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Abstract
We show that the limiting eigenvalue distribution of random symmetric Toeplitz matrices is abso-
lutely continuous with density bounded by 8, partially answering a question of Bryc, Dembo and
Jiang (2006). The main tool used in the proof is a spectral averaging technique from the theory
of random Schrödinger operators. The similar question for Hankel matrices remains open.

1 Introduction

An n× n symmetric random Toeplitz matrix is given by

Tn = ((a| j−k|))0≤ j,k≤n

where (a j) j≥0 is a sequence of i.i.d. random variables with Var(a0) = 1. For a m×m Hermitian
matrix A, we denote by

µ(A) :=
1

m

m
∑

i=1

δλi

the empirical eigenvalue distribution of A, where λ j , 1≤ j ≤ m are the eigenvalues of A, counting
multiplicity. Bryc, Dembo and Jiang (2006) established using method of moments that with prob-
ability 1, µ(n−1/2Tn) converges weakly as n→∞ to a nonrandom symmetric probability measure
γ which does not depend on the distribution of a0, and has unbounded support. They conjecture
(see Remark 1.1 there) that γ has a smooth density. In this note, we give a partial solution:
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Theorem 1. The measure γ is absolutely continuous with density bounded by 8.

The actual bound we get is 16
p

2
π
= 7.20 . . ., but we do not expect it to be optimal.

It seems that the method of moments is of little use in determining the existence of the absolute
continuity of the limiting eigenvalue distribution. Indeed our proof goes along a completely dif-
ferent path. We make use of the fact that the spectrum of the Gaussian Toeplitz matrix can be
realized as that of some diagonal matrix consisting of independent Gaussians conjugated by an
appropriate projection matrix - a fact observed in a recent paper Sen and Virág (2011). The next
key ingredient of our proof is a spectral averaging technique (Wegner type estimate) developed
by Combes, Hislop and Mourre (1996) in connection to the problem of localization for certain
families of random Schrödinger operators.
Our proof does not establish further smoothness property of γ. The absolute continuity for the
limiting distribution of random Hankel matrices also remains open.

2 Connection between Toeplitz and circulant matrices

Since γ does not depend on the distribution of a0, from now on, we will assume, without any loss,
that (ai)i≥0 are i.i.d. standard Gaussian random variables. The remainder of the section we recall
some facts about the connection between Toeplitz matrices and circulant matrices from Sen and
Virág (2011). Let T◦n be the symmetric Toeplitz matrix which has

p
2a0 on its diagonal instead of

a0. It can be easily shown (e.g. using Hoffman-Wielandt inequality, see Bhatia (1997)) that this
modification has no effect as far as the limiting eigenvalue distribution is concerned.
T◦n is the n×n principal submatrix of a 2n×2n circulant matrix C2n = (b j−i mod 2n)0≤i, j≤2n−1, where
b j = a j for 0< j < n and b j = a2n− j for n< j < 2n, b0 =

p
2a0, bn =

p
2an. In other words,

Q2nC2nQ2n =
�

T◦n 0n
0n 0n

�

, where Q2n =
�

In 0n
0n 0n

�

. (1)

The circulant matrix can be easily diagonalized as (2n)−1/2C2n = U2nD2nU∗2n where U2n is the
discrete Fourier transform, i.e. a unitary matrix given by

U2n( j, k) =
1
p

2n
exp
�

2πi jk

2n

�

, 0≤ j, k ≤ 2n− 1

and D2n = diag(d0, d1, . . . , d2n−1), where

d j =
1
p

2n

2n−1
∑

k=0

bk exp
�

2πi jk

2n

�

=
1
p

2n





p
2a0 + (−1)n

p
2an + 2

n−1
∑

k=1

ak cos
�

2π jk

2n

�



 .

Clearly, d j = d2n− j for all n< j < 2n. Also, (d j)0≤ j≤n are independent mean zero Gaussian random
variables with Var(d j) = 1 if 0 < j < n and Var(d j) = 2 if j ∈ {0, n}. Define P2n := U∗2nQ2nU2n so
that

(2n)−1/2U∗2nQ2nC2nQ2nU2n = P2nD2nP2n. (2)

Check that P2n is a Hermitian projection matrix with P2n( j, j) = 1/2 for all j. For notational sim-
plification, we will drop the subscript 2n from the relevant matrices unless we want to emphasize
the dependence on n.
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3 Proof of the main theorem

For a vector u ∈ Cm and a Hemitian matrix A, let σ(A,u) :=
∑m

i=1 |〈vi ,u〉|2δλi
be the spectral

measure of A at u, where A =
∑m

i=1λivv∗i is a spectral decomposition of A. For a finite measure ν
on R, its Cauchy-Stieltjes transform is given by

s(z;ν) =

∫

R

1

x − z
ν(d x), z ∈ C, Im(z)> 0.

LetEµ(n−1/2T◦n) denote the expected empirical eigenvalue distribution of n−1/2T◦n which is defined
by Eµ(n−1/2T◦n)(B) = E[µ(n

−1/2T◦n)(B)] for all Borel sets B.

Lemma 2. Let (e j)0≤ j≤2n−1 be the coordinate vectors of R2n. Then

s(z;Eµ(n−1/2T◦n)) =

p
2

n

2n−1
∑

j=0

E〈Pe j , (PDP− zI)−1Pe j〉 z ∈ C, Im(z)> 0.

Before we start proving the above lemma, we state a simple fact about spectral measures of Her-
mitian matrices.

Lemma 3. Let A be an m×m Hermitian matrix. Let u1,u2, . . . ,uk and v1,v2, . . . ,v` be vectors in
Cm satisfying

∑k
i=1 uiu

∗
i =
∑`

j=1 v jv
∗
j . Then

k
∑

i=1

σ(A,ui) =
∑̀

j=1

σ(A,v j). (3)

Proof of Lemma 3. Let A =
∑m

r=1λrwrw
∗
r be a spectral decomposition of A. Now for each r, it

follows from the definition of the spectral measure that the probability masses at λr for the both
side of (3) are equal. This completes the proof of the lemma.

Proof of Lemma 2. By (1), we have

s(z;µ(n−1/2T◦n)) =
1

n

n−1
∑

j=0

〈e j , (n
−1/2QCQ− zI)−1e j〉,

Changing basis as in (2), we can rewrite this as

p
2

n

n−1
∑

j=0

〈U∗e j , (PDP− zI)−1U∗e j〉=
p

2

n

n−1
∑

j=0

s(z;σ(PDP,U∗e j)).

Now by Lemma 3 and the fact that
∑n−1

j=0 U∗e je
∗
j U=

∑2n−1
j=0 Pe je

∗
j P, we deduce

s(z;µ(n−1/2T◦n)) =

p
2

n

2n−1
∑

j=0

〈Pe j , (PDP− zI)−1Pe j〉. (4)

The lemma now follows by taking expectation on both sides of (4) and by observing that for a fixed
z ∈ C, Im(z) 6= 0, the map ν 7→ s(z;ν) is linear and hence commutes with the expectation.
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Next we will prove a key lemma about the uniform bound on the Stieltjes transform of the expected
empirical eigenvalue distribution of Toeplitz matrices.

Lemma 4. For all n, we have

sup
z:Im(z)>0

|s(z;Eµ(n−1/2T◦n))| ≤ 16
p

2.

The above lemma will be a direct consequence of the following result of Combes et al. (1996) on
the spectral averaging for one parameter family self-adjoining operators.

Proposition 5 (Combes et al. (1996)). Let Hλ,λ ∈ R be a C2-family of self-adjoint operators such
that D(Hλ) = D0 ⊂H ∀λ ∈R, and such that (Hλ − z)−1 is twice strongly differentiable in λ for all
z, Im(z) 6= 0. Assume that there exist a finite positive constant c0, and a positive bounded self-adjoint
operator B such that, on D0

Ḣλ :=
dHλ
dλ
≥ c0B2. (5)

Also assume Hλ is linear in λ, i.e., Ḧλ := d2Hλ
dλ2 = 0. Then for all E ∈ R and twice continuously

differentiable function g such that g, g ′, g ′′ ∈ L1(R) and for all ϕ ∈H ,

sup
δ>0

�

�

�

�

�

∫

R

g(λ)〈ϕ, B(Hλ − E − iδ)−1Bϕ〉dλ

�

�

�

�

�

≤ c−1
0 (‖g‖1 + ‖g ′‖1 + ‖g ′′‖1)‖ϕ‖2. (6)

Proposition 5 is an immediate corollary of Theorem 1.1 of Combes et al. (1996) where instead of
Ḧλ = 0, it was assumed that |Ḧλ| ≤ c1Ḣλ. The vanishing second derivative assumption shortens
the the proof by a considerable amount. We have included a proof of the above proposition in the
appendix to make this paper self-contained and also to make constant in the bound (6) explicit.

Proof of Lemma 4. Set E j = e je
∗
j + e2n− je

∗
2n− j for 1≤ j < n, and E j = e je

∗
j for j ∈ {0, n}. Take

B j = Pe je
∗
j P or Pe2n− je

∗
2n− jP for 1≤ j < n and B j = Pe je

∗
j P for j ∈ {0, n}. (7)

Fix 0 ≤ j ≤ n. We apply Theorem 5 with Hλ = P
�

D+ (λ− d j)E j
�

P. In words, we replace d j and
d2n− j by λ in PDP to get Hλ. Note that Hλ is random self-adjoint operator which is a function of
{dk : 0≤ k ≤ n, k 6= j}. Also, Hλ is linear in λ and so, Ḧλ = 0. Since Ḣλ = PE jP≥ B j = P( j, j)−1B2

j ,
the condition (5) is satisfied with B = B j and c0 = 2 since P( j, j) = 1/2. Take g = φ j where φ j be
the density of Z for 0 < j < n or the density of

p
2Z for j ∈ {0, n}, Z being a standard Gaussian

random variable. It is easy to check that ‖g‖1 = 1,‖g ′‖1 ≤
Æ

2
π

,‖g ′′‖1 ≤ 2. Then plugging
ϕ = e j or e2n− j and B j = Pe je

∗
j P or Pe2n− je

∗
2n− jP in (6) and taking expectation w.r.t. the remaining

randomness {dk : 0≤ k ≤ n, k 6= j}, we obtain

sup
z:Im(z)>0

P( j, j)2
�

�

�E〈Pe j , (PDP− zI)−1Pe j〉
�

�

�≤ c−1
0 (‖g‖1 + ‖g ′‖1 + ‖g ′′‖1)≤ 2. (8)

The lemma is now immediate from (8) and Lemma 2.
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Proof of Theorem 1. From the inversion formula, ν{(x , y)}= limδ↓0
1
π

∫ y

x
Im(s(E+iδ;ν))dE for all

x < y continuity points of ν , it follows that if for some probability measure µ, supz:Im(z)>0 Im(s(z;µ))≤
K then µ is absolutely continuous w.r.t. Lebesgue measure and its density is bounded by π−1K .
Note that s(z;Eµ(n−1/2T◦n)) → s(z;γ) as n → ∞ for each z ∈ C, Im(z) > 0 since Eµ(n−1/2T◦n)
converges weakly to γ (see Bryc et al. (2006)). So by Lemma 4, it follows that

sup
z:Im(z)>0

|s(z;γ)| ≤ 16
p

2< 8π

which completes the proof of the theorem.

Appendix

Proof of Proposition 5. Define for ε > 0 and 0< δ < 1,

R(λ,ε,δ) := (Hλ − E + iδ+ iεḢλ)
−1 (9)

and set
K(λ,ε,δ) := BR(λ,ε,δ)B. (10)

Note that from assumption (5) ,

−Im〈ϕ, K(λ,ε,δ)ϕ〉= 〈ϕ, BR(λ,ε,δ)∗(δ+ εḢλ)R(λ,ε,δ)Bϕ〉 ≥ c0ε‖K(λ,ε,δ)ϕ‖2,

which, coupled with Cauchy-Schwarz inequality, implies that ∀ϕ ∈H ,‖ϕ‖= 1,

‖K(λ,ε,δ)ϕ‖ ≥ −Im〈ϕ, K(λ,ε,δ)ϕ〉 ≥ c0ε‖K(λ,ε,δ)ϕ‖2. (11)

Now define

F(ε,δ) :=

∫

R

g(λ)〈ϕ, K(λ,ε,δ)ϕ〉dλ.

Inequality (11) implies the bound

F(ε,δ)≤ (εc0)
−1‖g‖1. (12)

Now differentiating F w.r.t. ε, we obtain

i
dF(ε,δ)

dε
=

∫

R

g(λ)〈ϕ, BR(λ,ε,δ)ḢλR(λ,ε,δ)Bϕ〉dλ

=−
∫

R

g(λ)
d

dλ
〈ϕ, K(λ,ε,δ)ϕ〉dλ.

where the last equality follows from the fact Ḧλ = 0. Therefore, from (11) and by integration of
parts,

�

�

�

�

dF(ε,δ)
dε

�

�

�

�

=

�

�

�

�

�

∫

R

g ′(λ)〈ϕ, K(λ,ε,δ)ϕ〉dλ

�

�

�

�

�

≤ (εc0)
−1‖g ′‖1. (13)

By integrating the differential inequality (13) and using the bound (12), we can improve the
bound for F as

|F(ε,δ)| ≤ c−1
0 ‖g

′‖1 · | logε|+ |F(1,δ)| ≤ c−1
0 ‖g

′‖1 · | logε|+ c−1
0 ‖g‖1, ∀ε ∈ (0, 1). (14)



Absolute continuity of Toeplitz matrix 711

Now if we consider the function F̃(ε,δ) :=
∫

R
g ′(λ)〈ϕ, K(λ,ε,δ)ϕ〉dλ, then by replacing the

function g by its derivative g ′ in (14), we deduce that

|F̃(ε,δ)| ≤ c−1
0 ‖g

′′‖1 · | logε|+ c−1
0 ‖g

′‖1, ∀ε ∈ (0,1)

which further implies that
�

�

�

�

dF(ε,δ)
dε

�

�

�

�

≤ c−1
0 ‖g

′′‖1 · | logε|+ c−1
0 ‖g

′‖1, ∀ε ∈ (0,1). (15)

Again integrating (15), we get

|F(ε,δ)| ≤ c−1
0 (‖g

′′‖1 + ‖g ′‖1) + |F(1,δ)| ≤ c−1
0 (‖g

′′‖1 + ‖g ′‖1 + ‖g‖1), (16)

which holds for all ε,δ ∈ (0, 1). The proof of the Proposition now follows from the fact that
R(λ,ε,δ) converges weakly to (Hλ − E + iδ)−1 as ε → 0+ provided δ > 0, and the dominated

convergence theorem since
�

�

�

∫

R
g(λ)〈ϕ, K(λ,ε,δ)ϕ〉dλ

�

�

�≤ C , by (16).
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