as the Lp-Wasserstein distance between µ and ν . When
d(x , y) = 1x 6=y (the trivial metric), it is known that 2W1,d(µ,ν) = ‖µ− ν‖T V , the total variation
of the measure µ− ν .
Given a Dirichlet form E on L2(µ) := L2(X ,µ) with domain D(E ), let I(ν |µ) be the Fisher-
Donsker-Varadhan information of ν with respect to µ

I(ν |µ) =

(

E (
p

f ,
p

f ) if ν = f µ,
p

f ∈D(E );
+∞ otherwise.

(1)

Suppose that ((X t)t≥0,Pµ) is anX−valued reversible Markov process associated with the Dirichlet
form (E ,D(E )). We always assume that it is ergodic, i.e., if h ∈ D(E ) satisfies E (h, h) = 0, then
h= 0, µ− a.s..
Motivated by the concentration inequality for the empirical mean 1

t

∫ t

0
g(Xs)ds for a family A

of bounded observables g, Guillin et al. [8] introduced the following transportation-information
inequality

α

�

sup
g∈A

�

ν(g)−µ(g)
�

�

≤ I(ν |µ), ∀ν ∈M 1
1 (X ), (2)

where α : R → [0, +∞) is some non-decreasing and left-continuous function with α(0) = 0.
WhenA is the family of all bounded measurable and d-Lipschitzian functions g with ‖g‖Lip(d) :=
supx ,y∈X

|g(x)−g(y)|
d(x ,y)

≤ 1, the previous inequality becomes by the Kantorovitch-Rubinstein duality,

α(W1,d(ν ,µ))≤ I(ν |µ), ∀ν ∈M 1
1 (X ). (3)

More precisely Guillin et al. [8] obtained

Theorem 1.1. ([8, Theorem 2.4] or [5, Theorem 2.2]) Let α : R → [0, +∞) be some non-
decreasing and left-continuous function with α(0) = 0. Given a family A of bounded measurable
functions g (say g ∈ bB), the following properties are equivalent:

(a) The transportation-information inequality (2) holds.

(b) The following concentration inequality holds for each g ∈A and any initial distribution ν � µ,

Pν

�

1

t

∫ t

0

g(Xs)ds > µ(g) + r

�

≤ ‖
dν

dµ
‖2e−tα(r), ∀ t, r > 0. (4)

Here ‖ · ‖2 is the norm of L2(µ).
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In particular, the W1 I -inequality (3) is equivalent to

Pν

�

1

t

∫ t

0

g(Xs)ds > µ(g) + r

�

≤ ‖
dν

dµ
‖2e−tα(r), ∀ t, r > 0 (5)

for all g ∈ bB with ‖g‖Lip(d) ≤ 1.

Recently, Gao and the third named author [6] proved a tensorization result for the Wasserstein
distance (see Lemma 4.2 below) and established the “dimension-free" transportation-information
inequalities Wp I(p ≥ 1) for the discrete Gibbs measure, under the Dobrushin’s uniqueness condi-
tion ([3, 4]).

1.2 Continuum Gibbs measure and generator of the Glauber dynamic

LetB(Rd) be the Borel σ−algebra on Rd (d ≥ 1). We denote byBb(Rd)⊂B(Rd) the collection
of all bounded Borel sets. For each A ∈ Bb(Rd), |A| denotes the Lebesgue measure of A. We
consider, as configuration space, the set Ω of all locally finite point measures on Rd , i.e.,

Ω :=

(

ω=
∑

i

δx i
:ω(A)<∞ for all A∈Bb(R

d)

)

.

with the σ−algebra F generated by the counting variables NA : ω→ ω(A), where A ∈ Bb(Rd).
Given the activity z > 0 (the name “activity" comes from Ruelle [18]), let P be the law of Poisson
point process on Rd with intensity measure zd x .
Letting Λ be a bounded open subset of Rd , we consider also the finite volume configuration space

ΩΛ := {ω ∈ Ω : supp(ω)⊂ Λ} (6)

with σ−algebra FΛ generated by the function NA, where A runs over the Borel σ−field of Λ and
ωΛ =

∑

x∈ suppω ∩Λ δx . The image measure PΛ of P byω→ωΛ is the law of Poisson point process
on Λ with intensity measure zd x . The configuration space ΩΛ under the Prohorov metric, with
the weak convergence topology, is a Polish space.
We say that an element η of Ω is a boundary condition on Λc , if

η=
+∞
∑

k=1

δyk
, yk ∈ Λc , k ∈N.

Let ϕ : Rd → R+ ∪ {+∞} be a nonnegative measurable even function, representing a repulsive
pair interaction. The finite volume Gibbs measure in Λ for a given boundary condition η, at inverse
temperature β > 0, is given by

µ
η
Λ(dωΛ) := (ZηΛ)

−1 exp
¦

−βHηΛ(ωΛ)
©

PΛ(dωΛ) (7)

where ZηΛ is the normalization constant and

HηΛ(ωΛ) :=
1

2

∫

Λ2

ϕ(x − y)ωΛ(d x)ωΛ(d y) +

∫

Λ

ωΛ(d x)

∫

Λc

ϕ(x − y)η(d y)

is the Hamiltonian in Λ. This is the mathematical model for continuous gas in statistical physics,
see the book of Ruelle [18].
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Let rF be the space of realF−measurable functions, and bF be the space of those F ∈ rF which
are moreover bounded. For any f ∈ rF , following Picard [16], consider the difference operators

D+x f (ω) := f (ω+δx)− f (ω),
D−x f (ω) := 1x∈supp(ω)[ f (ω−δx)− f (ω)].

(8)

Recall that D+x plays the same role in the Malliavin calculus over the Poisson space as the Malliavin
derivative on the Wiener space ([16, 19] and references therein).

We shall work on the Glauber dynamic, which is formally generated by the pre-generator (see
[1, 12, 20])

L η
Λ f (ωΛ) =

∫

Λ

D−x f (ωΛ)ωΛ(d x) + z

∫

Λ

e−βD+x HηΛ(ωΛ)D+x f (ωΛ)d x , f ∈ bFΛ. (9)

It is easily checked that for all f , g ∈ bFΛ

〈 f , −L η
Λ g〉µηΛ =

∫

ΩΛ

dµηΛ(ωΛ)

∫

Λ

D−x f (ωΛ)D
−
x g(ωΛ)ωΛ(d x)

=

∫

ΩΛ

dµηΛ(ωΛ)

∫

Λ

e−βD+x HηΛ(ωΛ)D+x f (ωΛ)D
+
x g(ωΛ)zd x

=: EηΛ ( f , g).

(10)

Then (−L η
Λ , bFΛ) is a nonnegative definite, symmetric operator on L2(µηΛ) (indeed it is essen-

tially self-adjoint by Kondratiev and Lytvynov [12]). Hence EηΛ is a closable form and its closure
(EηΛ ,D(EηΛ )) is a Dirichlet form on L2(µηΛ), generating a symmetric Markov semigroup (PΛ,η

t )t≥0 on
L2(µηΛ) such that PΛ,η

t 1= 1,µηΛ−a.s., associated with a reversible Markov process ((XΛ,η
t )t≥0,PµηΛ)

such that its sample paths are PµηΛ−càdlàg. (PΛ,η
t )t≥0 is a strongly continuous semigroup of con-

tractions on L2(µηΛ), whose generator will be denoted by (L η
Λ ,D(L η

Λ )) (D(L η
Λ ) being its domain

in L2(µηΛ)).
This dynamic, as a classical probabilistic model in statistical mechanics, was first introduced and
studied by Preston in [17]. Bertini et al. [1] established the existence of a spectral gap, which is
uniformly positive in the volume and boundary conditions, for the Glauber dynamic in the high
temperature-low activity regime. The third named author [20] improved their work and extended
to the hard core case by Poissonian approximation and Liggett’s M − ε theorem for lattice gas.
Kondratiev and Lytvynov [12] also obtained independently the spectral gap estimate in [20], by a
different and simpler method.
In this paper we will always work on finite volume case for two reasons: 1) our W1 I -inequality
explodes in the infinite volume case even in the free case; 2) all interesting physical quantities
(such as mean number of particles per unit volume) in the infinite volume case are calculated by
approximation via finite volume ([18]).

Objective and organization. The objective of this paper is to establish some explicit transportation-
information inequality W1 I for the Glauber dynamic above related with the continuum Gibbs mea-
sure µηΛ, under the Dobrushin’s uniqueness condition (cf. [20])

D := z

∫

Rd

�

1− e−βϕ(y)
�

d y < 1. (11)
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As an interesting prelude to this end, we begin with the M/M/∞ queue system in §2 (the jumps
counterpart of the Ornstein-Uhlenbeck process), for which the optimal transportation-information
inequality is obtained by means of the Lipschitzian spectral gap and Lyapunov test function
method, improving some previous known results. In section 3, by generalizing the arguments
of section 2, we obtain explicit W1 I inequality for the continuum Gibbs measure µηΛ, under the
Dobrushin’s uniqueness condition. Section 4 is devoted to the discrete spin system. For this model
we establish W1 I -inequality by the tensorization technique in Gao and Wu [6].

2 M/M/∞ queue system

For the simplicity and the clarity of our presentation we begin with a simple model: M/M/∞
queue system. Let µ be the Poisson measure with mean λ > 0 on N equipped with the Euclidean
distance ρ. For each bounded measurable function f on N, consider the Dirichlet form

E ( f , f ) = λ
∑

n∈N
( f (n+ 1)− f (n))2µ(n) (12)

and the corresponding generator (with the convention f (−1) := f (0))

L f (n) = λ( f (n+ 1)− f (n)) + n( f (n− 1)− f (n)), ∀n ∈N.

It is an ideal model for a queue system with a number of servers much larger than the number
of clients (such as in an automatic computer service center). It is well known that the Poincaré
constant cP equals 1, but the log-Sobolev inequality does not hold (see [19]).

Theorem 2.1. With respect to the Euclidean metric ρ(x , y) = |x− y| on N, for the Poisson measure
µ with mean λ > 0, the following W1 I -inequality holds true:

W1,ρ(ν , µ)≤ 2
p

λI + I , ∀ν ∈M 1
1 (N), (13)

where I = I(ν |µ). This inequality is of the form (3) with α(r) = (
p
λ+ r −

p
λ)2, which is optimal.

Remark 2.2. By Theorem 1.1 the W1 I inequality (13) is equivalent to the following concentration
inequality of Bernstein type: for any g :N→R with ‖g‖Lip(ρ) = 1 and µ(g) = 0,

Pν

�

1

t

∫ t

0

g(Xs)ds > 2
p

λx + x

�

≤ ‖
dν

dµ
‖2e−t x , ∀ t, x > 0

for any initial measure ν � µ. For the function g0(n) := n−λ, Gao et al. [5] showed that

ν(g0)−µ(g0)≤ 2
p

λI + I , I := I(ν |µ), ∀ν ∈M 1
1 (N)

is optimal (our result is motivated by this fact, of course). A different but direct way to see
the optimality of (13) is to take ν as the Poisson measure with parameter aλ where a > 1 :
W1,ρ(ν , µ) = λ(a− 1) and I := I(ν |µ) = λ[

p
a− 1]2. Then (13) becomes equality for such ν .

Remark 2.3. The optimal transportation-information inequality (13) is a definite improvement on
the existing results on this model obtained by Gao et al. [5], Gao and Wu [6]. However our proof is
largely inspired by those general works. For other known concentration inequalities on this model,
see Joulin [10], Liu and Ma [13], Joulin and Ollivier [11] (for numerous other interesting models
too). Chafaï [2] obtained the Φ-Sobolev inequalities (including the L1-log-Sobolev inequalities)
for the M/M/∞ queue.
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Proof of Theorem 2.1. Step 1. Lipschitzian spectral gap. First of all, we claim that

‖(−L )−1‖Lip(ρ) := sup
‖g‖Lip(ρ)=1

‖(−L )−1 g‖Lip(ρ) = 1 (14)

for this model. The simplest way to see this known fact is to remark the following commutation
relation between the generator L and the difference operator DG(n) := G(n+ 1)− G(n) (for a
function G on N):

DLG =L DG− DG.

Given any g : N→ R with ‖g‖Lip(ρ) = 1 and µ(g) = 0, if −LG = g, then (1−L )DG = Dg. By
the resolvent of the infinitesimal generator L , for any f with ‖ f ‖∞ = 1

‖(1−L )−1 f ‖∞ = ‖
∫ ∞

0

e−s Ps f ds‖∞ ≤
∫ ∞

0

e−sds = 1,

where it follows by taking f ≡ 1

‖(1−L )−1‖∞ := sup
‖ f ‖∞=1

‖(1−L )−1 f ‖∞ = 1.

Hence
‖G‖Lip(ρ) = ‖DG‖∞ ≤ ‖− (1−L )−1‖∞ · ‖Dg‖∞ = 1

and this inequality becomes equality if Dg = 1 (i.e. g(n) = g0(n) = n−λ). That shows the fact.
Step 2. Lyapunov function method. For (13) we may assume that ν = f µ with

p

f ∈D(E ) and

I := I(ν |µ) = E (
p

f ,
p

f )> 0.
Given any function g on N with µ(g) = 0 and ‖g‖Lip(ρ) = 1, let G be the solution to the Poisson
equation −LG = g with µ(G) = 0. For any δ > 0, we have (these few lines are the starting point
of our approach)

ν(g)−µ(g) = 〈g, f 〉µ = E (G, f )

=
∞
∑

n=0

λµ(n)(G(n+ 1)− G(n))( f (n+ 1)− f (n))

≤

s

∞
∑

n=0

λµ(n)(
p

f (n+ 1)−
p

f (n))2

·

s

∞
∑

n=0

λµ(n)(G(n+ 1)− G(n))2(
p

f (n+ 1) +
p

f (n))2

≤
p

I

s

∞
∑

n=0

λµ(n)
�

(1+δ) f (n+ 1) +
�

1+
1

δ

�

f (n)
�

.

where the last inequality relies on the fact that ‖(−L )−1‖Lip(ρ) = 1 in Step 1, ‖g‖Lip(ρ) = 1 and
the elementary inequality (x + y)2 ≤ (1+ δ)x2 + (1+ δ−1)y2 for any x , y ∈ R,δ > 0. The last
term in the square root above, denoted by B, is (using λµ(n) = (n+ 1)µ(n+ 1))

B = (1+
1

δ
)λ

∞
∑

n=0

µ(n) f (n) + (1+δ)
∞
∑

n=0

(n+ 1)µ(n+ 1) f (n+ 1)

=
∞
∑

n=0

µ(n) f (n)
�

(1+δ)n+
�

1+
1

δ

�

λ

�

.
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We now employ the method of Lyapunov test function developed in Guillin et al. [8] for bounding
the last term. The basic fact behind this approach is : for any function V ≥ 1, if −L V

V
is bounded

from below, then
∫

−
L V

V
dν ≤ I(ν |µ), ∀ν ∈M 1

1 (N). (15)

That was proved in [8, Lemma 5.6] for general reversible Markov processes. Our task now is to
find a good function V such that

(1+δ)n+
�

1+
1

δ

�

λ≤−a
L V

V
(n) + b (16)

for two positive constants a, b, and (15) will imply

B ≤ aI + b.

Taking V (n) = κn for some constant κ > 1, the previous inequality holds with a = (1+δ)κ/(κ−1)
and b =

�

(1+δ)κ+ (1+ 1
δ
)
�

λ by simple algebra. As δ > 0,κ > 1 are arbitrary, we get

ν(g)−µ(g)≤
p

I inf
κ>1,δ>0

r

I(1+δ)κ/(κ− 1) +
�

(1+δ)κ+ (1+
1

δ
)
�

λ

= I + 2
p

λI

where the equality is attained at κ= 1+
p

I/λ and δ = κ−1. Therefore the desired transportation-
information inequality (22) follows by taking the supremum over all functions g such that µ(g) =
0 and ‖g‖Lip(ρ) = 1.

Remark 2.4. Given an increasing function w on N which induces a metric ρw as ρw(x , y) =
|w(x) − w(y)|, the Lipschitzian norm of the Poisson operator ‖(−L )−1‖Lip(ρw) is known for a
general birth-death process (i.e. L f (n) = bn( f (n+1)− f (n))+an( f (n−1)− f (n)) with the birth
rate bn > 0 for any n≥ 0 and the death rate a0 = 0, an > 0 for any n≥ 1), due to Liu and the first
named author [13]. In fact, consider the corresponding Poisson equation

−Lϕ = w−µ(w), (17)

which admits a unique and explicit solution ϕ with zero mean ([13]). Theorem 2.1 in [13] says
that

‖(−L )−1‖Lip(ρw) = ‖ϕ‖Lip(ρw). (18)

This fact together with the Lyapunov test function method above can produce the W1 I inequality
for quite general birth-death processes. Notice also that for w(n) = g0(n) = n− λ, the previous
identification (18) of ‖(−L )−1‖Lip(ρw) gives the result of Step 1 above, for ϕ = g0.

3 W1I-inequality for continuum Gibbs measure

In this section we generalize the arguments in §2 to study the W1 I -inequality for the continuum
Gibbs measure µηΛ.
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3.1 Lipschitzian norm of (−L η
Λ )
−1

We consider the total variation metric d on ΩΛ : for any ω,ω′ ∈ ΩΛ,

d(ω,ω′) = ‖ω−ω′‖TV. (19)

Given any functional F ∈ rFΛ, we call F is Lipschitzian with respect to d if

‖F‖Lip(d) := sup
ω 6=ω′

|F(ω)− F(ω′)|
d(ω,ω′)

<∞.

By Lemma 2.2 in [14],
‖F‖Lip(d) = sup

x∈Λ,ωΛ∈ΩΛ
|D+x F(ωΛ)|. (20)

Denote by C0
Lip the set of functionals F ∈ rFΛ with ‖F‖Lip(d) <∞ and µηΛ(F) = 0.

Recall the usual Lipschitzian norm of (−L η
Λ )
−1 on C0

Lip:

‖(−L η
Λ )
−1‖Lip(d) = sup

‖g‖Lip(d)≤1
‖(−L η

Λ )
−1 g‖Lip(d). (21)

First we give a key lemma which provides a sharp estimate of the Lipschitzian norm of (−L η
Λ )
−1

and which is essentially due to the third named author [20].

Lemma 3.1. Suppose that the Dobrushin’s uniqueness condition holds, i.e.,

D = z

∫

Rd

(1− e−βϕ(x))d x < 1.

We have

‖(−L η
Λ )
−1‖Lip(d) ≤

1

1− D
.

Proof. By Theorem 5.1 in [20], for any functional F ∈ bFΛ ∩ C0
Lip,

‖PΛ,η
t F‖Lip(d) ≤ e−(1−D)t‖F‖Lip(d).

Hence
‖(−L η

Λ )
−1F‖Lip(d) = sup

x∈Λ,ωΛ∈ΩΛ
|D+x (−L

η
Λ )
−1F(ωΛ)|

= sup
x∈Λ,ωΛ∈ΩΛ

|D+x

∫ ∞

0

PΛ,η
t F(ωΛ)d t|

≤
∫ ∞

0

sup
x∈Λ,ωΛ∈ΩΛ

|D+x PΛ,η
t F(ωΛ)|d t

≤
∫ ∞

0

e−(1−D)t d t‖F‖Lip(d) =
1

1− D
‖F‖Lip(d).

For general F ∈ C0
Lip, let Fn = (F ∧ n) ∨ (−n), we can approximate F by Fn − µ

η
Λ(Fn), then the

desired result follows.
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3.2 W1I-inequality

The main result of this paper is the following theorem

Theorem 3.2. For the continuum Gibbs measure µηΛ given in (7) with the nonnegative even pair
interaction ϕ, suppose that the Dobrushin’s uniqueness condition holds, i.e.,

D = z

∫

Rd

(1− e−βϕ(x))d x < 1.

Then the transportation-information inequality below holds

W1,d(ν ,µηΛ)≤
1

1− D

�

I + 2
p

z|Λ|I
�

, ∀ν ∈M 1
1 (ΩΛ) (22)

where I = I(ν |µηΛ) is the Fisher-Donsker-Varadhan’s information related with EηΛ given in (10) and
the metric d is the total variation metric defined in (19).

Remark 3.3. When ϕ = 0 (no interaction case), the inequality (22) is optimal. Since in this case
D = 0 and NΛ(X t) is just the M/M/∞ queue with λ = z|Λ| and then Theorem 2.1 guarantees its
optimality.

Remark 3.4. Since the Lipschitzian norm w.r.t. d of F(ω) = 1
|Λ|NΛ(ω) (the mean number of

particles per unit volume of ω) is 1/|Λ|, hence by (22) and Theorem 1.1 we have for all t, r > 0
and initial distribution ν � µηΛ,

Pν

�

1

t|Λ|

∫ t

0

NΛ(Xs)ds−
µ
η
Λ(NΛ)
|Λ|

> r

�

≤ ‖
dν

dµ
‖2 exp

�

−t|Λ|
h
p

z+ (1− D)r −
p

z
i2�

.

This concentration inequality shows that the Glauber dynamics here is a very efficient tool for
estimating µηΛ(NΛ)/|Λ|.

The same argument as Theorem 2.1, namely estimating ‖(−L η
Λ )
−1‖Lip(d) plus Lyapunov condition

(16), works for proving Theorem 3.2. Then with Lemma 3.1, it remains to find some good function
V such that Lyapunov condition is verified. For this aim, we begin by introducing the generalized
domain De(L

η
Λ ).

A continuous function h is said to be in the µηΛ−extended domain De(L
η
Λ ) of the generator of

the Markov process ((XΛ,η
t ),µ

η
Λ) if there is some measurable function g such that

∫ t

0
|g|(XΛ,η

s )ds <
+∞,µηΛ−a.s., and

Mt := h(XΛ,η
t )− h(XΛ,η

0 )−
∫ t

0

g(XΛ,η
s )ds

is a local µηΛ-martingale. It is obvious that g is uniquely determined up to µηΛ−equivalence. In
such case one writes h ∈De(L

η
Λ ) and L η

Λ h= g.

Lemma 3.5. There exists a function V : ΩΛ→ [1,∞) in De(L
η
Λ ) such that for any δ > 0,

(1+δ)NΛ(ωΛ) + (1+
1

δ
)z|Λ| ≤ −a

L η
Λ V (ωΛ)
V (ωΛ)

+ b, ωΛ ∈ ΩΛ

a = (1+δ)
κ

κ− 1
, b =

�

(1+δ)κ+ (1+
1

δ
)
�

z|Λ|.
(23)



Transportation-information inequalities 609

Proof. For a constant κ > 1, take V (ωΛ) = κNΛ(ωΛ). Then

−
L η
Λ V (ωΛ)
V (ωΛ)

= (1−κ−1)NΛ(ωΛ)− (κ− 1)z

∫

Λ

e−βD+x HηΛ(ωΛ)d x .

As ϕ ≥ 0, we see that (23) holds.
Proof of Theorem 3.2 In order to establish (22), we may assume that ν = f µηΛ with

p

f ∈ D(E )
and I = I(ν |µηΛ)> 0.
Given any g ∈ C0

Lip with ‖g‖Lip(d) = 1, let G = (−L η
Λ )
−1 g. By Cauchy-Schwarz inequality and (10),

we have

ν(g)−µηΛ(g) = 〈g, f 〉µηΛ = 〈−L
η
Λ G, f 〉µηΛ = E

η
Λ (G, f )

=

∫

ΩΛ

dµηΛ

∫

Λ

e−βD+x HηΛ(ωΛ)D+x G(ωΛ)D
+
x f (ωΛ)zd x

≤
p

I

s

∫

ΩΛ

dµηΛ

∫

Λ

e−βD+x HηΛ(ωΛ)(D+x G(ωΛ))2
�

p

f (ωΛ +δx) +
p

f (ωΛ)
�2zd x .

We treat the term in the last square root as in the proof of Theorem 2.1,
∫

ΩΛ

dµηΛ

∫

Λ

e−βD+x HηΛ(ωΛ)(D+x G(ωΛ))
2�
p

f (ωΛ +δx) +
p

f (ωΛ)
�2zd x

≤
∫

ΩΛ

dµηΛ

∫

Λ

e−βD+x HηΛ(ωΛ)(D+x G(ωΛ))
2�(1+δ) f (ωΛ +δx) + (1+

1

δ
) f (ωΛ)

�

zd x

≤ ‖G‖2
Lip(d)

∫

ΩΛ

dµηΛ

∫

Λ

e−βD+x HηΛ(ωΛ)
�

(1+δ) f (ωΛ +δx) + (1+
1

δ
) f (ωΛ)

�

zd x

= ‖G‖2
Lip(d)

∫

ΩΛ

f (ωΛ)dµ
η
Λ

�

(1+δ)

∫

Λ

e−βD+x HηΛ(ωΛ−δx )ωΛ(d x) + (1+
1

δ
)

∫

Λ

e−βD+x HηΛ(ωΛ)zd x
�

≤
1

(1− D)2

∫

ΩΛ

�

(1+δ)NΛ(ωΛ) + (1+
1

δ
)z|Λ|

�

ν(dωΛ)

≤
1

(1− D)2

∫

ΩΛ

�

− a
L η
Λ V (ωΛ)
V (ωΛ)

+ b
�

ν(dωΛ)

≤
1

(1− D)2

�

aI + b
�

,

where δ > 0 is arbitrary, the third crucial equality is due to the duality formula in the Malliavin
calculus on the Poisson space ([16]) saying for any measurable functional F : ΩΛ×Λ 7→ [0,+∞],

∫

ΩΛ

dµΛη

∫

Λ

ωΛ(d x)F(ωΛ, x) =

∫

ΩΛ

dµηΛ

∫

Λ

exp{−βE(x ,ωΛ)}F(ωΛ +δx , x)zd x

with

E(x ,ωΛ) :=

(
∫

Λ
ϕ(x − y)ωΛ(d y), if

∫

Λ
|ϕ(x − y)|ωΛ(d y)<∞;

+∞, otherwise ,
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the fourth inequality is true by the Lipschitzian spectral gap estimate in Lemma 3.1, the last but
second inequality is an application of (23) with constants a, b given there and the last one follows
by [8, Lemma 5.6] as recalled in (15).
Now by the same optimization procedure over κ > 1,δ > 0 as in the proof of Theorem 2.1, we
obtain

ν(g)−µηΛ(g)≤
1

1− D

�

I + 2
p

z|Λ|I
�

where the desired result (22) follows, since g in C0
Lip with ‖g‖Lip(d) = 1 is arbitrary.

4 W1I-inequality for the discrete spin system

The discrete spin system and the Dobrushin’s interdependence coefficient. Let T be a finite
subset of Zd and γ : Zd ×Zd →R+ be a nonnegative interaction function satisfying γi j = γ ji and
γii = 0 for all i, j ∈Zd . The Gibbs measure on NT with boundary condition (xk)k∈T c is defined by

µT (d xT |x) =
e−

1
2

∑

{i, j}∩T 6=; γi j x i x j

Z(xT c )
Πi∈Tσλi

(d x i) (24)

where
¦

σλi
(·)
©

i∈Zd are the given Poisson measures on N with means
�

λi > 0
	

i∈Zd , and Z(xT c ) is
the normalization factor. When T = {i}, µT (d xT |x) is simply denoted by µi := µi(d x i | x), which
is the conditional distribution of x i knowing (x j) j 6=i . In the present case, µi(d x i | x) is the Poisson

distribution P (λie
−
∑

j 6=i γi j x j ) with parameter λie
−
∑

j 6=i γi j x j .
The purpose of this section is to propose another approach : tensorization technique, to establish
the W1 I -inequality for the discrete Gibbs measure µT (d xT |x) from (13) for Poisson measure. For
this dependent tensorization, the key tool is the Dobrushin’s interdependence matrix C := (ci j)i, j∈T
w.r.t. the Euclidean metric ρ on N, defined by

ci j = sup
x=x ′off j

W1,ρ

�

µi(d x i |x),µi(d x ′i |x
′)
�

|x j − x ′j |
, ∀ i, j ∈Zd (25)

(obviously cii = 0). Then the Dobrushin’s uniqueness condition [3, 4] is

D := sup
j∈T

∑

i∈T

ci j < 1. (26)

The Dobrushin’s interdependence coefficient ci j can be easily identified for this model.

Lemma 4.1. ([14, Lemma 3.1]) For i 6= j in Zd ,

ci j = λi(1− e−γi j ). (27)

The transportation-information inequality W1 I for the discrete spin system. Consider the
metric

dl1(x , y) :=
∑

i∈T

|x i − yi |, ∀x , y ∈NT (28)

on NT . The following disintegration of W1-metric is our starting point.
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Lemma 4.2. (Gao-Wu [6, Theorem 3.1]) Let µT be the discrete Gibbs measure given in (24). Assume
the Dobrushin’s uniqueness condition

D = sup
j∈T

∑

i∈T

λi(1− e−γi j )< 1.

Then for all νT ∈M 1
1 (N

T ),

W1,dl1
(νT , µT )≤

1

1− D
EνT

∑

i∈T

W1,ρ(νi , µi) (29)

where νi is the conditional distribution of x i knowing (x j) j 6=i .

We now introduce the Glauber dynamic. For each i ∈ T and x̂ i := xT\{i} fixed, consider the site’s
Dirichlet form associated with the Poisson measure µi(d x i |x):

Ei( f , f ) := λie
−
∑

j 6=i γi j x j

∑

x i∈N
( f (x i + 1)− f (x i))

2µi(x i |x),

D(Ei) := { f ∈ L2(µi); Ei( f , f )<+∞}.

which corresponds to the M/M/∞ queue with parameter λ = λie
−
∑

j 6=i γi j x j . Define the global
Dirichlet form ET on T by

D(ET ) :=

(

g ∈ L2(µT ) : gi ∈D(Ei), forµT − a.e. x̂ i and

∫

NT

∑

i∈T

Ei(gi , gi)dµT <+∞

)

,

ET (g, g) :=

∫

NT

∑

i∈T

Ei(gi , gi)dµT , g ∈D(ET ) (30)

where gi(x i) := g(x i , x̂ i) with x̂ i := xT\{i} fixed.
The following additivity property of the Fisher information will be needed.

Lemma 4.3. (Guillin et al. [8, Lemma 2.12]) Let νT ,µT be probability measures on NT such
that IT (νT |µT ) < +∞, and let µi ,νi be the conditional distributions of x i knowing x̂ i under µ,ν
respectively. Then

IT (νT |µT ) = E
νT

∑

i∈T

Ii(νi |µi) (31)

where Ii(νi |µi) is the Fisher-Donsker-Varadhan information related to the Dirichlet form (Ei ,D(Ei)).

Proof. For the completeness we reproduce the proof. Let f = dνT/dµT . Then dνi/dµi =
f /µi( f ) = fi/µi( fi), νT−a.s. where fi(x i) = f (x i , x̂ i). For µT− a.e. x̂ i fixed,

Ii(νi |µi) = Ei





È

fi

µi( fi)
,

È

fi

µi( fi)



=
1

µi( fi)
Ei(
p

fi ,
p

fi)

(for µi( fi) is constant with x̂ i fixed). We obtain

EνT

∑

i∈T

Ii(νi |µi) = E
µT f
∑

i∈T

1

µi( fi)
Ei(
p

fi ,
p

fi) = E
µT

∑

i∈T

Ei(
p

fi ,
p

fi),

which completes the proof.
We can now state the main result of this section.
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Theorem 4.4. Let µT be the Gibbs measure given in (24). Assume the Dobrushin’s uniqueness
condition

D = sup
j∈T

∑

i∈T

λi(1− e−γi j )< 1. (32)

Then for any νT ∈M 1
1 (N

T , dl1), it holds that

W1,dl1
(νT , µT )≤

1

1− D









2

√

√

√

√

 

∑

i∈T

λi

!

I + I









(33)

where I = IT (νT |µT ).

Proof of Theorem Gibbs By Theorem 2.1, we know that for each µi = µi(·|x), it holds that

W1,ρ(νi ,µi)≤ 2
p

λi Ii(νi |µi) + Ii(νi |µi), ∀νi ∈M 1
1 (N). (34)

Under the Dobrushin’s uniqueness condition (32), by Lemma 4.2 and (34), we have by Cauchy-
Schwarz inequality,

(1− D)W1,dl1
(νT ,µT ) ≤ EνT

∑

i∈T

W1,ρ(νi ,µi)

≤ 2EνT

∑

i∈T

p

λi Ii(νi |µi) +E
νT

∑

i∈T

Ii(νi |µi)

≤ 2
r

∑

i∈T

λi ·EνT

∑

i∈T

Ii(νi |µi) +E
νT

∑

i∈T

Ii(νi |µi)

where the desired inequality follows by Lemma 4.3.

Remark 4.5. The inequality (33) in the free case is again sharp. Indeed if γi j = 0 (no interaction
case) it is optimal, as seen by applying Theorem 2.1 to the function

∑

i∈T x i .
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