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Abstract

We give a criterion for functionals of partitions to converge to a universal limit under
a class of measures that “behaves like” the Ewens measure. Various limit theorems
for the Ewens measure, most notably the Poisson-Dirichlet limit for the longest parts,
the functional central limit theorem for the number of parts, and the Erdős-Turán
limit for the product of parts, extend to these asymptotically Ewens measures as
easy corollaries. Our major contributions are: (1) extending the classes of measures
for which these limit theorems hold; (2) characterising universality by an intuitive
and easily-checked criterion; and (3) providing a new and much shorter proof of the
limit theorems by taking advantage of the Feller coupling.
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1 Introduction

Let Pn be the partitions of n ∈ N, which we represent by α = (α1, . . . , αn) ∈ Pn,
where αi is the number of parts of size i, so that α1 + 2α2 + · · ·+ nαn = n. Let

Pθn(α) =
n!

θ(θ + 1) · · · (θ + n− 1)

n∏
i=1

θαi

iαiαi!
(1.1)

be the Ewens (16) measure on Pn with parameter θ > 0. The Ewens measure should be
interpreted as a random permutation weighted by the number of cycles, under which
the αi are asymptotically independent Poisson with parameter θ/i. Any other proba-
bility measure Pn on Pn can be written as a perturbation of the Ewens measure with
parameter θ > 0, that is,

Pn(α) = P
θ,η
n (α) =

η(α)

Zθ,ηn

n∏
i=1

θαi

iαiαi!
, (1.2)

where η : Pn → R+ is (any multiple of) the Radon-Nikodym derivative of Pn with respect
to the Ewens measure Pθn, and Zθ,ηn is a normalising constant. Since n, θ and η uniquely
determine the measure, it will be convenient to use the notation Pθ,ηn to specify it.
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Universality of asymptotically Ewens measures on partitions

We will study partitions by their preimages under the (17) coupling, which we define
as the map {0, 1}N → Pn which sends a binary sequence (ξ1, ξ2, . . .) ∈ {0, 1}N to a
partition (α1(n), . . . , αn(n)) ∈ Pn, where

αi(n) =

n−i∑
j=1

ξj(1− ξj+1) · · · (1− ξj+i−1)ξi+j + ξn−i+1(1− ξn−i+2) · · · (1− ξn) (1.3)

is the number of gaps between 1s of length i − 1 in the string (ξ1, ξ2, . . . , ξn, 1). It was
shown by (1) that if PθF is a measure on {0, 1}N under which the ξi are independent
Bernoulli variables with probability of success θ/(θ + i − 1), then the measure induced
on Pn by the Feller coupling is the Ewens measure Pθn. In particular, we can embed Pθn
within PθF so that αi = αi(n), simultaneously for all n ∈ N.

For any m,n ∈ N, (α1(n), . . . , αm(n)) is a partition of some integer k ≤ n. Then, for
any sequence of measures Pθ,ηn on Pn, n ∈ N, define the weights

ηn,m = η(α1(n), . . . , αm(n)), (1.4)

where η is the (unscaled) Radon-Nikodym derivative of Pθ,ηk with respect to Pθk, for the
appropriate choice of k = α1(n) + 2α2(n) + · · · + mαm(n). If we interpret the Radon-
Nikodym derivative as weights, then ηn,m should be interpreted as the weight of a
partition of n considering only parts of size at most m. Note that since the weights are
defined in terms of the αi(n), they are random variables under the Feller measure PθF .

We call a sequence of measures Pθ,ηn asymptotically Ewens when:

1. The limits lim
n→∞

ηn,n and lim
m→∞

lim
n→∞

ηn,m exist and agree in L1(PθF ); and

2. The common limit η∞ satisfies 0 < EθF
[
η∞
]
<∞.

These measures are important in a variety of applications and include many exten-
sively studied measures as special cases. Essentially, they generalise the logarithmic
combinatorial structures of Arratia, Barbour and Tavaré (4) by removing the condition-
ing relation. We will prove this claim in Section 4, while Section 2 contains background
on these measures and the associated limit theorems.

We conclude the introduction by stating our main theorem, the proof of which is
presented in Section 3, and showing how the Ewens measure limit theorems extend to
asymptotically Ewens measures as easy corollaries.

Theorem 1.1. Suppose Xn : Pn → (X , || · ||) is a sequence of deterministic functions
on partitions of n (and therefore they are functions on {0, 1}n by the Feller coupling),
taking values in some normed space, such that for any fixed d ∈ N,

lim
n→∞

max
ξ1,...,ξn

∣∣∣∣∣∣Xn(ξ1, . . . , ξn)−Xn(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣∣∣∣ = 0. (1.5)

If Xn
d−→ X under the Ewens measure with parameter θ, then Xn

d−→ X under any
asymptotically Ewens measure with parameter θ.

The criterion (1.5) has a very intuitive interpretation: if the functional does not
depend on the first finitely many Feller variables, then it has a universal limit for any
asymptotically Ewens measure, depending only on the parameter θ.

Corollary 1.2 (Poisson-Dirichlet). Let Ln,k be the length of the kth longest part of a par-
tition of n, and let Ln = (Ln,1, Ln,2, . . .). Under any asymptotically Ewens measure with
parameter θ, Ln/n converges in distribution in L1(N) to PD(θ), the Poisson-Dirchlet
measure with parameter θ (27, 28).
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Universality of asymptotically Ewens measures on partitions

Proof. Consider strings (1, . . . , 1, ξi+1, . . . , ξn), for i = d, d− 1, . . . , 0. For each decrement
of i, either the partition is unchanged, or a 1-part is deleted and some other part length
increases by 1, which does not change the order of parts and thus changes Ln by at
most 2 in the L1(N) norm. Since there are d decrements from i = d to i = 0,

max
ξ1,...,ξn

∣∣∣∣∣∣Ln(ξ1, . . . , ξn)− Ln(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣∣∣∣
1
≤ 2d. (1.6)

Hence, Xn = Ln/n satisfies the conditions of Theorem 1.1 applied to the normed space
L1(N), so the result follows from the Poisson-Dirichlet limit for the Ewens measure
(27, 28, 37).

Corollary 1.3 (CLT). Let νn,t = α1 + · · · + αbntc, 0 ≤ t ≤ 1, be the number of parts
of size at most nt in a partition of n. Under any asymptotically Ewens measure with
parameter θ, (νn,t − θt log n)/

√
θ log n converges in distribution in D[0, 1], the Skorohod

space of right-continuous left-limit functions on [0, 1], to the standard Brownian motion
Wt.

Proof. Consider strings (1, . . . , 1, ξi+1, . . . , ξn), for i = d, d− 1, . . . , 0. For each decrement
of i, either the partition is unchanged, or a 1-part is deleted and some other part length
increases by 1, which changes νn,t by at most 1. Since there are d decrements,

max
ξ1,...,ξn

∣∣∣νn,t(ξ1, . . . , ξn)− νn,t(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣ ≤ d. (1.7)

Letting νn ∈ D[0, 1] be the sample path of νn,t for 0 ≤ t ≤ 1,

max
ξ1,...,ξn

∣∣∣∣∣∣νn(ξ1, . . . , ξn)− νn(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣∣∣∣
∞
≤ d. (1.8)

Hence, Xn = (νn − θt log n)/
√
θ log n satisfies the conditions of Theorem 1.1 applied to

the normed space D[0, 1], so the result follows from the functional central limit theorem
for the Ewens measure (10, 24) .

Corollary 1.4 (Erdős-Turán). Let On,t = lcm
{
i ≤ nt : αi > 0

}
be the least common

multiple (or product) of the parts of size at most nt in a partition of n. Under any
asymptotically Ewens measure with parameter θ,

(
logOn,t−θt2(log n)2/2

)
/
√
θ(log n)3/3

converges in distribution in D[0, 1] to Wt3 , where Wt is the standard Brownian motion.

Proof. The partitions given by (ξ1, . . . , ξn) and (1, . . . , 1, ξd+1, . . . , ξn) differ in at most d
parts. Since deleting a part of size `, adding a part of sizem, or replacing ` bym changes
the logarithm of the least common multiple (or product) by at most logmax(`,m),

max
ξ1,...,ξn

∣∣∣ logOn,t(ξ1, . . . , ξn)− logOn,t(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣ ≤ d log nt. (1.9)

Then, letting On ∈ D[0, 1] be the sample path of On,t for 0 ≤ t ≤ 1,

max
ξ1,...,ξn

∣∣∣∣∣∣ logOn(ξ1, . . . , ξn)− logOn(1, . . . , 1, ξd+1, . . . , ξn)
∣∣∣∣∣∣
∞
≤ d log n. (1.10)

Hence, Xn =
(
logOn − θt2(log n)2/2

)
/
√
θ(log n)3/3 satisfies the conditions of Theorem

1.1, so the result follows from the functional Erdős-Turán limit for the Ewens measure
(14, 15, 6). The same result holds for the product of parts.
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2 Background

2.1 Measures on Partitions

Measures on partitions arise naturally from combinatorial objects which consist of
components of various sizes. For example, cycles of a random permutation, irreducible
factors of a random polynomial or Jordan blocks of a random matrix are all described
by measures on partitions when one cares about only the sizes of those components.
More such examples are given by Arratia, Barbour and Tavaré (2, 5).

The most basic example is a uniformly random permutation, which corresponds to
our Pθ,ηn when θ = 1 and η = 1 identically, and has been the subject of extensive study
since the 19th century. The generalisation to θ > 0, still with η = 1 identically, was
introduced by Ewens (16) to model propagation of alleles in population genetics, and
represents a random permutation weighted by the number of cycles, or perhaps more
intuitively, a permutation formed in a Markov process where cycles are added at a rate
θ (26).

The further generalisation to weights η(α) = ζ1(α1)ζ2(α2) · · · ζn(αn), with certain
limiting conditions on the ζi, was introduced by Arratia, Barbour and Tavaré (4). Their
logarithmic combinatorial structures generalise the decomposable combinatorial struc-
tures of Flajolet and Soria (18), which are measures on partitions induced by the uni-
form measure on families of combinatorial objects determined by sizes of components.
We will prove in Section 4 that logarithmic combinatorial structures are exactly asymp-
totically Ewens measures with weight function in the form above.

An important subclass of logarithmic combinatorial structures are measures with
weights η(α) = ζα1

1 ζα2
2 · · · ζαnn , where ζi are constants with

∑
i |ζi − 1|/i < ∞. This is

the asymptotically Ewens case of the multiplicatively weighted measures of Betz and
Ueltschi’s (2009) combinatorial model for Bose-Einstein condensation. In this model, n
points are determined by both their positions and a permutation that describes their tra-
jectories, with the energy function (Hamiltonian) of the system depending particularly
on the presence of long cycles. Betz, Ueltschi and Velenik (8) analysed the asymptotic
behaviour of the cycle lengths and the normalising constant (partition function) in the
asymptotically Ewens case, as well as two other cases where the weights diverge. Er-
colani and Ueltschi (13) continued this work, extending the cycle length analysis to a
much more comprehensive set of parameter regions.

The further specialisation ζi = (1−qi)/(1−ti), for parameters 0 < q < 1 and 0 < t < 1,
are the Macdonald polynomial measures of Diaconis and Ram’s (2010) probabilistic in-
terpretation of Macdonald polynomials. This measure is the stationary distribution of a
Markov chain on partitions which corresponds to the Macdonald operator on symmetric
polynomials.

Some examples of asympototically Ewens measures which are not logarithmic com-
binatorial structures include many restricted permutations, such as permutations with
more even cycles than odd cycles, permutations whose squares have fixed points, or
permutations with an even number of cycles; for any underlying measure that is a log-
arithmic combinatorial structure, these restrictions are asymptotically Ewens.

There are some examples of measures, such as the a-riffle shuffle measures of Dia-
conis, McGrath and Pitman (11), and the restricted permutations studied by Lugo (30),
which are not asymptotically Ewens by our current definition, but behave similarly in
the sense that they follow the Poisson-Dirichlet limit, as discussed in more detail in Sec-
tion 2.2. Generalising our measures to include these examples would be an interesting
direction for future work.

Finally, there are many measures which are not asymptotically Ewens in any sense,
such as the uniform measure on partitions, Pitman’s (1992) two-parameter family of
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measures (although this family includes the Ewens measure as a special case), and
the induced measure on partitions from various measures on permutations such as the
Plancherel measure and its generalisation, the Schur measures of Okounkov (31).

2.2 The Poisson-Dirichlet Limit

The parameter θ in the Ewens measure corresponds to a rate of formation of new
parts (26); indeed, θ is the global rate of mutation in Ewens’ (1972) original genetic
model. This insight extends to the asymptotically Ewens case, where the rate of for-
mation of new parts, appropriately scaled, converges to the parameter θ. This is the
intuitive reason why we expect the limit theorems to be universal: with new parts being
added at the same rate, the relative sizes of parts should behave similarly.

The key notion that captures this behaviour is the Poisson-Dirichlet limit: the largest
parts, normalised by 1

n , converge in distribution on L1(N) to a limit known as the
Poisson-Dirichlet measure with parameter θ. This was first studied by Kingman (27),
who described it via the Dirichlet distribution on L1(N), and Watterson (37), who found
an explicit density.

Historically, Golomb (20) was the first to calculate the expected value of the longest
cycle of a uniformly random permutation, Shepp and Lloyd (34) found the distribu-
tions of the kth longest cycles, and Kingman (27, 28) and Watterson (37) found the
joint distribution of longest cycles under the Ewens measure. Hansen (25) proved the
Poisson-Dirichlet limit for decomposable combinatorial structures, while the extension
to logarithmic combinatorial structures was made by Arratia, Barbour and Tavaré (3).

We further generalise the Poisson-Dirichlet limit to asymptotically Ewens measures.
However, there are still many other measures which satisfy the Poisson-Dirichlet limit,
such as the largest prime factors of a random integer (29), the a-riffle shuffle measures
of Diaconis, McGrath and Pitman (11), and the restricted permutations studied by Lugo
(30). We expect there to be a fundamental reason why we observe the same limit in
these cases, although what that reason should be is currently beyond our grasp.

The Poisson-Dirichlet distribution has a two-parameter generalisation (33), which is
the limit of the ordered parts of Pitman’s (1992) two-parameter family of measures on
partitions. Since Pitman’s measures are a direct generalisation of the Ewens measure,
it seems plausible that our result could be extended in this direction.

2.3 Other Limit Theorems

It is classical that the number of i-cycles in a uniformly random permutation are
asymptotically independent Poisson with parameter 1/i. The usual proof is by gener-
ating functions, which also works for multiplicative weights η(α) =

∏
i ζ
αi
i , where the

parameter becomes θζi/i. Such a proof is given by Betz, Ueltschi and Velenik (8); see
also the book of Arratia, Barbour and Tavaré (5) for a thorough treatment of generating
function techniques in this setting. For logarithmic combinatorial structures, Arratia,
Barbour and Tavaré (4) prove that the number of parts of size i are asymptotically in-
dependent, although this result is in some sense one of the defining assumptions of
logarithmic combinatorial structures.

The total number of parts was first studied by Goncharov (21), who found a central
limit theorem for the number of cycles in a uniformly random permutation. The func-
tional central limit theorem as seen in Corollary 1.3 was first proved by DeLaurentis
and Pittel (10) for the uniform permutation case, and extended to the Ewens measure
by Hansen (24). Flajolet and Soria (18) proved a central limit theorem for decomposable
combinatorial structures, and the two theorems were unified by Arratia, Barbour and
Tavaré (4), who proved a functional central limit theorem for logarithmic combinatorial
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structures.

The asymptotic moments of the smallest parts were derived by Shepp and Lloyd
(34). They have not been the subject of extensive study; some facts which are known
about them are listed in the book of Arratia, Barbour and Tavaré (5). The shortest parts
depend heavily on the first few Feller variables, and do not fall under the scope of our
universality theorem.

It is also possible to canonically order the parts under the Ewens measure by the
order in which they appear in the Chinese restaurant coupling. This limit is called the
Griffiths-Engen-McCloskey measure (23), and behaves similarly to the longest parts; in
fact its order statistics exactly follow the Poisson-Dirichlet measure. This limit theorem
does not generalise to asymptotically Ewens measures due to the a lack of a canonical
order.

The lowest common multiple of parts is a statistic of interest when the partition is
induced by a permutation, as it is the group order of the permutation. Erdős and Turán
(14, 15) found a central limit theorem for the logarithm of the lowest commmon multiple
in the uniform permutation case. Their proof, and all subsequent proofs, worked via
the product of parts, in particular showing that the product satisfies the same central
limit theorem. The generalisation to the Ewens measure was proved by Barbour and
Tavaré (6), who also proved the functional form in Corollary 1.4, while the extension to
logarithmic combinatorial structures was made by Arratia, Barbour and Tavaré (4).

2.4 Universality

For logarithmic combinatorial structures, Arratia, Barbour and Tavaré (4) prove

lim
n→∞

∣∣∣∣Lθ,ηn (αdn , . . . , αn)− Lθn(αdn , . . . , αn)
∣∣∣∣
TV

= 0, (2.1)

where Lθ,ηn and Lθn are the laws of (αdn , . . . , αn) under Pθ,ηn and Pθn respectively, and dn
is any sequence satisfying dn → ∞ and dn/n → 0. They also proved the other limit
theorems above, but most of their proofs ran in parallel to (2.1) instead of directly
invoking it.

This left open the question of a simple criterion to determine whether a functional
is universal, as well as the question of whether asymptotic independence of the αi
is a necessary condition. Our model answers both of these questions, removing the
requirement for the αi to be asymptotically independent, and also giving an easily-
checked criterion for universality.

3 Proof of Main Theorem

Suppose Pθ,ηn is an asymptotically Ewens measure with parameter θ > 0 and Xn

satisfies the conditions of Theorem 1.1. It suffices (9) to prove that for any bounded,
uniformly continuous function f : (X , || · ||)→ (R, | · |), we have Eθ,ηn

[
f(Xn)

]
∼ Eθn

[
f(Xn)

]
as n→∞, where an ∼ bn means an/bn → 1.

Since ηn,n is (a multiple of) the Radon-Nikodym derivative,

Eθ,ηn
[
f(Xn)

]
=

Zθn

Zθ,ηn
EθF
[
ηn,nf(Xn)

]
. (3.1)

Since f is bounded and η is asymptotically Ewens, (ηn,n − ηn,m)f(Xn)→ 0 in L1(PθF ) as
n→∞ then m→∞, hence

lim
n→∞

EθF
[
ηn,nf(Xn)

]
= lim
m→∞

lim
n→∞

EθF
[
ηn,mf(Xn)

]
. (3.2)
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For any integer d < n, the event {αi(n) 6= αi(d)} can be decomposed into a union of two
events: either (ξd−i+1, . . . , ξd+1) = (1, 0, . . . , 0), with probability

EθF
[
ξd−i+1(1− ξd−i+2) · · · (1− ξd+1)

]
≤ EθF

[
ξd−i+1

]
= θ

d−i+θ , (3.3)

or (ξd−i+2, . . . , ξn, 1) contains a substring (1, 0, . . . , 0, 1) with i−1 zeroes, with probability
bounded above by

n−d∑
k=2

EθF
[
ξd−i+kξd+k

]
+ EθF

[
ξn−i+1

]
=

n−d∑
k=2

θ
d−i+k−1+θ

θ
d+k−1+θ +

θ
n−i+θ . (3.4)

Using telescoping series, we have PθF [αi(n) 6= αi(d)] ≤ (2θ + θ2)/(d− i+ θ). Hence, the
event E ≡ {∃ i ≤ m : αi(n) 6= αi(d)} has PθF probability at most (2θ + θ2)m/(d−m+ θ),
which converges to 0 as d→∞. Note that

ηn,mf(Xn) = ηd,mf(Xn) + (ηn,m − ηd,m)f(Xn)1E . (3.5)

Since ηn,m and ηd,m converge in L1(PθF ), they are uniformly integrable. Since 1E → 0

in probability in the limit n → ∞ then d → ∞ then m → ∞, (ηn,m − ηd,m)f(Xn)1E → 0

in probability and therefore in L1(PθF ), hence

lim
m→∞

lim
n→∞

EθF
[
ηn,mf(Xn)

]
= lim
m→∞

lim
d→∞

lim
n→∞

EθF
[
ηd,mf(Xn)

]
. (3.6)

Uniform continuity of f and (1.5) imply EθF
[
f(Xn)

∣∣ξ1, . . . , ξd] ∼ EθF [f(Xn)
]

uniformly as
n→∞. Since f is bounded and ηd,m is uniformly integrable,

lim
n→∞

EθF
[
ηd,mf(Xn)

]
= lim
n→∞

EθF

[
ηd,mE

θ
F

[
f(Xn)

∣∣ξ1, . . . , ξd]] (3.7)

= lim
n→∞

EθF
[
ηd,m

]
EθF
[
f(Xn)

]
.

Finally, as n→∞ then d→∞ then m→∞,

EθF
[
ηd,m

]
∼ EθF

[
ηn,n

]
=
∑
α∈Pn

η(α)

Zθn

n∏
i=1

θαi

iαiαi!
=
Zθ,ηn
Zθn

. (3.8)

We have used the assumption that this quantity has a positive, finite limit. The chain of
asymptotic equivalences in (3.1), (3.2), (3.6), (3.7) and (3.8) completes the proof.

4 Logarithmic Combinatorial Structures

A uniform logarithmic combinatorial structure (4) is a sequence of measures Pn on
Pn, n ∈ N, such that:

1. (Conditioning Relation) There is some sequence of independent random variables
Y1, Y2, . . . such that Pn(α) = P

[
∀ i ≤ n, Yi = αi

∣∣∑
i≤n iYi = n

]
; and

2. (Uniform Logarithmic Condition) Each variable Yi satisfies
∣∣iP[Yi = 1] − θ

∣∣ ≤ ei
and iP[Yi = `] ≤ eic` for ` ≥ 2, where ei and c` are vanishing sequences such that
ei/i and `c` are summable.

Lemma 4.1. Any uniform logarithmic combinatorial structure Pn can be written as
Pθ,ηn for η(α) =

∏
i ζi(αi), where ζi(0) = 1,

∣∣ζi(1) − 1
∣∣ ≤ ei/θ and ζi(`) ≤ i`−1`!eic`/θ

`

for ` ≥ 2. As before, ei and c` are vanishing sequences with ei/i and `c` summable.
Additionally, with c0 = 0 and c1 = 1, we can insist that for each i, 1{`≤1} + i`−1`!eic`/θ

`

is monotonic increasing in ` ≥ 0.
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Proof. Let pi = P
[
Yi = 0

]
, and let ζi(`) = P

[
Yi = `

]
(i/θ)``!/pi. By the conditioning

relation, Pn = Pθ,ηn , ζi(0) = 1. By the uniform logarithmic condition,
∣∣piζi(1)− 1

∣∣ ≤ ei/θ

and ζi(`) ≤ i`−1`!eic`/piθ` for ` ≥ 2.
Note that 1−pi =

∑
`≥1P

[
Yi = `

]
≤ (θ+Cei)/i, where C =

∑
` c` <∞. In particular,

pi → 1 as i→∞, so∣∣ζi(1)− 1
∣∣ ≤ (1− pi)ζi(1) +

∣∣piζi(1)− 1
∣∣ = O( 1i ) +O(ei). (4.1)

Thus, e′i = max
(
ei/pi, θ

∣∣ζi(1)−1∣∣, 1/i) is a vanishing sequence such that e′i/i is summable,
and we have the required inequalities

∣∣ζi(1)−1∣∣ ≤ e′i/θ and ζi(`) ≤ i`−1`!e′ic`/θ` for ` ≥ 2.
It remains to replace c` by c′` satisfying the desired monotonicity condition.

Let c′0 = 0, c′1 = 1, and c′2 = max
(
c2, supi(θ

2 + θe′i)/(2ie
′
i)
)
, which is finite since

e′i ≥ 1/i. For 3 ≤ ` ≤ 2θ, let c′` = max(c`, θc
′
`−1), and for ` > 2θ, let c′` = max

(
c`,

1
2c
′
`−1
)
.

There are `0 = b2θc < `1 < `2 < · · · such that for `0 ≤ ` < `1, c′` = 2`0−`c′`0 , and for
`k ≤ ` < `k+1, c′` = 2`k−`c`k , hence∑

`≥2θ

`c′` ≤
(∑
j≥0

(1 + j)2−j
)(

`0c
′
`0 +

∑
k≥1

`kc`k

)
<∞. (4.2)

We also have c` ≤ c′` and the monotonicity condition by construction.

Theorem 4.2. Uniform logarithmic combinatorial structures are asymptotically Ewens.

Proof. Let αi(∞) =
∑∞
j=1 ξj(1− ξj+1) · · · (1− ξj+i−1)ξi+j be the number of gaps between

1s of size i− 1 in the string (ξ1, ξ2, . . .), which are independent and Poisson with param-
eter θ/i (1).

We will prove ηn,m and ηn,n are uniformly integrable and converge in probability to
η∞ =

∏
i ζi(αi(∞)), which has positive and finite expectation, by defining several inter-

mediate weights and proving a sequence of asymptotic equivalences between them.

• Let η∞,m =
∏m
i=1 ζi(αi(∞)).

• Let η+n,m be weights for ζ+i (`) = 1{`≤1} + i`−1`!eic`/θ
`, and let η−n,m be weights for

ζ−(0) = 1, ζ−(1) = max(1 − ei/θ, 0) and ζ−(`) = 0 for ` ≥ 2. By Lemma 4.1, we
have η−n,m ≤ ηn,m ≤ η+n,m, and η+n,m is monotonic increasing in each αi(n).

• Let η̃n,m =
∏m
i=1 ζi(α̃i(n)) be the weight given by replacing αi(n) by α̃i(n), where

α̃i(n) is the number of gaps between 1s of length i− 1 in the string (ξ1, . . . , ξn, 0).

For brevity, all limits are implicitly n → ∞ with m fixed, then m → ∞. We also omit
writing the measure explicitly; the only measure used is PθF .

Step 1: Positivity and finiteness of limit. Let C =
∑
` c` < ∞. Since the αi(∞),

i ∈ N, are independent and Poisson with parameter θ/i, we can calculate

E
[
η+∞
]
=

∞∏
i=1

E
[
ζ+i (αi(∞))

]
=

∞∏
i=1

e−
θ
i

(
1 +

θ + Cei
i

)
(4.3)

≤
∞∏
i=1

(
1 +

Cei
i

)
= exp

∞∑
i=1

log

(
1 +

Cei
i

)
. (4.4)

We have used the inequality 1 + x + y ≤ ex(1 + y). Since ei/i is summable, so is the
series above, hence E

[
η+∞
]
< ∞. A similar calculation shows that E

[
η−∞] > 0. Since

η−∞ ≤ η∞ ≤ η+∞, it follows that 0 < E[η∞] <∞.

Step 2: Convergence in probability. We will show that

ηn,n
p∼ η̃n,n

p∼ η̃n,m
p∼ ηn,m

p∼ η∞,m
p∼ η∞, (4.5)
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where Xn
p∼ Yn means Xn/Yn

p→ 1. The relation
p∼ is clearly transitive; also observe

that ηn,n
p∼ η∞ implies ηn,n

p→ η∞, since for any ε > 0, there exists some M such that
P
[
η∞ > M

]
< ε

2 , and there exists some N depending on M such that for all n > N ,
P
[∣∣ηn,n/η∞ − 1

∣∣ > ε
M

]
< ε

2 .
Observe that for each fixed n, αi(n) and α̃i(n) are equal for all i except one value

i∗(n) where αi∗(n)(n) = α̃i∗(n)(n) + 1, and given i∗(n) = i, α̃i(n) has the same law as an
independent copy of αi(n− i). Furthermore, αi(n− i) 6= 0 implies either αi(∞) 6= 0, with
probability 1− e−θ/i, or i∗(n− i) = i, with probability 1

n−i . Hence,

P
[
α̃i∗(n)(n) 6= 0

]
=

1

n

n∑
i=1

P
[
αi(n− i) 6= 0

]
≤ 1

n

n∑
i=1

(
1− e−θ/i + 1

n−i
)
. (4.6)

This expression vanishes as n → ∞, hence α̃i∗(n)(n) = 0 with high probability (this
means that the part that differs between α and α̃ does not appear elsewhere in α).

Since i∗(n) is the size of the final gap between 1s that appears in (ξ1, . . . , ξn, 1),

P
[
i∗(n) = k

]
= P

[
ξn = 0, . . . , ξn−k+2 = 0, ξn−k+1 = 1

]
(4.7)

= n−1
θ+n−1

n−2
θ+n−2 · · ·

n−k+1
θ+n−k+1

θ
θ+n−k . (4.8)

This vanishes for fixed k as n → ∞, so i∗(n) → ∞ in probability. Since ei vanishes as
i→∞, for any fixed ε > 0, ei∗(n) < ε with high probability. Hence, with high probability,∣∣∣∣ηn,nη̃n,n

− 1

∣∣∣∣ = ∣∣∣∣ζi∗(n)(α̃i∗(n)(n) + 1)

ζi∗(n)(α̃i∗(n)(n))
− 1

∣∣∣∣ = ∣∣∣∣ζi∗(n)(1)ζi∗(n)(0)
− 1

∣∣∣∣ ≤ ei∗(n)

θ
≤ ε

θ
. (4.9)

This proves that ηn,n
p∼ η̃n,n.

For η̃n,n
p∼ η̃n,m, observe that with high probability, αi(∞) ≤ 1 for all i > m. Picking

m so that ei ≤ θ
2 for all i > m, and using the inequality | log(1 − x)| ≤ 2 log(1 + x) for

x ≥ 1
2 , with high probability,∣∣∣∣ log η̃n,nη̃n,m

∣∣∣∣ ≤∑
i>m

∣∣ log ζi(α̃i(n))∣∣ ≤ 2
∑
i>m

log ζ+i (αi(∞)). (4.10)

This is twice the tail of a series whose sum is log η+∞, which vanishes since η+∞ < ∞
almost surely, hence η̃n,n/η̃n,m

p→ 1. For the same reason, we have η∞/η∞,m
as→ 1.

Finally, since P
[
α̃i(n) = αi(n) = αi(∞)

]
→ 1 for any fixed i, P

[
η̃n,m = ηn,m = η∞,m

]
→ 1.

Step 3: Uniform integrability. Since ηn,m ≤ η+n,m ≤ η+n,n, it suffices to prove uniform
integrability of η+n,n. Let pn,i = P[i∗(n) = i]. By Lemma 4.1 and independence of αi(∞),

E
[
η+n,n

]
=

n∑
i=1

pn,iE
[
η+n,n

∣∣i∗(n) = i
]
=

n∑
i=1

pn,iE

[
ζ+i (α̃i(n) + 1)

∏
j 6=i

ζ+j (α̃j(n))

]
(4.11)

≤
n∑
i=1

pn,iE
[
ζ+i (αi(∞) + 1)

]∏
j 6=i

E
[
ζ+j (αj(∞))

]
(4.12)

= E
[
η+∞
] n∑
i=1

pn,i
E
[
ζ+i (αi(∞) + 1)

]
E
[
ζ+i (αi(∞))

] . (4.13)

Let C =
∑
` c` < ∞ and D =

∑
` `c` < ∞. Since αi(∞) is Poisson with parameter θ/i,

E
[
ζ+i (αi(∞) + 1)

]
= 1 +Dei/θ and E

[
ζ+i (αi(∞))

]
= 1 + (θ + Cei)/i ≥ 1, hence

n∑
i=1

pn,i
E
[
ζ+i (αi(∞) + 1)

]
E
[
ζ+i (αi(∞))

] ≤
n∑
i=1

pn,i

(
1 +

Dei
θ

)
= 1 +

D

θ
E
[
ei∗(n)

]
. (4.14)
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We previously showed that ei∗(n) is bounded and vanishes in probability, so (4.14) con-
verges to 1, hence lim supE[η+n,n] ≤ E[η+∞]. But η+n,n ≥ η̃+n,n, while η̃+n,n → η+∞ in L1 by
dominated convergence, thus

lim sup
n→∞

E
[∣∣η+n,n − η̃+n.n∣∣] = lim sup

n→∞
E[η+n,n]− lim

n→∞
E[η̃+n,n] ≤ 0. (4.15)

Hence, η+n,n → η+∞ in L1 and is therefore uniformly integrable.

5 Conclusion

We studied measures on partitions in terms of perturbations of the Ewens measure,
and showed that under a certain condition, many limit theorems for the Ewens measure
are universal. This unifies the proofs of the limit theorems under a single universality
theorem, while simultaneously extending the class of measures for which they hold
beyond the previous frontier of logarithmic combinatorial structures. An interesting
direction for future work is to better understand the asymptotically Ewens condition,
which will perhaps allow more cases to be unified under the universality theorem.
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Probab. Comput. 3 167–176. MR-1288438

[7] V. Betz and D. Ueltschi (2009). Spatial random permutations and infinite cycles.
Comm. Math. Phys. 285 469–501. MR-2461985

[8] V. Betz, D. Ueltschi and Y. Velenik (2011). Random permutations with cycle
weights. Ann. Appl. Probab. 21 312–331. MR-2759204

[9] P. Billingsley (1968). Convergence of Probability Measures. Wiley, New York. MR-
1700749

[10] J.M. DeLaurentis and B.G. Pittel (1985). Random permutations and Brownian mo-
tion. Pacific J. Math. 119 287–301. MR-0803120

[11] P. Diaconis, M. McGrath and J. Pitman (1995). Riffles shuffles, cycles, and descents.
Combinatorica 15 11–29. MR-1325269

[12] P. Diaconis and A. Ram (2010). A probabilistic interpretation of the Macdonald
polynomials. Preprint.

[13] N.M. Ercolani and D. Ueltschi (2011). Cycle structure of random permutations with
cycle weights. Preprint.
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