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Abstract
LetH (t, x) be the Hopf-Cole solution at time t of the Kardar-Parisi-Zhang (KPZ) equation starting
with narrow wedge initial condition, i.e. the logarithm of the solution of the multiplicative stochas-
tic heat equation starting from a Dirac delta. Also letH eq(t, x) be the solution at time t of the KPZ
equation with the same noise, but with initial condition given by a standard two-sided Brownian
motion, so that H eq(t, x)−H eq(0, x) is itself distributed as a standard two-sided Brownian mo-
tion. We provide a simple proof of the following fact: for fixed t,H (t, x)−

�

H eq(t, x)−H eq(t, 0)
�

is locally of finite variation. Using the same ideas we also show that if the KPZ equation is started
with a two-sided Brownian motion plus a Lipschitz function then the solution stays in this class
for all time.

1 Introduction and statement of the results

The KPZ equation

∂tH =−
1

2

�

∂xH
�2 +

1

2
∂ 2

xH + Ẇ , (1.1)

was introduced by [9] as a model of randomly growing interfaces. Here Ẇ (t, x) is Gaussian
space-time white noise, E

�

Ẇ (t, x)W (s, y)
�

= δs=tδx=y (see Section 1.4 of [2] for a precise defi-
nition). It is expected that the one-dimensional KPZ equation appears as the weak asymptotic limit
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of a large class of stochastic interacting particle systems/growth models, including directed ran-
dom polymers, stochastic Hamilton-Jacobi-Bellman equations, stochastically perturbed reaction-
diffusion equations, stochastic Burgers equations and interacting particle models, and it is in fact
rigourously known to describe the fluctuations in weakly asymmetric exclusion processes [3, 2, 5]
and the partition function in directed polymer models [2, 1, 11]. All these models belong to
the so-called KPZ universality class, which is associated with unusual fluctuations of order t1/3 at
time t on a spatial scale of t2/3. We refer the reader to the reviews [4, 12] for more details and
background on the KPZ equation and universality class.
As stated the KPZ equation (1.1) is ill-posed due to the non-linear term. To make sense of it we
follow the approach of [3]. Observe that if we letZ (t, x) = exp(−H (t, x)) then, formally, Z (t, x)
solves the (linear) stochastic heat equation with multiplicative noise

∂tZ =
1

2
∂ 2

x Z −ZẆ . (1.2)

Therefore we simply define the solutionsH (t, x) of (1.1) via the Hopf-Cole transformation

H (t, x) =− log(Z (t, x)), (1.3)

where Z (t, x) is the (well-defined) solution of the stochastic PDE (1.2). In a remarkable recent
development, M. Hairer [8] has proposed a way to make sense of the KPZ equation directly. The
resulting solutions coincide with the Hopf-Cole solutions.
One of the most interesting properties of the KPZ equation is the preservation of Brownian initial
data. In particular, if one starts the equation with a standard two-sided Brownian motion, one
sees at time t a new Brownian motion with the same diffusivity, but with a (random) height shift
(the new Brownian motion will of course be coupled to the starting one in a highly non-trivial
way). Furthermore, any initial data, however smooth, will immediately become locally Brownian.
This can be understood in many ways. One is that one expects the local quadratic variation to
be the same as that of the equilibrium solutions, for any positive time, for arbitrarily nice initial
data. Another is that one expects that the solution at time t can be written as a standard two-sided
Brownian motionB(x) plus a more regular object. One would naturally like to take this Brownian
motion B(x) to be the solution of the equation starting from a two-sided Brownian motion. In
other words, one would like to couple all solutions to the equilibrium one. For a large class of
initial data, Hairer [8] has shown that the solution can be written as a Brownian motion plus a
function in C

3
2
−. Unfortunately, the Brownian motion used is a solution of the Langevin equation

obtained by linearizing KPZ, as opposed to the equilibrium solution of KPZ itself. Moreover, not
all initial data can be handled by the methods of [8] because they require that certain auxiliary
objects be integrable against heat kernels in space and time. The singularity at time 0 rules out
one of the most important cases, which is the narrow wedge initial data.
Our main interest will be this last case: the initial condition for KPZ given by starting the stochastic
heat equation (1.2) with initial data

Z (0, x) = δx=0. (1.4)

This definesH (t, x) for every t > 0 via (1.3), but one should not think in terms of the initial data
for H , since the delta function does not have a well-defined logarithm. This narrow wedge initial
data is very basic. For example, it is the one that approximates the free energy of point-to-point
polymers.
For this initial data, if we defineAt(x) by

H (t, x) =
x2

2t
+ log

�
p

2πt
�

+
t

24
− 2−1/3 t1/3At(2

−1/3 t2/3 x)
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then, properly rescaled,At(x) converges to a Gaussian process as t → 0 and it is conjectured that
it converges to the Airy2 process as t →∞ (see Conjecture 1.5 in [2]). At(x) is therefore referred
to as the crossover Airy2 process, and interpolates between the KPZ and Edwards-Wilkinson [6]
universality classes, the last one associated with the stochastic heat equation with additive noise
and hence Gaussian statistics.
We will denote byH eq(t, x) the solution of the KPZ equation (1.1) started with initial condition

H eq(0, x) =B(x), (1.5)

whereB(x) is a two-sided standard Brownian motion. We recall that this initial condition is such
that, for each fixed t ≥ 0,H eq(t, x)−H eq(t, 0) is itself a two-sided standard Brownian motion (in
space), see Proposition B.2 in [3]. In this equation we use the same white noise as in the earlier
solution starting with Dirac mass (1.4). The two solutions exist, are unique, and are coupled for
all time.
Our main result is the following:

Theorem 1. Fix t > 0 and letH (t, x) andH eq(t, x) be the Hopf-Cole solutions of the KPZ equation
(1.1) with respect to the same white noise and with initial conditions given by (1.4) and (1.5). Then
H (t, x)−

�

H eq(t, x)−H eq(t, 0)
�

is a finite variation process.

Our initial data is special, but it is in some sense the furthest possible from equilibrium, and it has
the benefit of a surprisingly simple proof.
We remark that if H (t, x) is started with initial condition given by a two-sided Brownian motion
plus a Lipschitz function then it is easy to show using our coupling method that it remains a two-
sided Brownian motion plus a Lipschitz function for all t > 0. This follows from the results of
Hairer [8], but the proof there is much more involved. The precise statement is given next, its
short proof uses the same ideas as the proof of Theorem 1 and is given in Section 2.

Theorem 2. Let H eq(t, x) and H (t, x) be the Hopf-Cole solutions of the KPZ equation (1.1) with
respect to the same white noise and with initial conditions given respectively by (1.5) and

H (0, x) =B(x) +ϕ(x),

where B(x) is the same two-sided standard Brownian motion as in (1.5) and ϕ is a Lipschitz func-
tion. Then, for every fixed t ≥ 0, H (t, x)−

�

H eq(t, x)−H eq(t, 0)
�

is almost surely a Lipschitz
function (with the same Lipschitz constant as ϕ). In particular, the law ofH (t, x) in a finite interval
has finite relative entropy with respect to the law ofB(x) in that interval.

2 Proofs

The proofs of Theorems 1 and 2 rely on considering the weakly asymmetric simple exclusion
process, which provides a microscopic model for the KPZ process. The simple exclusion process
with parameters p, q ∈ [0,1] (such that p + q = 1) is a {0,1}Z-valued continuous time Markov
process, where 1’s are thought of as particles and 0’s as holes. The dynamics of the process are
as follows: each particle has an independent exponential clock with parameter 1; when the clock
rings, the particle attempts a jump, trying to go one step to the right with probability p and one
step to the left with probability q; if there is a particle at the chosen destination, the jump is
supressed and the clock is reset. We refer the reader to [10] for a rigorous construction of this
process. We will be interested in the case q > p, known as the asymmetric simple exclusion process
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(ASEP). More precisely, we will be interested in the weakly asymmetric simple exclusion process
(WASEP), where we introduce a parameter in the model and let the asymmetry q− p go to 0 with
the parameter.
Given any configuration η ∈ {0,1}Z for the exclusion process we will denote by bη ∈ {−1, 1} the
configuration given by bη(x) = 2η(x)− 1 for each x ∈ Z. To any simple exclusion process ηt we
can associate the height function h(t, ·):R−→Z in the following manner:

h(t, x) =



















2N(t) +
∑

0<y≤x

bηt(y) if x > 0,

2N(t) if x = 0,

2N(t)−
∑

x<y≤0

bηt(y) if x < 0,

(2.1)

where N(t) is the net number of particles which crossed from the site 1 to the site 0 up to time t.
It is straightforward to check that the simple exclusion process can be recovered from the height
function by

bηt(x) = h(t, x)− h(t, x − 1). (2.2)

Next we introduce the scaling parameter ε > 0, which should be thought of as going to 0, and
consider WASEP with asymmetry ε1/2, that is,

p− q = ε1/2, p = 1
2
− 1

2
ε1/2, q = 1

2
+ 1

2
ε1/2.

We will denote by ηεt the resulting WASEP, which we start with the step initial condition

η0(x) = 1x≥0. (2.3)

To ηεt we associate the height function hε(t, x) via (2.1). Our main tool will be the convergence of
a suitably rescaled version of hε to the solution of the KPZ equation with initial condition (1.4).
The convergence of the height function was proved by [2] by performing a microscopic Hopf-Cole
transform analogous to (1.3), an idea introduced originally by [7] and further developed in [3].
Let

γε =
1
2
ε−1/2, λε =

1
2

log( p
q
) = ε1/2 + 1

3
ε3/2 +O(ε5/2),

vε = p+ q− 2
p

pq = 1
2
ε1/2 + 1

8
ε3/2 +O(ε5/2).

(2.4)

The Hopf-Cole transformed height function is given by

Zε(t, x) = γε exp
�

−λεhε(ε−2 t,ε−1 x) + vε t
�

. (2.5)

Observe that, with this definition, Zε(0, x)→ δx=0 as ε→ 0 as discussed in Section 1.2 of [2].
We regard the process Zε(t, x) as taking values in the space D([0,∞), Du(R)), where Du(R) refers
to right-continuous paths with left limits with the topology of uniform convergence on compact
sets, which we endow with the Skorohod topology. The following result corresponds to Theorem
1.14 of [2]:

Theorem 3. The family of processes
�

Zε
�

ε>0 converges in distribution in D([0,∞), Du(R)) as ε→ 0
to the C([0,∞), C(R))-valued process Z given by the solution of the stochastic heat equation (1.2)
with initial condition Z (0, x) = δx=0.
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We recall that the exclusion process is attractive, which for our purposes means that two copies η1
t

and η2
t of the process with initial conditions η1

0 ≤ η
2
0 (which just means η1

0(x) ≤ η
2
0(x) for all x)

can be coupled in such a way that η1
t ≤ η

2
t for all t > 0. We will refer to this coupling as the basic

coupling and refer the reader to [10] for more details.

We will denote by ηeq
t a copy of WASEP in equilibrium, started with a product measure with

density 1
2
, and by heq the associated height function. To prove Theorem 1 we will couple ηεt with

η
eq
t using the basic coupling. The key result will be an estimate on the number of discrepancies

between the two processes at time ε−2 t in a window of size O(ε−1), Proposition 2.1 below.

Let ηmin
t and ηmax

t denote copies of WASEP started with initial conditions

ηmin
0 = ηε0 ∧η

eq
0 and ηmax

0 = ηε0(x)∨η
eq
0 ,

where the minimum and maximum are meant sitewise. Observe that ηmin
0 corresponds to starting

with no particles on the negative half-line and a product measure of density 1
2

on the positive

half-line, while ηmax
0 corresponds to starting with a product measure of density 1

2
on the negative

half-line and all sites occupied on the positive half-line. We will denote by hmin
ε and hmax

ε the height
functions associated respectively to these two processes.

Let Zmin
ε , Zmax

ε and Zeq
ε be the Hole-Copf transformed height functions associated to the corre-

sponding initial conditions, which are defined in the same way as Zε in (2.5) with the scaling (2.4)
except that γε = 1. The proof in [2] of Theorem 3 can be adapted without difficulty (see [5] for the
details) to show that that Zmin

ε and Zmax
ε converge in distribution in D([0,∞), Du(R)) respectively

to the solutions Zmin(t, x) and Zmax(t, x) of the stochastic heat equation (1.2) with initial data
Zmin(0, x) = exp

�

−B(x)
�

1x≥0 and Zmax(0, x) = exp
�

−B(−x)
�

1x<0, where B(x) is a stan-
dard one-sided Brownian motion. We define H min(t, x) = − log(Zmin(t, x)) and H max(t, x) =
− log(Zmax(t, x)).

Given any of the height functions h with the different initial conditions we are considering, we
will denote by h̃ε its rescaled version

h̃ε(t, x) = ε1/2h(ε−2 t,ε−1 x).

Proposition 2.1. Assume ηεt is started with the step initial condition (2.3) and fix a < b and t > 0.
Then, under the basic coupling,

ε1/2
∑

x∈[aε−1,bε−1]∩Z

�

�

�ηεε−2 t(x)−η
eq
ε−2 t
(x)
�

�

�≤
1

2

�

h̃max
ε (t, b)− h̃max

ε (t, a)
�

−
1

2

�

h̃min
ε (t, b)− h̃min

ε (t, a)
�

almost surely.

Proof. We construct the four processes ηεt , η
eq
t , ηmin

t and ηmax
t together under the basic coupling,

so attractiveness implies that

ηmin
t ≤ ηεt ∧η

eq
t ≤ η

ε
t ∨η

eq
t ≤ η

max
t
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for all t > 0. Using this we get by (2.2) that
∑

x∈[aε−1,bε−1]∩Z

�

�

�ηεε−2 t(x)−η
eq
ε−2 t
(x)
�

�

� (2.6)

=
∑

x∈[aε−1,bε−1]∩Z

�

ηε
ε−2 t(x)∨η

eq
ε−2 t
(x)−ηε

ε−2 t(x)∧η
eq
ε−2 t
(x)
�

(2.7)

≤
∑

x∈[aε−1,bε−1]∩Z

�

ηmax
ε−2 t(x)−η

min
ε−2 t(x)

�

=
1

2

∑

x∈[aε−1,bε−1]∩Z

�

bηmax
ε−2 t(x)− bη

min
ε−2 t(x)

�

(2.8)

=
1

2

∑

x∈[aε−1,bε−1]∩Z

�

�

hmax
ε (ε

−2 t, x)− hmax
ε (ε

−2 t, x − 1)
�

(2.9)

−
�

hmin
ε (ε

−2 t, x)− hmin
ε (ε

−2 t, x − 1)
�

�

(2.10)

=
ε−1/2

2

�

h̃max
ε (t, b)− h̃max

ε (t, a)
�

−
ε−1/2

2

�

h̃min
ε (t, b)− h̃min

ε (t, a)
�

. (2.11)

Multiplying by ε1/2 we obtain the desired bound.

Proof of Theorem 1. Fix a finite interval I = [a, b] and let TVI( f ) denote the total variation of f
in I :

TVI( f ) = sup
a=x0<x1<···<xn=b, n∈N

n
∑

i=1

| f (x i)− f (x i−1)|.

Then clearly

TVI(h̃ε(t, ·)− h̃eq
ε (t, ·)) = 2ε1/2

∑

x∈[aε−1,bε−1]∩Z

�

�

�ηεε−2 t(x)−η
eq
ε−2 t
(x)
�

�

� ,

so by Proposition 2.1 we get

TVI(h̃ε(t, ·)− h̃eq
ε (t, ·))≤

�

h̃max
ε (t, b)− h̃max

ε (t, a)
�

−
�

h̃min
ε (t, b)− h̃min

ε (t, a)
�

.

On the other hand

h̃ε(t, x)− h̃eq
ε (t, x) =−ε1/2λ−1

ε

�

log(Zε(t, x))− log(Zeq
ε (t, x))] + ε−1/2λ−1

ε log(γε).

Thus by Theorem 3 and Theorem 2.3 in [3] we get that h̃ε(t, x) − h̃eq
ε (t, x) − ε−1/2λ−1

ε log(γε)
converges in distribution to H (t, x)−H eq(t, x) on the interval I . Note that this requires a very
minor extension of the results of [2] and [3], namely that the processes h̃ε and h̃eq

ε built from
exclusion processes running with the same background Poisson processes converge jointly to H
and H eq. There are no issues involved in extending Theorem 3 and Theorem 2.3 in [3] to this
situation and therefore we omit the details.
By the lower semicontinuity of TVI we deduce that

P
�

TVI
�

H (t, ·)−
�

H eq(t, ·)−H eq(t, 0)
��

> K
�

= P
�

TVI
�

H (t, ·)−H eq(t, ·)
�

> K
�

(2.12)

≤ limsup
ε→0

P
�

TVI

�

h̃ε(t, ·)− h̃eq
ε (t, ·)− ε

−1/2λ−1
ε log(γε)

�

> K
�

(2.13)

= lim sup
ε→0

P
�

TVI

�

h̃ε(t, ·)− h̃eq
ε (t, ·)

�

> K
�

(2.14)

≤ lim sup
ε→0

P
�

�

h̃max
ε (t, b)− h̃max

ε (t, a)
�

−
�

h̃min
ε (t, b)− h̃min

ε (t, a)
�

> K
�

. (2.15)
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To finish the proof of Theorem 1 we observe that the quantity inside the last probability above
equals

−ε1/2λ−1
ε

�

log(Zmax
ε (t, b))− log(Zmax

ε (t, a))− log(Zmin
ε (t, b)) + log(Zmin

ε (t, a))
�

.

Note the key point that the additive constants in (2.5) cancel. Using the convergence of Zmin
ε

and Zmax
ε to solutions of the stochastic heat equation discussed before Proposition 2.1, the above

converges in distribution to
�

H max(t, b)−H max(t, a)
�

−
�

H min(t, b)−H min(t, a)
�

. Since the
last random variable is finite we deduce that

lim
K→∞

P
�

TVI
�

H (t, ·)−
�

H eq(t, ·)−H eq(t, 0)
��

> K
�

= 0.

Proof of Theorem 2. Let ηt be a copy of WASEP started with product measure with density profile
given by

P(η0(x + 1) = 1) =
1

2
+

1

2
ε−1/2 �ϕ(εx)−ϕ(ε(x − 1))

�

.

Then Theorem 2.3 of [3] implies that h̃ε(t, x) converges in distribution in D([0,∞), Du(R)) as
ε → 0 to H (t, x) (with initial condition as in the statement of the theorem). Now denote by M
the Lipschitz constant of ϕ and let h̃+ε and h̃−ε denote the rescaled height functions corresponding
to WASEP started respectively with product measures of densities 1

2
(1+ε1/2M) and 1

2
(1−ε1/2M).

Coupling the initial conditions in the natural way and using the basic coupling and attractiveness,
it is clear that h̃−ε (t, x) ≤ h̃ε(t, x) ≤ h̃+ε (t, x) for all t > 0. On the other hand, since product
measures are invariant for WASEP, h̃±ε (t, x) converges in distribution to H eq(t, x)± M x , and as
before this convergence can be achieved jointly for h̃ε, h̃+ε and h̃−ε . Therefore, given any a < b,
H eq(t, x)− M x ≤ H (t, x) ≤ H eq(t, x) + M x almost surely for every x ∈ [a, b], and the result
follows.
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