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Let X be a random variable with density p and the characteristic function

f(t) = E eitX =

∫ +∞

−∞
eitxp(x) dx (t ∈ R).

By the Riemann-Lebesgue theorem, f(t)→ 0, as t→∞. So, for all T > 0,

δ(T ) = sup
|t|≥T

|f(t)| < 1.

An important problem is how to quantify this property by giving explicit upper bounds
on δ(T ). The problem arises naturally in various local limit theorems for densities of
sums of independent summands; see, for example, [St], [P] or [Se] for an interesting
discussion. Our motivation, which, however, we do not discuss in this note, has been
the problem of optimal rates of convergence in the entropic central limit theorem for
non-i.i.d. summands. Let us only mention that in investigating this rate of convergence
explicit bounds on δ(T ) (also known as Cramer’s condition (C)) in terms of the entropy
of X are crucial.

A first possible answer may be given for random variables with finite variance, say
σ2 = Var(X), and which have a uniformly bounded density, say p.

Theorem 1. Assume p(x) ≤M a.e. Then, for all σ|t| ≥ π
4 ,

|f(t)| < 1− c1
M2σ2

. (0.1)

Moreover, in case 0 < σ|t| < π
4 ,

|f(t)| < 1− c2 t
2

M2
. (0.2)
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Charateristic functions and entropy

Here, c1, c2 > 0 are certain absolute constants.

A similar bound with a slightly different dependence on (M,σ) in the right-hand
side of (1) was obtained in the mid 1960’s by Statulevičius [St]. He also considered
more complicated quantities reflecting the behavior of the density p on non-overlapping
intervals of the real line (cf. Remark 10 at the end of this note).

The bounds (1)-(2) can be extended to classes of non-bounded densities, using other
quantites of the distribution of the random variable p(X) with respect to the measure
p(x) dx. One of the results in this note is the following assertion.

Theorem 2. Let m be a median of the random variable p(X). If σ|t| ≥ π
4 , we have

|f(t)| < 1− c1
m2σ2

. (0.3)

Moreover, in case 0 < σ|t| < π
4 ,

|f(t)| < 1− c2 t
2

m2
. (0.4)

Here, c1, c2 > 0 are absolute constants. (One may take c1 = 10−7 and c2 = 10−6 ).

Since the median of p(X) is majorized by the maximumM = ess supx p(x), Theorem 2
immediately implies Theorem 1. However, the constants c1 and c2 in (1)-(2) can be
improved in comparison with the constants in (3)-(4).

One may further generalize Theorem 2 by removing the requirement that the sec-
ond moment of X is finite. In this case, the standard deviation σ should be replaced in
(3)-(4) with quantiles of |X − X ′|, where X ′ is an independent copy of X. This will be
explained below in the proof of Theorem 2 and extended in Theorem 8. Thus, quantita-
tive estimates for the characteristic functions, such as (3)-(4), can be given in the class
of all absolutely continuous distributions on the line.

Let us describe a few applications, where the median m of p(X) can be controled ex-
plicitly in terms of more other quantities. First, assume that the characteristic function
f is square integrable, i.e.,

‖f‖22 =

∫ +∞

−∞
|f(t)|2 dt < +∞ (0.5)

(which implies that the random variable X must have an absolutely continuous distri-
bution with some density p). By Chebyshev’s inequality and Parseval’s identity, for any
λ > 0,

P{p(X) ≥ λ} ≤ E p(X)

λ
=

1

λ

∫ +∞

−∞
p(x)2 dx =

‖f‖22
2π λ

.

The right-hand side is smaller than 1
2 , whenever λ >

‖f‖22
π , so this ratio provides an

upper bound on any median of p(X). Hence, Theorem 2 yields:

Corollary 3. If σ|t| ≥ π
4 , then

|f(t)| < 1− c

‖f‖42 σ2
,

where c > 0 is an absolute constant. Moreover, in case 0 < σ|t| < π
4 ,

|f(t)| < 1− ct2

‖f‖42
.
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Charateristic functions and entropy

The integral
∫ +∞
−∞ p(x)2 dx = 1

2π ‖f‖
2
2 appears in problems of quantum mechanics and

information theory, where it is referred to as the informational energy or the quadratic
entropy.

However, it is infinite for many probability distributions. The condition (5), that
is,
∫ +∞
−∞ p(x)2 dx < +∞, may be relaxed in terms of the so-called entropic distance to

normality, which is defined as the difference of the entropies D(X) = h(Z)−h(X). Here

h(X) = −
∫ +∞

−∞
p(x) log p(x) dx

denotes the (differential) entropy for a random variable X with density p (which will be
assumed to have finite second moment), and Z is a normal random variable with the
same mean and variance as X. The quantity h(X) is well defined in the usual Lebesgue
sense and satisfies h(X) ≤ h(Z), with equality if and only if X is normal. Hence,

0 ≤ D(X) ≤ +∞.

The functional D(X) is translation and scale invariant with respect to X, and thus
does not depend on the mean or variance of X. It may also be described as the shortest
Kullback-Leibler distance (or the informational divergence) from the distribution ofX to
the class of normal distributions on the line, and thus D(X) serves as a strong measure
of "non-Gaussianity".

Although the value D(X) = +∞ is still possible, the condition D(X) < +∞, or
equivalently

E log p(X) =

∫ +∞

−∞
p(x) log p(x) dx < +∞,

is much weaker than (5). From Theorem 2 we derive:

Corollary 4. Assume a random variable X with finite variance σ2 = Var(X) has a
finite entropy. Then, for all σ|t| ≥ π

4 , the characteristic function satisfies

|f(t)| < 1− ce−4D(X) (0.6)

with some absolute constant c > 0. Moreover, in case 0 < σ|t| < π
4 ,

|f(t)| < 1− cσ2t2 e−4D(X). (0.7)

Here, the coefficient 4 in the exponents can be improved at the expense of the
constant c in (6)-(7), and chosen to be arbtrarily close to 2.

Let us turn to the proofs. Since the argument involves symmetrization of the distri-
bution of X, we need study how the median and other functionals of p(X) will change
under convolutions.

Notations. Given 0 < κ < 1, we write mκ = mκ(ξ) to indicate that mκ is a κ-quantile
of a random variable ξ (or, a quantile of order κ), which may be any number such that

P{ξ < mκ} ≤ κ, P{ξ > mκ} ≤ 1− κ.

If κ = 1/2, the value m = m1/2 represents a median of ξ.
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Charateristic functions and entropy

Lemma 5. Let X be a random variable with density p, and let q be the density of
the random variable Y = X +X ′, where X ′ is independent of X. Then

Eu(q(Y )) ≤ Eu(p(X)), (0.8)

for any function u ≥ 0, such that v(t) = tu(t) is convex in t ≥ 0.

Proof. By the definition,

Eu(p(X)) =

∫ +∞

−∞
u(p(x)) p(x) dx =

∫ +∞

−∞
v(p(x)) dx,

Eu(q(Y )) =

∫ +∞

−∞
u(q(x)) q(x) dx =

∫ +∞

−∞
v(q(x)) dx.

But q(x) = E p(x−X ′), so, by Jensen’s inequality, v(q(x)) ≤ E v(p(x−X ′)). Integrating,
we arrive at ∫ +∞

−∞
v(q(x)) dx ≤ E

∫ +∞

−∞
v(p(x−X ′)) dx =

∫ +∞

−∞
v(p(x)) dx,

which proves the lemma.

Lemma 6. Let X be a random variable with density p, and q be the density of
Y = X +X ′, where X ′ is independent of X. If mκ = mκ(p(X)), 0 < κ < 1, then

P
{
q(Y ) ≥ mκ/b

}
≤ 1− κ

1− b
(
0 < b < κ

)
.

For example, choosing κ = 1/2 and b = 1/4, we get P{q(Y ) ≥ 4m} ≤ 2
3 , where m is a

median of p(X).

Proof. Apply Lemma 5 to u(t) = 1
t (t−mκ)+, t ≥ 0. Then u(t) ≤ 1{t>mκ}(t), so

Eu(p(X)) ≤ P{p(X) > mκ} ≤ 1− κ.

On the other hand, u(t) = 1− mκ
t ≥ 1− b, whenever t ≥ mκ

b , so u(t) ≥ (1− b) · 1{t≥mκ/b}
and

Eu(q(Y )) ≥ (1− b)P{q(Y ) ≥ mκ/b}.

It remains to insert the two bounds in (8).

Lemma 7. If a random variable X with finite variance σ2 = Var(X) has a density,
bounded by a constant M , then M2σ2 ≥ 1

12 .

This elementary inequality is known. Without proof it was already mentioned and
used in [St]. High dimensional variants were studied in Hensley [H] and Ball [B]. Equal-
ity in the lemma is possible, and is achieved for a uniform distribution on bounded
intervals. For a short argument, put H(x) = P{|X − EX| ≥ x}. Then H(0) = 1 and
H ′(x) ≥ −2M , which gives H(x) ≥ 1− 2Mx, so

σ2 = 2

∫ +∞

0

xH(x) dx ≥ 2

∫ 1/(2M)

0

xH(x) dx

≥ 2

∫ 1/(2M)

0

x(1− 2Mx) dx =
1

12M2
.
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Charateristic functions and entropy

We also note that the inequality of Lemma 7 may be rewritten in an equivalent form
in the space of all integrable functions q ≥ 0 on the line as the relation(

sup
x

q(x)

)2 ∫ +∞

−∞
x2 q(x) dx ≥ 1

12

(∫ +∞

−∞
q(x) dx

)3

. (0.9)

Theorem 2 and its generalization.
We now turn to the basic arguments. Let q be the density of Y = X −X ′, where X ′

is an independent copy of X. Then Y has the characteristic function |f(t)|2 (where f is
the characteristic function of X), and we have the identity

1

2
(1− |f(2πt)|2) =

∫ +∞

−∞
sin2(πtx) q(x) dx. (0.10)

Our task is therefore to bound the integral in (10) from below.
By Lemma 6, given 0 < b < κ1 < 1, we have

P

{
q(Y ) <

1

b
mκ1

}
=

∫
q(x)< 1

b mκ1

q(x) dx ≥ 1− 1− κ1

1− b
, (0.11)

where mκ1 is a quantile of p(X) of order κ1.
We start with the obvious bound

| sin(πθ)| ≥ 2ρ(θ), θ ∈ R,

where ρ(θ) denotes the shortest distance from θ to the set of all integers. Here, an
equality is only possible in case θ = k/2 for an integer k. Hence, (10) gives

1

2
(1− |f(2πt)|2) > 4

∫
W

ρ(tx)2 q(x) dx (0.12)

for arbitrary measurable sets W ⊂ R. We apply (12) to the sets of the form

W =
{
x ∈ R : |tx| ≤ N +

1

2
, q(x) < mκ1/b

}
with N = 0, 1, 2, . . . to be chosen later on.

Given t 6= 0, split the integral (12) into the sets Wk = {x ∈W : k − 1
2 < |t|x < k + 1

2},
that is, write∫

W

ρ(tx)2 q(x) dx =

N∑
k=−N

∫
Wk

ρ(tx)2 q(x) dx =

N∑
k=−N

∫
Wk

(|t|x− k)2 q(x) dx.

Changing the variable x = y + k
|t| on each Wk, we may also write

∫
W

ρ(tx)2 q(x) dx = t2
N∑

k=−N

∫ 1
2|t|

− 1
2|t|

y2 q

(
y +

k

|t|

)
1{q(y+ k

|t| )< 1
b mκ1}

dy. (0.13)

Now, by the inequality (9), applied to the functions qk(y) = q
(
y+ k

|t|
)

1{q(y+ k
|t| )< 1

b mκ1}

on the interval (− 1
2|t| ,

1
2|t| ), and using a uniform bound qk(y) ≤ 1

b mκ1 , we have

∫ 1
2|t|

− 1
2|t|

y2 qk(y) dy ≥ b2

12m2
κ1

[ ∫ 1
2|t|

− 1
2|t|

qk(y) dy

]3

=
b2

12m2
κ1

[ ∫
Wk

q(x) dx

]3

.
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Charateristic functions and entropy

Using this estimate in (13), the inequality (12) yields

1

2
(1− |f(2πt)|2) >

b2t2

3m2
κ1

N∑
k=−N

q3
k, (0.14)

where qk =
∫
Wk

q(x) dx.

Next, subject to the constraint q−N + · · ·+ qN = Q with qk ≥ 0, the sum
∑N
k=−N q

3
k is

minimized, when all qk are equal to each other, i.e., for qk = Q/(2N + 1). So,

N∑
k=−N

q3
k ≥

Q3

(2N + 1)2
. (0.15)

In our case,

Q =

N∑
k=−N

P{Y ∈Wk} = P{Y ∈W} = P
{
|tY | ≤ N +

1

2
, q(Y ) < mκ1/b

}
.

Hence, combining (14) with (15), we arrive at

1

2
(1− |f(2πt)|2) >

t2

(2N + 1)2
· b2

3m2
κ1

P
{
|tY | ≤ N +

1

2
, q(Y ) < mκ1

/b
}3
. (0.16)

To bound the probability in (16) from below, fix 0 < κ2 < 1 and consider a κ2-quantile
m̃κ2

= mκ2
(|Y |) for the random variable |Y |. Then P{|tY | ≤ N + 1

2} ≥ κ2, as long as

m̃κ2
|t| ≤ N +

1

2
. (0.17)

In this case, by (11),

P
{
|tY | ≤ N +

1

2
, q(Y ) < mκ1/b

}
≥ κ2 −

1− κ1

1− b
,

which makes sense, if κ2 − 1−κ1

1−b > 0 (to ensure that b < κ1). Hence, (16) may be
continued as

1

2
(1− |f(2πt)|2) >

t2

(2N + 1)2
· b2

3m2
κ1

(
κ2 −

1− κ1

1− b

)3

. (0.18)

Assume that s = m̃κ2
|t| ≥ 1

2 and take the value N = [s− 1
2 ] + 1 to satisfy (17). Then,

|t|
2N + 1

=
1

m̃κ2

· s

2 [s− 1
2 ] + 3

≥ 1

6m̃κ2

,

where the inequality becomes an equality for s approaching 1/2 from the right. Hence,
for any 0 < b < κ1+κ2−1

κ2
, and provided that κ1 + κ2 > 1, we have

1

2

(
1− |f(2πt)|2

)
>

1

108 m2
κ1
m̃2
κ2

ψ(κ1, κ2; b),

where

ψ(κ1, κ2; b) = b2
(
κ2 −

1− κ1

1− b

)3

. (0.19)

We may now replace 2πt with t and use

1

2
(1− |f(t)|2) =

1

2
(1− |f(t)|) (1 + |f(t)|) ≤ 1− |f(t)|
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Charateristic functions and entropy

to obtain an equivalent bound

1− |f(t)| > 1

108 m2
κ1
m̃2
κ2

ψ(κ1, κ2; b), m̃κ2
|t| ≥ π. (0.20)

In the remaining case m̃κ2
|t| ≤ 1

2 , (17) holds with the optimal value N = 0, and after
the replacement of 2πt with t, the inequality (18) leads to

1− |f(t)| > t2

12π2m2
κ1

ψ(κ1, κ2; b), 0 < m̃κ2
|t| ≤ π. (0.21)

Now, let us make the obtained bounds more quantitative by choosing an appropriate
value of b. The function ψ defined in (19) may easily be maximized in the admissible
interval 0 < b < b0 = κ1+κ2−1

κ2
(by solving a quadratic equation), but this leads to an

uncomfortable expression. Alternatively, note that for the choice b1 = κ1+κ2−1
1−κ1+κ2

, we have

8 sup
0<b<b0

ψ(κ1, κ2; b) ≥ 8ψ(κ1, κ2; b1) =
(κ1 + κ2 − 1)5

(1− κ1 + κ2)2
≡ ψ(κ1, κ2). (0.22)

We claim that, up to a universal factor, ψ(κ1, κ2) provides also an upper bound for the
maximum of ψ(κ1, κ2; b). Indeed, on one hand

ψ(κ1, κ2; b) =
b2

(1− b)3

(
(1− b)κ2 − (1− κ1)

)3

≤ b20
(1− b0)3

(
κ2 − (1− κ1)

)3

=
(κ1 + κ2 − 1)5

1
κ2

(1− κ1)3
≤ 18ψ(κ1, κ2),

where we made the assumption 1 − κ1 ≥ κ2

2 on the last step. On the other hand, since
b < 1 and 1−κ1

κ2

1
1−b < 1,

ψ(κ1, κ2; b) <

(
κ2 −

1− κ1

1− b

)3

= κ3
2

(
1− 1− κ1

κ2

1

1− b

)3

< κ3
2 ≤ 72ψ(κ1, κ2),

where we made the assumption 1− κ1 ≤ κ2

2 on the last step.
Therefore, within numerical factors the maximum of ψ(κ1, κ2; b) is the quantity ψ(κ1, κ2).

The application of the estimate (22) in (20)-(21) leads to new numerical coefficients, and
one may note that 1

108·8 >
1

12π2·8 = 0.00106... Let us summarize.

Theorem 8. Let a random variable X have density p and the characteristic function
f . Let mκ1

resp. m̃κ2
denote a κ1-quantile of the random variable p(X) resp. a κ2-

quantile of |X−X ′|, where X ′ is an independent copy of X, and 0 < κ1, κ2 < 1, κ1 +κ2 >

1. Then,
|f(t)| < 1− c

m2
κ1
m̃2
κ2

, m̃κ2
|t| ≥ π, (0.23)

|f(t)| < 1− ct2

m2
κ1

, 0 < m̃κ2
|t| ≤ π, (0.24)

where c = cκ1,κ2 is a positive constant, depending on κ1, κ2, only. One may take

cκ1,κ2 = c0
(κ1 + κ2 − 1)5

(1− κ1 + κ2)2
(c0 > 0.001).

For example, choosing κ1 = 1/2, κ2 = 7/8, we get cκ1,κ2
= c0 · ( 3

8 )5 · ( 8
11 )2 = 4.414... ·

10−6.
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An inspection of the proof of Theorem 8 shows that (23)-(24) remain valid for any
number m̃ ≥ m̃κ2

in place of m̃κ2
. In case of finite variance σ2 = Var(X), we have

Var(X −X ′) = 2σ2, and by Chebyshev’s inequality,

P{|X −X ′| ≥ 4σ} ≤ 1

8
= 1− κ2.

So, m̃κ2
≤ m̃ = 4σ, and as a result, we arrive at the formulation of Theorem 2 with con-

stants c2 = cκ1,κ2
and c1 = 1

16 cκ1,κ2
= 2.587... · 10−7 in the inequalities (3)-(4). Theorem

2 is proved.
Now, let us turn to the entropic variant of Theorem 2.

Lemma 9. Let X be a random variable with finite variance σ2 = Var(X) and finite
entropy. Then, any quantile mκ (0 < κ < 1) of the random variable p(X) satisfies

mκ σ ≤
1√
2π

e(D(X)+1)/(1−κ). (0.25)

Proof. Rewrite the entropic distance to normality as the Kullback-Leibler distance

D(X) =

∫ +∞

−∞
p(x) log

p(x)

ϕa,σ(x)
dx,

where ϕa,σ is the density of the normal law N(a, σ2) with a = EX and σ2 = Var(X).
Put V = {x : p(x) ≥ mκ}. Since P{X ∈ V } ≥ 1− κ,∫ +∞

−∞
p(x) log

(
1 +

p(x)

ϕa,σ(x)

)
dx ≥

∫
V

p(x) log

(
1 +

p(x)

ϕa,σ(x)

)
dx

≥
∫
V

p(x) log
mκ

ϕa,σ(x)
dx

= log(mκσ
√

2π)

∫
V

p(x) dx+
1

2σ2

∫
V

(x− a)2p(x) dx

≥ (1− κ) log(mκσ
√

2π).

On the other hand, using the following elementary inequality t log(1 + t)− t log t ≤ 1

(t ≥ 0), we get an upper bound∫ +∞

−∞
p(x) log

(
1 +

p(x)

ϕa,σ(x)

)
dx =

∫ +∞

−∞

p(x)

ϕa,σ(x)
log

(
1 +

p(x)

ϕa,σ(x)

)
ϕa,σ(x) dx

≤
∫ +∞

−∞

p(x)

ϕa,σ(x)
log

p(x)

ϕa,σ(x)
ϕa,σ(x) dx+ 1

= D(X) + 1.

Hence, (1− κ) log(mκσ
√

2π) ≤ D(X) + 1, and the lemma follows.

Proof of Corollary 4. This Corollary can be derived, using Lemma 9 with κ = 1/2

directly from Theorem 2. However, to get a sharper statement, let 0 < κ1, κ2 < 1,
κ1 + κ2 > 1, as in Theorem 8. Combining the inequality (23) with (25), where κ = κ1,
for any m̃ ≥ m̃κ2 , we get

|f(t)| < 1− c

m2
κ1
m̃2
≤ 1− 2cπ σ2

m̃2
e−2(D(X)+1)/(1−κ1)
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in the region m̃|t| ≥ π. As we have already noted, m̃κ2 ≤ m̃ = σ
√

2
1−κ2

, so, for this value

m̃,
|f(t)| < 1− cπ (1− κ2) e−2(D(X)+1)/(1−κ1), m̃|t| ≥ π.

Similarly, by (24),

|f(t)| < 1− 2c π t2σ2 e−2(D(X)+1)/(1−κ1), 0 < m̃|t| < π.

In both inequalities, the coefficient in front of D(X) can be made as close to 2, as we
wish, and with the constants c1 and c2, depending on (κ1, κ2), as in Theorem 8.

In particular, for κ2 = 7/8, we have m̃ = 4σ, so, whenever κ1 > 1/8,

|f(t)| < 1− cπ

8
e−2(D(X)+1)/(1−κ1), σ|t| ≥ π

4
,

|f(t)| < 1− 2c π t2σ2 e−2(D(X)+1)/(1−κ1), 0 < σ|t| < π

4
,

In case κ1 = 1/2, we arrive at the desired inequalities (6)-(7).

Remark 10. Lemma 1 in the paper of Statuljavichus [St] states the following. Let
X be a random variable with density p(x) and characteristic function f(t). Let p̃ denote
the density of the random variable X−X ′, where X ′ is an independent copy of X. Then
for any sequence {∆i} of non-overlapping intervals on the line with lengths |∆i|, for all
constants 0 ≤Mi ≤ ∞, and for all t ∈ R, one has

|f(t)| ≤ exp

{
− t2

3

∞∑
i=1

Q3
i

(|∆i| |t|+ 2π)2M2
i

}
, (0.26)

where

Qi =

∫
∆i

min{p̃(x),Mi} dx.

In particular, as emphasized in [St], if Var(X) = σ2 and p(x) ≤ M , one may take just
one interval ∆ = [−2σ, 2σ]. Then Q1 ≥ 1

2 , so the inequality (26) leads to

|f(t)| ≤ exp

{
− t2

96

1

(σ|t|+ 2π)2M2

}
.

This may be viewed as a variant of Theorem 1.
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