
Electron. Commun. Probab. 18 (2013), no. 75, 1–12.
DOI: 10.1214/ECP.v18-2632
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Fluctuations of maxima of discrete Gaussian free fields
on a class of recurrent graphs∗

Takashi Kumagai† Ofer Zeitouni‡

Abstract

We provide conditions that ensure that the maximum of the Gaussian free field on a sequence
of graphs fluctuates at the same order as the field at the point of maximal standard deviation;
under these conditions, the expectation of the maximum is of the same order as the maximal
standard deviation. In particular, on a sequence of such graphs the recentered maximum is not
tight, similarly to the situation in Z but in contrast with the situation in Z2. We show that our
conditions cover a large class of “fractal” graphs.
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1 Introduction

The study of the maxima of Gaussian fields has a rich history, which we will not attempt to survey
here. The general theory was developed in the 70s and 80s, and an excellent account can be found
in [19]. However, general results concerning the order of fluctuations of the maximum are lacking,
except for some fundamental inequalities such as the Borell-Tsirelson inequality and the recent
work of Chatterjee [9] showing the equivalence of superconcentration (where the fluctuations of
the maximum are of a lower order than the maximal standard deviation of the field) to the chaos
property (where the location of the maximum is sensitive to small perturbations of the field).

In recent years, a special effort has been directed toward the study of the so called Gaussian
free field (GFF) on various graphs. While we postpone the general definition to the next section,
we discuss in this introduction the special case of the GFF on subsets VN = ([−N,N ] ∩ Z)d, with
Dirichlet boundary conditions. These are random fields {Xx}x∈VN indexed by points in VN , with
joint density (with respect to Lebesgue measure) proportional to

exp

(
−c
∑
x∼y

(Xx −Xy)2

)
,

with the sum over neighbors in VN , and Xx = 0 for x ∈ ∂VN . (An alternative description involving
the Green function of random walk on VN is given below in Section 2; see also [21] for a very
readable introduction to GFFs in a continuous setting.) With X∗N,d denoting the maximum of the

GFF on VN in dimension d, it is not hard to see that X∗N,d is of order
√
N for d = 1, order logN for

d = 2, and order (logN)1/2 for d ≥ 3. Moreover, a consequence of the Borell-Tsirelson inequality
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(see [19]) is that for d ≥ 3, since simple random walk is transient on Zd, the fluctuations of X∗N,d
are at most of order 1, while for d = 1 the fluctuations of X∗N,1 are of the same order as X∗N,1, i.e.

of order
√
N . The critical case d = 2 was settled only recently [8], where it was shown that the

fluctuations of X∗N,2 are also of order 1. This raises naturally the question of determining for which
sequences of graphs is the sequence of recentered maxima of the GFF tight.

Our goal in this paper is to exhibit a class of sequences of graphs, which are fractal-like and for
which the maximum of the GFF fluctuates at the same order as the maximum itself, and both are of
the order of the maximal standard deviation of the GFF in the graph. In that respect, the behavior
of the maximum is similar to that of X∗N,1. For this class of graphs, we also show that the cover time
of the graph, measured in terms of the (square root of the) local time at a fixed vertex, also does not
concentrate. (We note in passing that for VN in two dimensions, it is, to the best of our knowledge,
an open problem to decide whether this quantity concentrates or not.)

The structure of the paper is as follows. In the next section, we introduce the GFF on general
graphs and state Assumption 2.1 that characterizes the graphs which we investigate; the main
feature is a relation between the graph distance and the resistance, and control of the covering
number of the graph in terms of resistance distance. We then state our main result, Theorem 2.2,
concerning fluctuations of the maximum of the GFF. We also state Proposition 2.4 concerning the
cover time of the graphs. Proofs of the theorem and proposition are given in Section 3. The heart of
the paper is then Section 4.1, where we show that certain naturally constructed fractal-like graphs
satisfy our assumptions. In particular, this is the case for the standard Sierpinski carpets in two
dimensions and gaskets in all dimensions.

Notation Throughout the paper, we use c1, c2, · · · to denote generic constants, independent of
N , whose exact values are not important and may change from line to line. We write an � bn if
there exist constants c1, c2 > 0 such that c1bn ≤ an ≤ c2bn for all n ∈ N.

2 Framework

We first introduce general notation for finite graphs with a ‘wired’ boundary and their associated
resistance. LetG = (V (G), E(G)) be a connected (undirected) finite graph with at least two vertices,
where V (G) denotes the vertex set and E(G) the edge set of G. Let dG be the graph distance, that
is, dG(x, y) is the number of edges in the shortest path from x to y in G. Define a symmetric weight
function µG : V (G)× V (G)→ R+ that satisfies µGxy > 0 if and only if {x, y} ∈ E(G). For B ⊂ G with
B 6= G and for distinct x, y ∈ V (G) not both in B, we define the resistance between x and y by

RB(x, y)−1 := inf{ 1

2

∑
w,z∈V (G)

(f(w)− f(z))2µGwz : f(x) = 1, f(y) = 0, f |B = constant}.

We set RB(x, x) = 0, RB(x, y) = 0 if x, y ∈ B and, for x ∈ V (G) \ B, we define RB(x,B) = RB(x, y)

for any y ∈ B. We write R(x, y) := R∅(x, y).
The resistance RB(·, ·) is the resistance of the following electrical network with a ‘wired’ bound-

ary: Consider the graph G obtained by combining all vertices in B to a single vertex b, that is
V (G) = (V (G) \B) ∪ {b} and

E(G) = {{x, y} : {x, y} ∈ E(G), x, y ∈ G \B}⋃
{{x, b} : x ∈ G \B, ∃y ∈ Bwith {x, y} ∈ E(G)} .

Define the modified symmetric weight function

µGxy =

{
µGxy, x ∈ V (G) \ {b}, y ∈ V (G) \ {b},∑
z∈B µ

G
xz, x ∈ V (G) \ {b}, y = b ,

and set as before µGx =
∑
y∈V (G) µ

G
xy. Let {wt}t≥0 be the continuous time random walk on G such

that the holding time at a vertex is exp(1), and the jump probability is given by µx,y/µx. Let

Lx,Nt =
1

µGx

∫ t

0

1{ws=x}ds
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denote the (weight normalized) local time at x.
Now, let {GN}N≥1 be a sequence of finite connected graphs such that |GN | ≥ 2 for all N ≥ 1 and

limN→∞ |GN | = ∞. For each GN = (V (GN ), E(GN )), we take a symmetric weight function µG
N

, a
boundary BN ⊂ GN with BN 6= GN , and the corresponding continuous time Markov chain {wNt }t≥0
with the wired boundary condition on BN as above. We assume that GN \ BN is connected. Let
TN := min{t ≥ 0 : wNt = b}, and define, for each x, y ∈ V (GN ) \ BN , GN (x, y) = ExGN [Ly,N

TN
] where

ExGN denotes the expectation with respect to wNt started at x. For z ∈ BN , we set XN
z ≡ 0. The

Gaussian free field (GFF for short) on GN (with boundary BN ) is the zero-mean Gaussian field
{XN

z }z∈V (GN ) with covariance GN (·, ·). It can be easily checked (using for instance [10, Lemma 2.1],
[16, Proposition 3.6]) that

E[(XN
x −XN

y )2] = RBN (x, y).

Let h : N → N be a strictly increasing function with h(0) = 0, that satisfies the following doubling
property: there exist 0 < β1 ≤ β2 <∞ and C > 0 such that, for all 0 < r ≤ R <∞,

C−1
(
R

r

)β1

≤ h(R)

h(r)
≤ C

(
R

r

)β2

. (2.1)

We assume the following.

Assumption 2.1. There exist α > 0 and c1, c2, c3 > 0 such that the following hold for all large N .
(i) RBN (x, y) ≤ c1h(dGN (x, y)) for all x, y ∈ GN .
(ii) maxx∈GN RBN (x,BN ) ≥ c2 maxx∈GN h(dGN (x,BN )) for all x ∈ GN .
(iii) NGN (δdNmax) ≤ c3δ

−α for all δ ∈ (0, 1] where dNmax := maxx∈GN dGN (x,BN ) and NGN (ε) is the
minimal number of dGN -balls of radius ε needed to cover GN . Furthermore, dNmax →∞ as N →∞.

Let X∗N = maxz∈V (GN )X
N
z and define X̃N = X∗N/σN , where σN = (maxz∈GN E[(XN

z )2])1/2. Note
that σ2

N = maxx∈GN RBN (x,BN ), and limN→∞ σN =∞ under Assumption 2.1(iii).

Theorem 2.2. Under Assumption 2.1, there exist constants A,B,A′ > 0 and a function g : (0,∞)→
(0, 1) such that the following holds for all N large.

P (X̃N < A) > B, P (X̃N > c) ≥ g(c) ∀c > 0, E(X̃N ) ≤ A′. (2.2)

In particular, under Assumption 2.1, {X∗N −EX∗N}N fluctuates with order σN and therefore it is
not tight.

Remark 2.3. We stated Assumption 2.1 with respect to the graph distance in GN , because this will
be easiest to check in the applications. However, one should note that the proof of Theorem 2.1
does not depend on the particular metric chosen, as long as the metric satisfies the assumption. In
particular, if we choose RBN (·, ·) as the metric, Assumption 2.1 (i), (ii) turns out to be trivial with
h(s) = s, and the assumption boils down to NRBN (δσ2

N ) ≤ c3δ
−α for all δ ∈ (0, 1] and limN→∞ σN =

∞, where NRBN (ε) is the minimal number of RBN -balls of radius ε needed to cover GN .

In a recent seminal work, [10] have established a close relation between the expectation of the
maximum of the GFF on general graphs and the expected cover time of these graphs by random
walk. Under the assumptions of Theorem 2.2, one can also derive information on the fluctuations

of the cover time, as follows. Define the cover time of G
N

as

τNcov = inf{t > 0 : Lx,Nt > 0, ∀x ∈ GN} .

It is easy to see

τNcov = inf{t > 0 : ∀x ∈ GN ,∃s ≤ t such that wNs = x}.
We will consider the square-root of the normalized local time at BN at cover time, i.e. the random

variable LN :=

√
Lb,N
τNcov

. One expects (see [10]) that LN should behave similarly to |X∗N |. In the

special case of GN being the rooted at b binary tree of depth N , this was confirmed in [7]. In our
setup here, this is confirmed in the following proposition.

Proposition 2.4. With notation as above and under Assumption 2.1, the conclusion of Theorem 2.2
hold with LN/σN replacing X̃N .
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3 Proofs of Theorem 2.2 and Proposition 2.4

We begin with the proof of Theorem 2.2.
Proof of Theorem 2.2: Let d̃(x, y) = (E[(XN

x − XN
y )2])1/2/σN = RBN (x, y)1/2/σN . Then, using As-

sumption 2.1 (i),(ii), there exists c > 0 such that for all x, y ∈ GN with dGN (x, y) ≤ dNmax and all
N ∈ N,

d̃(x, y) =
(RBN (x, y)

σ2
N

)1/2
≤ c
(h(dGN (x, y))

h(dNmax)

)1/2
≤ cC

(dGN (x, y)

dNmax

)β1/2

.

Thus, denoting Nd̃(ε) the minimal number of d̃-balls of radius ε needed to cover GN , we have

Nd̃(cCδ
β1/2) ≤ NGN (δdNmax) ≤ c3δ−α,

where we used Assumption 2.1 (iii) in the second inequality. Rewriting this, we have Nd̃(ε) ≤
c′ε−2α/β1 , where c′ > 0 is independent of N . Set γ = 2α/β1. We can apply standard metric entropy
bounds (for this version, see [1, Theorem 5.2]) to deduce that there exist λ0 > 0 and N0 such that
for all λ > λ0, ε > 0 and N > N0,

P (X̃N > λ) ≤ Cγλγ+1+εΨ(λ),

where Cγ ≥ 1 does not depend on N and Ψ(λ) = (2π)−1/2
∫∞
λ
e−x

2/2dx. On the other hand, let x∗N
be such that E(X2

x∗N
) = σ2

N . Then, for any λ > 0,

P (X̃N > λ) ≥ P (XN
x∗N

> λσN ) = Ψ(λ) .

The estimates in (2.2) are easy consequences of the last two displayed inequalities. 2

We turn to the analysis of cover times.
Proof of Proposition 2.4: The upper bound in the proposition is a consequence of the Eisenbaum-
Kaspi-Marcus-Rosen-Shi isomorphism theorem [11], as was observed in [10]: indeed, by [10, Eq.
(20),(21)] and using the last estimate in (2.2), there exist constants c1, c2 > 0 so that with t = θσ2

N ,
and all θ large enough,

P (min
x
Lx,N
τN (t)

≤ t/2) ≤ c1e−c2θ (3.1)

while
P (max

x
Lx,N
τN (t)

≥ 2t) ≤ c1e−c2θ , (3.2)

where τN (t) := inf{s > 0 : Lb,Ns > t}.
On the event {minx L

x,N
τN (t)

≥ t/2} we have that τN (t) ≥ τNcov. Thus, on the event

{min
x
Lx,N
τN (t)

≥ t/2} ∩ {max
x

Lx,N
τN (t)

≤ 2t} ,

one has that
Lb,N
τNcov

≤ Lb,N
τN (t)

≤ max
x

Lx,N
τN (t)

≤ 2t . (3.3)

In particular, (3.1), (3.2) and (3.3) imply that ELN/σN is bounded uniformly.

To estimate LN from below, we use the Markov property. Let x∗ ∈ V (G
N

) be such thatRBN (x∗, BN ) =

σ2
N and let Tx∗ = inf{t : wNt = x∗}. Since τNcov ≥ Tx∗ , we have that LN ≥

√
Lb,NTx∗ . We decompose

the walk wNt according to excursions from b: the probability to hit x∗ during one excursion (see e.g.
[20, Ch. 2]) is

pN =
1

σ2
NµN

,

where µN = µG
N

b . Therefore,

Lb,NTx∗
d
=

1

µN

ZN∑
i=1

Ei ,
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where ZN is geometric of parameter pN and Ei are standard independent exponential random vari-
ables. Note that ELb,NTx∗ = σ2

N .
Consider now a parameter ξ > 0. We have that

P (Lb,NTx∗ ≥ ξσ
2
N ) ≥ P (ZN ≥ ξ/pN )P

 1

µN

ξ/pN∑
i=1

Ei > ξσ2
N


≥ P (ZN ≥ ξ/pN )P

pN
ξ

ξ/pN∑
i=1

Ei ≥ 1

 =: P1P2 .

Note that from the properties of the geometric distribution, regardless of pN we have that P1 ≥
c1(ξ) > 0. On the other hand, if pN → 0 then pN

∑1/pN
i=1 Ei → 1 a.s., and in any case we also have that

P2 ≥ c2(ξ) > 0. We conclude that

P (LN ≥
√
ξσN ) ≥ c1(ξ)c2(ξ) .

2

4 Examples

4.1 Nested fractal graphs and strongly recurrent Sierpinski carpet graphs

Let {ψi}Ki=1 be a family of L-similitudes on Rd for some L > 1, that is, for each i, ψi is a map from
Rd to Rd such that ψi(x) = L−1Uix+ γi, x ∈ Rd, where Ui is a unitary map and γi ∈ Rd. We assume
that {ψi}Ki=1 satisfies the open set condition, namely there exists a non-empty bounded set O ⊂ Rd
such that {ψi(O)}Ki=1 are disjoint and ∪Ki=1ψi(O) ⊂ O. Since {ψi}Ki=1 is a family of contraction maps,
there exists a unique non-empty compact set F such that F = ∪Ki=1ψi(F ). We assume that F is
connected.

０ ０

Figure 1: 2-dimensional Sierpinski gasket graph and carpet graph

4.1.1 Nested fractal graphs

Let Ξ be the set of fixed points of {ψi}Ki=1, and define

V0 := {x ∈ Ξ : ∃i, j ∈ {1, . . . ,K}, i 6= j and y ∈ Ξ such that ψi(x) = ψj(y)} .

Assume that #V0 ≥ 2 and set ψi1...in := ψi1 ◦· · ·◦ψin . F is then called a nested fractal if the following
holds.
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• (Nesting) If i1 . . . in and j1 . . . jn are distinct sequences in {1, . . . ,K}, then

ψi1...in(F ) ∩ ψj1...jn(F ) = ψi1...in(V0) ∩ ψj1...jn(V0).

• (Symmetry) If x, y ∈ V0, then the reflection in the hyperplane Hxy := {z ∈ Rd : |z−x| = |z−y|}
maps

⋃K
i1,...,in=1 ψi1...in(V0) to itself.

We assume without loss of generality that ψ1(x) = L−1x and that the origin belongs to V0. Let

V (GN ) :=

K⋃
i1,...,iN=1

LNψi1...iN (V0), G :=

∞⋃
N=1

V (GN ). (4.1)

Next, define B0 := {{x, y} : x 6= y ∈ V0}. Then inside each LNψi1...iN (V0), N ≥ 0, 1 ≤ i1, · · · , iN ≤ K,
we place a copy of B0 and denote by B the set of all the edges determined in this way. Next, we
assign µxy = µyx > 0 for each {x, y} ∈ B in such a way that there exist c1, c2 > 0 such that

c1 ≤ µxy = µyx ≤ c2, ∀{x, y} ∈ B.

We call the graph (G,µ) a nested fractal graph. A typical example is the 2-dimensional Sierpinski
gasket graph in Fig 1 (where L = 2). Let d(·, ·) be the graph distance on G, {wk}k the Markov
chain for (X,µ), and define the heat kernel as pk(x, y) = P x(wk = y)/µy. (Note that we consider
the discrete time Markov chain here in order to apply the results in [5] to derive the resistance
estimates (4.5). Indeed, (4.5) can be obtained through both discrete and continuous time Markov
chains.) It is known (see [13] (also [17] for the continuous setting)) that there exist constants
c3, . . . , c6 such that for all x, y ∈ G, k > 0

pk(x, y) ≤ c3k−df/dw exp

(
−c4

(
d(x, y)dw

k

)1/(dw−1)
)
, (4.2)

and for k > d(x, y),

pk(x, y) + pk+1(x, y) ≥ c5k−df/dw exp

(
−c6

(
d(x, y)dw

k

)1/(dw−1)
)
, (4.3)

where dw = log(ρK)/ log(Lη), df = logK/ log(Lη) with some constants ρ > 1, η ≥ 1. df is called the
Hausdorff dimension and dw is called the walk dimension. For the 2-dimensional Sierpinski gasket
graph, L = 2, η = 1, K = 3 and ρ = 5/3. Noting that dw > df and that

c7R
df ≤ µ(B(x,R)) ≤ c8Rdf , ∀x ∈ G,R ≥ 1, (4.4)

(4.2), (4.3) implies (see [5, Theorem 1.3, Lemma 2.4])

R(x, y) ≤ c9d(x, y)dw−df , R(x,Bc(x,R)) ≥ c10Rdw−df , ∀x, y ∈ G, ∀R ≥ 1. (4.5)

We now define a sequence of graphs {GN}N≥0 by setting V (GN ) as above and E(GN ) := {{x, y} ∈
B : x, y ∈ V (GN )}. Let dGN (·, ·) be the graph distance on GN ; one can easily see that d(x, y) ≤
dGN (x, y) for x, y ∈ GN . (Note that |x − y| � dGN (x, y)logL/ log(Lη) for x, y ∈ GN (cf. [17, Section 3])
and logL/ log(Lη) is called the chemical-distance exponent.)

Let BN := LNV0. Clearly RBN (x, y) ≤ R(x, y) for x, y ∈ GN and dNmax � dGN (0, BN ) � (Lη)N . So
(4.5) implies Assumption 2.1 (i),(ii) with h(s) = sdw−df , and (4.4) with the self-similarity of the graph
imply Assumption 2.1 (iii) with α = df . We note that we can actually take BN arbitrary as long as
dNmax � (Lη)N .
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4.1.2 Strongly recurrent Sierpinski carpet graphs

Let H0 = [0, 1]d, and let L ∈ N, L ≥ 2 be fixed. Set Q = {Πd
i=1[(ki − 1)/L, ki/L] : 1 ≤ ki ≤ L (1 ≤ i ≤

d)}, let L ≤ K ≤ Ld and let {ψi}Ki=1 be a family of L-similitudes of H0 onto some element of Q. We
assume that the sets ψi(H0) are distinct, and as before assume ψ1(x) = L−1x. Set H1 = ∪Ki=1ψi(H0).
Then, there exists a unique non-void compact set F ⊂ H0 such that F = ∪Ki=1ψi(F ). We assume F is
connected. F is called a (generalized) Sierpinski carpet if the following hold (cf. [4]):
(SC1) (Symmetry) H1 is preserved by all the isometries of the unit cube H0.
(SC2) (Non-diagonality) Let B be a cube in H0 which is the union of 2d distinct elements of Q. (So
B has side length 2L−1.) Then if Int(H1 ∩B) is non-empty, it is connected.
(SC3) (Borders included) H1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · = xd = 0}.

The main difference from nested fractals is that Sierpinski carpets are infinitely ramified, i.e. F
cannot be disconnected by removing a finite number of points.

Let V0 be a set of vertices in H0 and define V (GN ) and G as in (4.1). Set B0 := {{x, y} : x 6=
y ∈ V0, |x− y| = 1}, and define B and µxy as in the case of nested fractal graphs. We call the graph
(G,µ) a Sierpinski carpet graph. A typical example is the 2-dimensional Sierpinski carpet graph in
Fig 1.

It is known, see [3] and also [4] for the continuous setting, that (4.2), (4.3) hold, where dw =

log(ρK)/ logL, df = logK/ logL with some constant ρ > 0. For the 2-dimensional Sierpinski gasket
graph, L = 3, K = 8 and ρ > 1. Let us restrict ourselves to the case ρ > 1, namely dw > df . In this
case, since (4.4) holds, we can show that (4.2) and (4.3) imply (4.5) as before. Arguing further as
before, we have Assumption 2.1 (i)–(iii) with h(s) = sdw−df and α = df .

4.2 Homogeneous random Sierpinski carpet graphs

Let ` ≥ 2 and I := {1, · · · , `}. For each k ∈ I, let {ψki }
Kk
i=1 be a family of Lk-similitudes as

in the definition of the Sierpinski carpet graphs. As before, we assume ψk1 (x) = L−1k x. For ξ =

(k1, · · · , kn, · · · ) ∈ I∞ and n ∈ N, write ξ|N = (k1, · · · , kN ) ∈ IN , and let

V (GNξ|N ) :=
⋃

ij∈{1,··· ,Kkj },

1≤j≤N

Lk1 · · ·LkNψ
kN
iN
◦ · · · ◦ ψk1i1 (V0), Gξ :=

∞⋃
N=1

V (GNξ|N ). (4.6)

Let B0 := {{x, y} : x 6= y ∈ V0, |x − y| = 1}, and define B = Bξ as in the cases of nested fractal
graphs and carpet graphs. For simplicity, put weight µxy ≡ 1 for each {x, y} ∈ B. We call the graph
(Gξ, µξ) a homogeneous (random) Sierpinski carpet graph.

Fix n ∈ N, ξ|n = (k1, · · · , kn) ∈ In, and let Bn = Lk1 · · ·Lkn , Mn = Kk1 · · ·Kkn . We write Rn for
the effective resistance between {0} × [0, Bn]d−1 ∩ Gnξ|n and {Bn} × [0, Bn]d−1 ∩ Gnξ|n in Gnξ|n , and
define Tn = RnMn. Now set

df (n) =
logMn

logBn
, dw(n) =

log Tn
logBn

.

For x ∈ Gξ and r ≥ 1, let Vd(x, r) be the number of vertices in the ball of radius r centered at x w.r.t.
the graph distance. It can be easily seen that

c1r
df (n) ≤ Vd(x, r) ≤ c2rdf (n) if Bn ≤ r < Bn+1, x ∈ Gξ. (4.7)

Define a time scale function τ : [1,∞)→ [1,∞) and resistance scale factor h : [1,∞)→ [1,∞) as

τ(s) = sdw(n), h(s) = sdw(n)−df (n) if Tn ≤ s < Tn+1.

We set τ(0) = h(0) = 0. Note that τ and h satisfy the property in (2.1) since ` <∞.
Given these, it is possible to obtain heat kernel estimates similar to those in Theorem 6.3 and

Lemma 6.7 of [14] by tracking the proof in [14] faithfully (see the Appendix for a sketch). By making
additional computations (similar to those in [12, Lemma 3.19]) in the proof of [14, Lemma 3.10], we
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can obtain the following heat kernel estimates (cf. Remark after Theorem 24.6 in [15]): There exist
c3, · · · , c6 > 0 such that if k ∈ N, x, y ∈ Gξ, then

pk(x, y) ≤ c3
Vd(x, τ−1(k))

exp
(
−c4

(τ(d(x, y))

k

)1/(β1−1)
)
, (4.8)

pk(x, y) + pk+1(x, y) ≥ c5
Vd(x, τ−1(k))

for k ≥ c6τ(d(x, y)). (4.9)

Now assume the following limits exist and the inequality holds.

df := lim
n→∞

df (n), dw := lim
n→∞

dw(n), dw > df . (4.10)

Under this assumption, we have

c7
τ(d(x, y))

Vd(x, d(x, y))
≤ R(x, y) ≤ c8

τ(d(x, y))

Vd(x, d(x, y))
, ∀x, y ∈ Gξ. (4.11)

The equivalence of (4.8)+(4.9) and (4.11) is proved in [5] when τ(s) = sβ for some β ≥ 2 under some
volume growth condition referred as (V G(β−)). Here we need a generalized version of this under
the doubling property of τ . In fact, we only need (4.8)+(4.9)⇒ (4.11), and the generalization of this
direction is easy. Indeed, using (4.8) and (4.9), we can obtain the scaled Poincaré inequality and
the lower bound of (4.11) similarly to the proof of [5, Proposition 4.2] (with τ(s) replacing sβ there).
Under (4.10), a condition corresponding to (V G((dw)−)) in [5] holds, so together with the scaled
Poincaré inequality, we can obtain the upper bound of (4.11) similarly to the proof of [5, Lemma 2.3
(b)].

Now let Bξ|N := BNV0. Clearly RBξ|N (x, y) ≤ R(x, y) for x, y ∈ GNξ|N and dNmax � BN . So (4.11)
implies Assumption 2.1 (i),(ii), and (4.7), (4.10) with the homogeneity of the graph imply Assumption
2.1 (iii) with α = maxn df (n). As before we can take Bξ|N arbitrary as long as dNmax � BN .

Finally we will introduce randomness on this graph. Let (IN,F ,P) be a Borel probability space
where the measure P is stationary and ergodic for the shift operator θ : IN → IN defined by
θ((k1, · · · , kn, · · · )) = (k2, · · · , kn, · · · ). Then, by [14, Proposition 7.1] and the sub-additive ergodic
theorem, one can prove the existence of the first two limits in (4.10). Let dif , d

i
w be the Hausdorff

dimension and the walk dimension for Gi where i = (i, i, i, · · · ) for i ∈ I. Let us consider a special
case when d = 3, ` = 2, and P is the Bernoulli probability measure with P(ξ1 = 1) = p, P(ξ1 = 2) =

1−p for some p ∈ [0, 1]. One can see that df/dw is a continuous function of p. Indeed, it can be easily
seen that it is enough to prove limn→∞ logRn/n is continuous for p. By the proof of [14, Proposition
7.1], there exist c1, c2 > 0 such that we have

1

k
E log(c1Rk) ≤ lim

n→∞

1

n
logRn ≤

1

k
E log(c2Rk), P− a.s.,

for any k ≥ 1 where E is the average over P. Since E log(ciRk), i = 1, 2 are continuous for p (because
the graph is finite), we obtain the desired continuity of limn→∞ logRn/n. So, when we choose the
two carpets in such a way that d1w > d1f and d2w < d2f (which is possible, see [4, Section 9]), we are
able to construct a one parameter family of homogeneous random Sierpinski carpet graphs where
df/dw is P-a.e. an arbitrary fixed number between d1f/d

1
w and d2f/d

2
w. In particular, there exists

p∗ ∈ (0, 1) such that (4.10) holds P-a.e. for all p < p∗.
It is an interesting open problem to prove whether the recentered maximum of the GFF is tight

or not when p = p∗. Note that the method in [8] cannot be directly applied since it relies on detailed
comparisons with a translation invariant graph.

A Appendix: Heat kernel estimates for Markov chains on homogeneous
random Sierpinski carpet graphs

In this appendix, we will briefly sketch the proof of (4.8) and (4.9). The Markov chain we consider
here is the discrete time Markov chain.
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Set Vn := V (Gnξ|n). We first define the Dirichlet form as follows.

En(f, g) :=
∑

x,y∈Vn
{x,y}∈B

(f(x)− f(y))(g(x)− g(y)), ∀f, g : Vn → R.

Given two processes Y 1, Y 2, defined on the same state space, we define a coupling time of Y 1

and Y 2 as
TC(Y 1, Y 2) = inf{t ≥ 0 : Y 1

t = Y 2
t }.

Let m ≤ n. We call sets of the form Lk1 · · ·Lknψ
kn−m
in−m

◦ · · · ◦ψk1i1 ([0, 1]d)∩Vn m-complexes. For A ⊂ Gξ,
define

D0
m(A) = {m-complex which contains A},

D1
m(A) = D0

m(A) ∪ {B : B is a m-complex, D0
m(A) ∩B 6= ∅}.

Let SzB denote the exit time from the set B, when the process is started from the point z.

Theorem A.1. (Coupling) There exist 0 < p0 < 1 and K0 ∈ N such that for each x, y ∈ Gξ, there
exist Markov chains wxt , w

y
t with wx0 = x, wy0 = y on Gξ whose laws are equal to the simple random

walk that satisfy the following: For n > K0 and y ∈ D0
n−K0

(x),

P (TC(wxt , w
y
t ) < min{SxD1

n(x)
, SyD1

n(x)
}) > p0.

The proof of the theorem follows in the same way as [4, Section 3], as Gξ and wxt have enough
symmetries for the argument there to work.

Once we have the coupling estimate, we can deduce the uniform (elliptic) Harnack inequality as
in [4, Section 4]. Let L be the infinitesimal generator associated with the simple random walk.

Theorem A.2. There exists c1 > 0 such that for each x0 ∈ Gξ, and each f : B(x0, 2R)→ [0,∞) with
Lf(x) = 0 for all x ∈ B(x0, 2R) = 0, R ≥ 1, it holds that

max
x∈B(x0,R)

f(x) ≤ c1 min
x∈B(x0,R)

f(x). (A.1)

We next introduce the following Poincaré constant:

λn = sup{
∑
x∈Vn

(u(x)− 〈u〉Vn)2 | u : Vn → R, En(u, u) = 1},

where 〈u〉A = (]A)−1
∑
x∈A u(x) for any finite set A and u : Vn → R.

The following proposition can be proved similarly to Proposition 3.1, Corollary 3.7 of [14] and
(2.3), (4.4) of [18]. (Note that Theorem A.2 is needed in the proof of (A.3).)

Proposition A.3. There exist constants c1, · · · , c4 > 0 such that for each n,m ∈ N,

c1RnRθnξ|m ≤ Rn+m ≤ c2RnRθnξ|m, (A.2)

c3λn ≤ Tn ≤ c4λn. (A.3)

Lemma A.4. There is a constant c such that if Tn−1 ≤ t ≤ Tn, then

pt(x, y) ≤ cM−1n . (A.4)

Proof. From the definition of the Dirichlet form and the Poincaré constant, the proof is similar to
[18, Theorem 3.3] by using Proposition A.3. 2

The next lemma can be proved similarly to [14, Lemma 3.8].
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Lemma A.5. There exist c1, c2 > 0 such that

c1Tr ≤ ESzD1
r(x)

for all z ∈ D0
r(x), ESzD1

r(x)
≤ c2Tr for all z ∈ D1

r(x).

Since SD1
l (x)
≤ t+ 1(S

D1
l
>t)(SD1

l
− t) we have, from Lemma A.5,

c1Tl ≤ ESzD1
l
≤ t+ E

[
1(Sz

D1
l

>t)E[SXt
D1
l
]
]
≤ t+ P (SzD1

l
> t)c2Tl for t ≥ 0, z ∈ D0

l (x).

Thus, we deduce the following: there exist c3 > 0, c4 ∈ (0, 1) such that

P (SzD1
l (x)
≤ t) ≤ c3T−1l t+ c4 for t ≥ 0, z ∈ D0

l (x). (A.5)

We can improve this to an exponential estimate on P (Sz
D1
l (x)
≤ t). In order to do this we define the

following function of time and space,

k = k(n, l) = inf
{
l′ ≤ n :

Tl′

Bl′
≥ Tl
Bn

}
. (A.6)

The next lemma corresponds to [14, Lemma 3.10]. Since the labeling here differs from that in
[14], we give the proof.

Lemma A.6. There exist constants c1, c2 such that if k = k(n, l) as in (A.6) then for all x ∈ E, and
n, l ≥ 0,

P (SxD1
n(x)
≤ Tl) ≤ c1 exp (−c2Bn/Bk). (A.7)

Proof. If l′ ≤ n, then for the simple random walk to cross one n-complex it must cross at least
N = Bn/Bl′ , l′-complexes. So, there exists 0 < c < 1 such that

SxD1
n(x)
≥
cBn/Bl′∑
i=1

V xii ,

where xi depend only on V x1
1 , . . . , V

xi−1

i−1 , and V yi have the same distribution as Sy
D1
l′ (y)

. The deviation

estimate [2, Lemma 1.1] states that if P (V yi < s) ≤ p0 + αs, where p0 ∈ (0, 1) and α > 0, then

logP
( cN∑

1

V xii ≤ t) ≤ 2(αc1Nt/p0)1/2 − c2N log(1/p0). (A.8)

Thus, using (A.5) and (A.8), we have

logP (SxD1
n(x)
≤ Tl) ≤ c3(Bn/Bl′)

1/2[(Tl/Tl′)
1/2 − c4(Bn/Bl′)

1/2]. (A.9)

Given k = k(n, l) as above, there exists c5 and k0 such that k ≤ k0 ≤ k + c5, and

(Tl/Tk0)1/2 <
1

2
c4(Bn/Bk0)1/2.

Provided k0 ≤ n we deduce

logP (SxD1
n(x)
≤ Tl) ≤ −

1

2
c3c4Bn/Bk0 .

Choosing c6 large enough we have 1 < c6 exp(−c2Bn/Bk) whenever k > n − c5, so that (A.7) holds
in all cases. 2

Theorem A.7. There exist constants c1, c2 such that if k ∈ N, x, y ∈ Gξ, and n,m satisfy

Tn−1 ≤ t < Tn, Bm−1 ≤ d(x, y) < Bm, (A.10)

and k = k(m,n), then

pt(x, y) ≤ c1t−df (n)/dw(n) exp
(
−c2

(d(x, y)dw(k)

t

)1/(dw(k)−1)
)
. (A.11)
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Proof. Noting that M−1n ≤ ct−df (n)/dw(n), this is proved from Lemma A.4 and Lemma A.6 by the
same argument as in Theorem 6.9 of [4]. 2

Note that the bound (A.11) may also be written in the form

pt(x, y) ≤ cM−1n exp(−c′Bn/Bk),

where m,n satisfy (A.10), and k = k(m,n) as in (A.6). The upper bound (4.8) can be obtained from
this using (4.7).

The lower bound is obtained in the following procedure.

Lemma A.8. There exists a constant c1 such that if Tn ≤ t then

pt(x, x) ≥ c1M−1n for all x ∈ Gξ. (A.12)

Proof. Using Lemma A.4 and (4.7), a standard argument gives the desired estimate. See for instance
[6, Lemma 5.1]. 2

Lemma A.9. There exist c1, c2 such that if Tn−1 < t ≤ Tn, then

pt(x, y) ≥ c1M−1n whenever d(x, y) ≤ c2Bn.

Proof. Using Theorem A.2 and Lemma A.8, this can be proved similarly to the proof of [3, Proposition
6.4]. 2

We can deduce (4.9) from this and (4.7). 2
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