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Abstract

In this paper we consider an equilibrium last-passage percolation model on an en-
vironment given by a compound two-dimensional Poisson process. We prove an L2-
formula relating the initial measure with the last-passage percolation time. This
formula turns out to be a useful tool to analyze the fluctuations of the last-passage
times along non-characteristic directions.
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1 Introduction and the main result

1.1 The last-passage percolation model

Let P ⊆ R2 be a two-dimensional Poisson random set of intensity one. On each
point p ∈ P we put a random positive weight ωp and we assume that {ωp : p ∈ P} is
a collection of i.i.d. random variables, distributed according to a distribution function
F , which are also independent of P. Throughout this paper we will make the following
assumption on the distribution function F of the weights:∫ ∞

0

eax dF (x) < +∞ , for some a > 0 . (1.1)

This condition was used in [7] to prove the existence of invariant measures for the
Hammersley’s interacting fluid process we will introduce below. For each p,q ∈ R2,
with p < q (inequality in each coordinate, p 6= q), let Π(p,q) denote the set of all
increasing (or up-right) paths, consisting of points in P, from p to q, where we exclude
all points that share (at least) one coordinate with p. So we consider the points in the
rectangle ]p,q], where we leave out the south and the west side of the rectangle. The
last-passage time between p ≤ q is defined by

L(p,q) := max
$∈Π(p,q)

{ ∑
p′∈$

ωp′
}
.
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Influence of the initial condition in equilibrium LPP models

When F is the Dirac distribution concentrated on 1 (each point has weight 1 and we will
denote this F by δ1), then we refer to this model as the classical Hammersley model
[1, 9].

A crucial result is the following shape theorem (see Theorem 1.1 in [8], p.164): set
0 = (0, 0), n = (n, n),

γ = γ(F ) = sup
n≥1

E(L(0,n))

n
> 0 and f(x, t) := γ

√
xt . (1.2)

Then γ(F ) <∞ and for all x, t > 0,

lim
r→∞

L (0, (rx, rt))

r
= lim
r→∞

EL (0, (rx, rt))

r
= f(x, t) . (1.3)

1.2 The interacting fluid system formulation

It is well known that the classical Hammersley model has a representation as an in-
teracting particle system [1, 9]. The general model has a similar description, although a
better name might be an interacting fluid system. We start by restricting the compound
Poisson process {ωp : p ∈ P} to R × R+. To each measure ν on R we associate a
non-decreasing process ν(·) defined by

ν(x) =

{
ν((0, x]) for x ≥ 0

−ν((x, 0]) for x < 0.

Let N be the set of all positive, locally finite measures ν such that

lim inf
y→−∞

ν(y)

y
> 0 .

We need this condition to define the evolution of the process, since otherwise all mass
will be pulled to minus infinity. The Hammersley interacting fluid system (Mν

t : t ≥ 0)

will be defined as a Markov process with values in N , as was done in [7]. Its evolution
is defined as follows: if there is a Poisson point with weight ω at a point (x0, t), then
Mν
t ({x0}) = Mν

t−({x0}) + ω, and for x > x0,

Mν
t ((x0, x]) = (Mν

t−((x0, x])− ω)+ .

Here, Mν
t− is the “mass distribution” of the fluid at time t if the Poisson point at (x0, t)

would be removed. To the left of x0 the measure does not change. In words, the Poisson
point at (x0, t) moves a total mass ω to the left, to the point x0, taking the mass from the
first available fluid to the right of x0. (See Figure 1 for a visualization, in case of atomic
measures, of the process inside a space-time box.)

In this paper we follow the Aldous and Diaconis [1] graphical representation in the
last-passage model (compare to the result in the classical case, found in their paper):
For each ν ∈ N , x ∈ R and t ≥ 0 let

Lν(x, t) := sup
z≤x
{ν(z) + L((z, 0), (x, t))} . (1.4)

The measure Mν
t defined by

Mν
t ((x, y]) := Lν(y, t)− Lν(x, t) for x < y ,

defines a Markov process on N and it evolves according to the Hammersley interacting
fluid system [7].

We now make the following important observation for a random initial condition ν,
which basically follows from translation invariance.
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Figure 1: In this picture, restricted to [0, x], the measure ν consists of three atoms of
weight 5, 3 and 7. The Poisson process, restricted to [0, x] × [0, t], has two points with
weights 4 and 7. The measure Mν

t/2 consists of three atoms of weight 1, 4 and 6, while
at time t, it consists of one atom with weight 7. A total weight of 4 + 6 has left the box
due to Poisson points to the left of the box, while a total weight of 2 has entered.

Theorem 1.1. Suppose ν ∈ N is a random initial measure on R independent of the
Poisson process in R × R+, whose distribution is translation invariant. For any speed
V ∈ R and any x ∈ R, we have

Lν(V t, t)
D
= Lν(x, t)− ν(x− V t).

The relevance of this result is most clear when we consider equilibrium measures of
the Hammersley’s interacting fluid process. Assume that we have a probability measure
defined on N and consider ν ∈ N as a realization of this probability measure. We say
that ν is time invariant for the Hammersley interacting fluid process (in law) if

Mν
t
D
= Mν

0 = ν for all t ≥ 0 .

In this case, we also say that the underlying probability measure on N is an equilibrium
measure. It is known that there is only one family of ergodic equilibrium measures for
the Hammersley interacting fluid system [7]. Let us denote it by {νλ : λ > 0}, where

λ := Eνλ(1) . (1.5)

For simple notation, put Lλ := Lνλ . The main result of this paper is the following
formula:
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Corollary 1.2. Recall (1.2) and (1.5), and let

Vλ :=
( γ

2λ

)2

and ψλ :=
γ2

2λ
. (1.6)

Here, Vλ is the characteristic speed corresponding to Lλ and ψλ is the growth rate of
Lλ(Vλt, t). Then

E
(
{Lλ(x, t)− [νλ(x− Vλt) + ψλt]}2

)
= Var

(
Lλ (Vλt, t)

)
. (1.7)

1.3 A central limit theorem for the classical model

To illustrate the importance of (1.7), let us restrict ourselves to the classical Ham-
mersley model. In this set-up, the equilibrium measures are one-dimensional Poisson
processes of intensity λ, and γ = γ(δ1) = 2. Thus,

Vλ :=
1

λ2
and ψλ :=

2

λ
.

Cator and Groeneboom [6] proved that the variance of Lλ grows sub-linearly along the
characteristic speed λ−2. Together with Corollary 1.2, this implies

Corollary 1.3. Let (zt)t≥0 be a deterministic path. Then

lim
t→∞

E
( {
Lλ(zt, t)−

[
νλ(zt − λ−2t) + 2λ−1t

]}2 )
t

= lim
t→∞

Var
(
Lλ
(
λ−2t, t

) )
t

= 0 . (1.8)

Proof of Corollary 1.3: Formula (1.7), applied to the classical model, gives us

E
( {
Lλ(zt, t)−

[
νλ(zt − λ−2t) + 2λ−1t

]}2 )
= Var

(
Lλ
(
λ−2t, t

) )
.

On the other hand, [6] shows that

lim
t→∞

Var
(
Lλ
(
λ−2t, t

) )
t

= 0 ,

which proves (1.8). 2

Corollary 1.4. Let (zt)t≥0 be a deterministic path such that

lim
t→∞

zt
t

= a .

Then

lim
t→∞

Var
(
Lλ(zt, t)

)
t

= σ2 := |aλ− 1

λ
| . (1.9)

Furthermore, if a 6= λ−2 then

lim
t→∞

P
(
Lλ(zt, t) ≤ λzt +

t

λ
+ (σ
√
t)u
)

= P(N ≤ u) , (1.10)

where N is a standard Gaussian random variable.

Proof of Corollary 1.4: Corollary 1.3 shows that

lim
t→∞

Lλ(zt, t)−
[
νλ(zt − λ−2t) + 2λ−1t

]
√
t

= 0 ,

in the L2 sense. Since νλ is a one-dimensional Poisson process of intensity λ, this im-
plies (1.9) and (1.10). 2
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Remark 1.5. Cator and Groeneboom [6] proved that
√

Var
(
Lλ (λ−2t, t)

)
is of order

t1/3, which gives us the same order for the L2-distance between

Lλ(zt, t) and
[
νλ(x− λ−2t) + 2λ−1t

]
.

Remark 1.6. The central limit theorem for Lλ (along any direction) was proved by Baik
and Rains [5]. Their method was based on very particular combinatorial properties of
the classical model that do not seem to hold for the general set-up. Our approach
reveals the strong relationship with the initial configuration.

Remark 1.7. In the general set-up, Corollary 1.2 implies: If the variance of Lλ along
the characteristic speed Vλ is sub-linear, and the equilibrium measure has Gaussian
fluctuations, then Lλ will also have Gaussian fluctuations along non-characteristic di-
rections.

Remark 1.8. For the classical Hammersley process an important formula for the vari-
ance of Lλ(x, t) was derived in [6], Theorem 2.1:

Var(Lλ(x, t)) = −λx+
t

λ
+ 2λE(x−Xλ(t))+,

where Xλ(t) is the position at time t of a second class particle starting at zero. This
formula was pivotal in deriving the cube-root behavior of Lλ in [6], and later corre-
sponding formulas were used to prove cube-root behavior for TASEP [3] and for ASEP
[4]. However, this formula does not directly show the relationship with the initial con-
figuration. Also, there seems to be no direct way to deduce (1.7) from this formula, even
if we reformulate it, as was done in Equation (3.6) of [6], in terms of the exit-point of
the longest path from (0, 0) to (x, t), which is the right-most z for which the supremum
in (1.4) is attained.

2 Proof of Theorem 1.1 and Corollary 1.2

Recall that
Lν(x, t) = sup

z≤x
{ν(z) + L((z, 0), (x, t))} .

Clearly, L((z, 0), (V t, t))
D
= L((z + x − V t, 0), (x, t)). By assumption, ν has a translation

invariant distribution, independent of L. This implies that

{z 7→ ν(z)} D= {z 7→ ν(z + x− V t)− ν(x− V t)},

and

Lν(V t, t)
D
= sup

z≤V t
{ν(z + x− V t)− ν(x− V t) + L((z + x− V t, 0), (x, t))}

= sup
z≤x
{ν(z) + L((z, 0), (x, t))} − ν(x− V t)

= Lν(x, t)− ν(x− V t).

This proves Theorem 1.1. 2

Corollary 1.2 now follows from results in [7]: there it is shown that for any speed V ,
the stationarity of Lλ leads to

ELλ(V t, t) = V λt+
1

4
γ2t/λ.

ECP 17 (2012), paper 7.
Page 5/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1727
http://ecp.ejpecp.org/


Influence of the initial condition in equilibrium LPP models

This follows from the fact that the Hammersley fluid process has intensity λ on the
bottom side of the rectangle between (0, 0) and (x, t), and intensity γ2/(4λ) on the left
side (this refers to the expected mass of the fluid leaving the interval [0, x] through 0

per time unit). When we define the characteristic speed Vλ = γ2/(4λ2), then

ELλ(Vλt, t) = ψλt.

This together with Theorem 1.1 immediately shows (1.7). 2

3 The lattice last-passage percolation model

In the lattice last-passage percolation model one considers i.i.d. weights {ωp : p ∈
Z2}, distributed according to a distribution function F . For F (x) = 1− e−x (exponential
weights), we have a similar shape theorem as (1.3) with limit shape given by

f(x, t) = (
√
x+
√
t)2 .

We know from [3] that the invariant measures are given by

νρ((x, y])
D
=

y∑
z=x+1

Xz ,

where {Xz : z ∈ Z} is a collection of i.i.d. exponential random variables with parameter
ρ. The analog to formula (1.7) is

E
(
{Lρ(x, t)− [νρ(x− bVρtc) + ψρt]}2

)
= Var

(
Lρ (bVρtc, t)

)
,

where

Vρ :=
ρ2

(1− ρ)2
and ψρ :=

1

(1− ρ)2
.

Together with the cube-root asymptotics [3], this implies that

lim
t→∞

E
(
{Lρ(zt, t)− [νρ(zt − Vρt) + ψρt]}2

)
t

= 0 .

Therefore, if
lim
t→∞

zt
t

= a

then

lim
t→∞

Var
(
Lρ(zt, t)

)
t

= σ2 :=
|a(1− ρ)2 − ρ2|
ρ2(1− ρ)2

,

and if a 6= Vρ then

lim
t→∞

P

(
Lρ(zt, t) ≤

zt
ρ

+
t

1− ρ
+ (σ
√
t)u

)
= P(N ≤ u) ,

where N is a standard Gaussian random variable.

Remark 3.1. Ferrari and Fontes [10] determined the dependence on the initial con-
dition for the totally asymmetric exclusion process, which is isomorphic to the lattice
last-passage percolation model with exponential weights. The method developed in this
paper resembles the ideas in their paper. Balázs [2] used a different method to get
a generalization of the Ferrari-Fontes result for certain types of deposition models. It
is not clear to us whether our methods would work for these more general deposition
models.
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Remark 3.2. In the general lattice model, the shape theorem (1.3) holds. However,
not much is known about the limit shape f . If this function would not be strictly curved
(we know it is convex, so this would mean that there are “flat” pieces), then the meth-
ods used in [8] to prove the existence and uniqueness of semi-infinite geodesics in a
fixed direction do not apply, and we are not able to prove the existence of equilibrium
measures.

References

[1] D. Aldous and P. Diaconis, Hammersley’s interacting particle process and longest increasing
subsequences, Probab. Theory Related Fields 103 (1995), no. 2, 199–213. MR-1355056

[2] M. Balázs, Growth fluctuations in a class of deposition models, Ann. Inst. H. Poincaré
Probab. Statist. 39 (2003), no. 4, 639–685. MR-1983174

[3] M. Balázs, E. Cator and T. Seppäläinen, Cube root fluctuations for the corner growth model
associated to the exclusion process, Electron. J. Probab. 11 (2006), no. 42, 1094–1132 (elec-
tronic). MR-2268539

[4] M. Balázs and T. Seppäläinen, Fluctuation bounds for the asymmetric simple exclusion pro-
cess, ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 1–24. MR-2485877

[5] J. Baik and E. M. Rains, Limiting distributions for a polynuclear growth model with external
sources, J. Statist. Phys. 100 (2000), no. 3-4, 523–541. MR-1788477

[6] E. Cator and P. Groeneboom, Second class particles and cube root asymptotics for Hammer-
sley’s process, Ann. Probab. 34 (2006), no. 4, 1273–1295. MR-2257647

[7] E. Cator and L.P.R. Pimentel, Busemman functions and equilibrium measures in last-passage
percolation models., To appear in Probab. Theory Relat. Fields. Available from PTRF Online
First (2011).

[8] E. Cator and L.P.R. Pimentel, A shape theorem and semi-infinite geodesics for the Hammer-
sley model with random weights, ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 163–175.

[9] J. M. Hammersley, A few seedlings of research, in Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. I: Theory of statistics, 345–394, Univ. California Press, Berkeley, CA. MR-
0405665

[10] P. A. Ferrari and L. R. G. Fontes, Current fluctuations for the asymmetric simple exclusion
process, Ann. Probab. 22 (1994), no. 2, 820–832. MR-1288133

ECP 17 (2012), paper 7.
Page 7/7

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1355056
http://www.ams.org/mathscinet-getitem?mr=1983174
http://www.ams.org/mathscinet-getitem?mr=2268539
http://www.ams.org/mathscinet-getitem?mr=2485877
http://www.ams.org/mathscinet-getitem?mr=1788477
http://www.ams.org/mathscinet-getitem?mr=2257647
http://www.ams.org/mathscinet-getitem?mr=0405665
http://www.ams.org/mathscinet-getitem?mr=0405665
http://www.ams.org/mathscinet-getitem?mr=1288133
http://dx.doi.org/10.1214/ECP.v17-1727
http://ecp.ejpecp.org/

	Introduction and the main result
	The last-passage percolation model
	The interacting fluid system formulation
	A central limit theorem for the classical model

	Proof of Theorem 1.1 and Corollary 1.2
	The lattice last-passage percolation model
	References

