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1 Introduction

Suppose thatB = {B(t), t ≥ 0} is a fractional Brownian motion with Hurst parameter
H = 1

6 . Let bxc denote the greatest integer less than or equal to x. In [6], Nualart and
Ortiz-Latorre proved that the sequence of sums,

Wn(t) =

bntc∑
j=1

(B(j/n)−B((j − 1)/n))3, (1.1)

converges in law to a Brownian motion W = {W (t), t ≥ 0}, with variance κ2t given by

κ2 =
3

4

∑
m∈Z

(|m+ 1|1/3 + |m− 1|1/3 − 2|m|1/3)3.

The process W is related to the signed cubic variation of B. A detailed analysis of this
process has been recently developed by Swanson in [8], considering this variation as a
class of sequences of processes.

In [1], Burdzy, Nualart and Swanson studied the convergence in distribution of the
sequence of two-dimensional processes {(Wan(t),Wbn(t))}, where {an}∞n=1 and {bn}∞n=1

are two strictly increasing sequences of natural numbers converging to infinity. A basic
assumption for the results of [1] and also for the results of this paper is that Ln →
L ∈ [0,∞], where Ln = bn/an. By [1, Corollary 3.6], if L ∈ {0,∞}, then Wan and Wbn

converge to independent Brownian motions. We will therefore assume that L ∈ (0,∞).
The function fL(x) =

∑
m∈Z fm,L(x), where

fm,L(x) = (|x−m+ 1|1/3 + |x−m− L|1/3 − |x−m|1/3 − |x−m+ 1− L|1/3)3, (1.2)
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Correlations within the cubic variation of fBm II

plays a fundamental role in the analysis of the convergence of {(Wan ,Wbn)}. Under
some conditions, the limit in distribution of this sequence is a two-dimensional Gaussian
process Xρ, independent of B, whose components are Brownian motions with variance
κ2t, and with covariance

∫ t
0
ρ(s) ds for some function ρ. In terms of the function ρ ∈

C[0,∞), the process Xρ can be expressed as

Xρ(t) =

∫ t

0

σ(s) dW(s), (1.3)

where σ is given by

σ(t) = κ

(√
1− |κ−2ρ(t)|2 κ−2ρ(t)

0 1

)
, (1.4)

and W = (W 1,W 2) is a standard, 2-dimensional Brownian motion. More specifically,
the main result of [1] is the following theorem, which is obtained using the central limit
theorem for multiple stochastic integrals proved by Peccati and Tudor in [7] (see also
[3]).

Theorem 1.1. Let I = {n : Ln = L} and cn = gcd(an, bn). Then (B,Wan ,Wbn)⇒ (B,Xρ)

in the Skorohod space DR3 [0,∞) as n→∞, in the following cases:

(i) The set Ic is finite (which implies L ∈ Q). In this case, if L = p/q, where p, q ∈ N
are relatively prime, then for all t ≥ 0,

ρ(t) =
3

4p

q∑
j=1

fL(j/q).

(ii) There exists k ∈ N such that bn = k mod an for all n. In this case, for all t ≥ 0,

ρ(t) =
3

4L
fL(kt).

(iii) The set I is finite and cn →∞. In this case, for all t ≥ 0,

ρ(t) =
3

4L

∫ 1

0

fL(x) dx.

This type of result was motivated by the relationship between higher signed varia-
tions of fractional Brownian motions and the change of variable formulas in distribution
for stochastic integrals with respect to these processes that have appeared recently in
the literature (see [2, 4, 5]).

Theorem 1.1 covers many simple and interesting pairs of sequences, and helps to
tell a surprising story about the asymptotic correlation between the sequences, {Wan}
and {Wbn}, both of which are converging to a Brownian motion. For example, by The-
orem 1.1(i), we may conclude that the asymptotic correlation of Wn(t) and W2n(t) is
a constant that does not depend on t, and whose numerical value is approximately
0.201. Likewise, Theorem 1.1(iii) shows that the asymptotic correlation of Wn2(t) and
Wn(n+1)(t) is not dependent on t and is approximately 0.102. Perhaps more surpris-
ingly, Theorem 1.1(ii) shows that the asymptotic correlation of Wn(t) and Wn+1(t) does
depend on t. Numerical calculations suggest that the correlation varies greatly with t,
converging to 1 as t ↓ 0, and being as low as about 0.075 for t = 0.8.

Nonetheless, there are many simple and interesting pairs of sequences that are not
covered by Theorem 1.1. For example, the sequences an = n2 and bn = (n+ 1)2 are not
covered; nor are the sequences an = 2n and bn = 3n+ 1. Additionally, many sequences
whose ratios converge to an irrational number are not covered by this theorem.
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The purpose of this paper is to provide a complete description of the asymptotic
behavior of Wan(t) and Wbn(t) for all sequences {an} and {bn}. We will show that the
asymptotic correlation depends only on L = limLn when L is irrational; and when L is
rational, it depends also on lim an|Ln − L|. In the next section we state and prove this
result and provide some remarks and examples.

We should remark that, as discussed at the end of the introduction to the previous
paper [1], it is natural to consider generalizations of (1.1), such as

Wn(t) =
1√
n

bntc∑
j=1

f(nH(B(j/n)−B((j − 1)/n))),

where f : R → R is square integrable with respect to the standard normal distribu-
tion and has an expansion into a series of Hermite polynomials of the form f(x) =∑∞
k=q akHk(x), with q ≥ 1, and B is fractional Brownian motion with Hurst parameter

H < 1/(2q). In this case, the computation of the asymptotic correlations,

lim
n→∞

E[Wan(t)Wbn(t)],

appears to be rather involved and requires methods and ideas beyond those developed
in this and the previous paper, even in the particular case H = 1/(2k) and f(x) = xk for
odd k. It seems plausible that our results have natural extensions to the more general
setting, but the study of asymptotic correlations with more general H and f will be
reserved for future papers.

2 Main result

Let Xρ the two-dimensional process defined in (1.3). Recall that fL =
∑
m∈Z fm,L,

where fm,L is the function defined in (1.2). By [1, Lemma 2.6], the series defining fL
converges uniformly on [0, 1]. Also note that fL is periodic with period 1. We first need
the following technical result.

Lemma 2.1. Let L = p/q, where p, q ∈ N are relatively prime numbers. Then, for any
x ∈ R and η = 1, . . . , q we have fL(ηL− x) = fL(η̃L+ x), where η̃ = q − η + 1.

Proof. For any m ∈ Z set m̃ = −m+ 1 + p. Then

fm,L(ηL− x) =

(∣∣∣∣ηpq − x−m+ 1

∣∣∣∣1/3 +

∣∣∣∣ηpq − x−m− p

q

∣∣∣∣∣
1/3

−
∣∣∣∣ηpq − x−m

∣∣∣∣1/3 − ∣∣∣∣ηpq − x−m+ 1− p

q

∣∣∣∣1/3
)3

=

(∣∣∣∣− ηp

q
+ x− m̃+ p

∣∣∣∣1/3 +

∣∣∣∣− ηp

q
+ x− m̃+ 1 + p+

p

q

∣∣∣∣1/3

−
∣∣∣∣− ηp

q
+ x− m̃+ 1 + p

∣∣∣∣1/3 − ∣∣∣∣− ηp

q
+ x− m̃+ p+

p

q

∣∣∣∣1/3
)3

.

Notice that η̃L = p+ p
q −

ηp
q . Therefore,

fm,L(ηL− x) =
(
|η̃L+ x− m̃− L|1/3 + |η̃L+ x− m̃+ 1|1/3

− |η̃L+ x− m̃− L+ 1|1/3 − |η̃L+ x− m̃|1/3
)3

= fm̃,L(η̃L+ x).
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As a consequence,

fL(ηL− x) =
∑
m∈Z

fm,L(ηL− x) =
∑
m∈Z

fm̃,L(η̃L+ x) =
∑
m̃∈Z

fm̃,L(η̃L+ x) = fL(η̃L+ x),

which completes the proof.

The next result is the main theorem of this paper. Together with the cases L = 0 and
L = ∞, covered in [1, Corollary 3.6], this theorem gives a complete description of all
subsequential limits of (Wan ,Wbn) for any pair of subsequences of {Wn}.

Theorem 2.2. Let {an}∞n=1 and {bn}∞n=1 be strictly increasing sequences inN. Let Ln =

bn/an and suppose Ln → L ∈ (0,∞). Let δn = Ln −L. Then, (B,Wan ,Wbn)⇒ (B,Xρ) in
DR3 [0,∞) as n→∞, in the following cases:

(i) L ∈ Q and an|δn| → k ∈ [0,∞). In this case, if we write L = p/q, where p, q ∈ N are
relatively prime, then, for all t ≥ 0,

ρ(t) =
3

4p

q∑
j=1

fL

(
j

q
+ kt

)
.

(ii) L ∈ Q and an|δn| → ∞, or L /∈ Q. In this case, for all t ≥ 0,

ρ(t) =
3

4L

∫ 1

0

fL(x) dx.

Note that between the two parts of this theorem, there is, at least formally, a sort of
continuity in k. For fixed q, we have∫ t

0

[
3

4p

q∑
j=1

fL

(
j

q
+ ks

)]
ds→

∫ t

0

[
3

4L

∫ 1

0

fL(x) dx

]
ds,

as k →∞. In fact, since fL is periodic with period 1, for any j = 1, . . . , q,∫ t

0

fL

(
j

q
+ ks

)
ds =

1

k

∫ kt

0

fL

(
j

q
+ x

)
dx

=
1

k

∫ kt−bktc

0

fL

(
j

q
+ x

)
dx+

bktc
k

∫ 1

0

fL(x) dx→ t

∫ 1

0

fL(x)dx,

as k →∞.
To elaborate on the conditions in the two parts of this theorem and their connections

to Theorem 1.1, first note that if L is rational and Ln 6= L, then

an|δn| =
∣∣∣∣bnq − anpq

∣∣∣∣ ≥ 1

q
, (2.1)

since the numerator is a nonzero integer. It follows that when L ∈ Q, we have an|δn| → 0

if and only if Ln = L for all but finitely many n. Therefore, Theorem 2.2(i) with k = 0 is
equivalent to Theorem 1.1(i).

Next, if L ∈ Q, Ln 6= L for all but finitely many n, and cn = gcd(an, bn) → ∞, then
(2.1) shows that for n sufficiently large, an|δn| ≥ cn/q → ∞. Hence, Theorem 1.1(iii) is
a special case of Theorem 2.2(ii).

Lastly, to see that Theorem 1.1(ii) is a special case of Theorem 2.2(i), suppose there
exists k ∈ N such that bn = k mod an for all n. Then bn = νnan + k for some integers
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νn. Thus, Ln = νn + k/an. Letting n → ∞ we see that the sequence νn must converge
to L. Taking in to account that the νn’s are integers, this implies that L ∈ N and νn = L

for all but finitely many n. We therefore have an|δn| = |bn − anL| = k, for large enough
n. In this case, using p = L and q = 1 and the fact that fL is periodic with period 1, we
find that the function ρ in Theorem 2.2(i) agrees with the function ρ in Theorem 1.1(ii).

Before giving the formal proof of Theorem 2.2 we would like to explain the main
ideas in comparison with the proof of Theorem 1.1. We denote by {x} = x − bxc the
fractional part of x (not to be confused with the set whose unique element is x). In [1],
it is shown that the covariance between the components of the limit process Xρ is given
by

Cov (Xρ
1 , X

ρ
2 ) =

∫ t

0

ρ(s) ds =
3

4L

∑
m∈Z

lim
n→∞

1

an

bantc∑
j=1

fm,L({jLn}),

provided the above limits exist for each m ∈ Z. The principal challenge in analyzing
these limits has been that the above summands, fm,L({jLn}), could not be replaced
by fm,L({jL}). This is because, although Ln is close to L for large n, {jLn} is not
uniformly close to {jL} as j ranges from 1 to bantc. In [1], we studied these limits via
the decomposition

bantc∑
j=1

fm,L({jLn}) = αn

qn−1∑
j=0

fm,L({jLn}) +

rn∑
j=1

fm,L({jLn}).

Here, Ln = bn/an = pn/qn, where pn and qn are relatively prime, and bantc = αnqn + rn
with αn ∈ Z and 0 ≤ rn < qn.

To prove Theorem 2.2 in the case that L ∈ Q, we use a different decomposition. Let
L = p/q, where p, q ∈ N are relatively prime. We then write

bantc∑
j=1

fm,L({jLn}) ≈
q∑
η=1

αn−1∑
i=0

fm,L({(iq + η)Ln}).

In this case, since q is fixed and finite, we are able to use the approximation

bantc∑
j=1

fm,L({jLn}) ≈
q∑
η=1

αn−1∑
i=0

fm,L({iqLn + ηL}).

Since qL = p, we have iqLn = ip+ iqδn. Thus, we have

bantc∑
j=1

fm,L({jLn}) ≈
q∑
η=1

αn−1∑
i=0

fm,L({iqδn + ηL}).

Using a Riemann-sum argument, we will show that for each fixed η,

αn−1∑
i=0

fm,L({iqδn + ηL}) ≈ 1

qδn

∫ anδnt

0

fm,L({x+ ηL}) dx,

giving ∫ t

0

ρ(s) ds =
3

4L

∑
m∈Z

1

q

q∑
η=1

lim
n→∞

1

anδn

∫ anδnt

0

fm,L({x+ ηL}) dx.

We then prove the theorem case-by-case, depending on the asymptotic behavior of the
sequence anδn. Note that the actual analysis in the proof is made somewhat more
delicate by the fact that δn may be negative.
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For the case L /∈ Q, the proof will be done by adapting the method of proof of the
equidistribution theorem based on Fourier series expansions. This theorem says that
for any interval I ⊂ [0, 1),

lim
n→∞

1

n
|{k : {kL} ∈ I, 1 ≤ k ≤ n}| = |I|,

and a simple proof can be found in [9, Theorem 1.8].

Proof of Theorem 2.2. Let
Sn(t) = E[Wan(t)Wbn(t)].

In order to show that (B,Wan ,Wbn) ⇒ (B,Xρ) in DR3 [0,∞), by [1, Theorem 3.1 and
Lemma 3.5], it will suffice to show that

Sn(t)→
∫ t

0

ρ(s) ds, (2.2)

for each t ≥ 0.
Fix t ≥ 0. Since Wn(t) = 0 if bntc = 0, we may assume t > 0 and n is sufficiently large

so that bantc > 0 and bbntc > 0. Recall that {x} = x − bxc, and let f̂m,L(x) = fm,L({x}),
where fm,L is the function introduced in (1.2).

In the reference [1] it is proved (see [1, (3.18), (3.20), and Remark 3.3]) that

lim
n→∞

Sn(t) =
3

4L

∑
m∈Z

lim
n→∞

β̃(m,n), (2.3)

where

β̃(m,n) =
1

an

bantc∑
j=1

f̂m,L(jLn),

provided that, for each fixed m ∈ Z, the limit limn→∞ β̃(m,n) exists. The proof will now
be done in several steps.

Step 1. Assume L ∈ Q and an|δn| → k ∈ (0,∞]. Let us write L = p/q, where p and q

are relatively prime. Choose n0 such that for all n ≥ n0, we have bantc > q. For each
n ≥ n0, write bantc = αnq + rn, where αn ∈ N and 0 ≤ rn < q. Since an → ∞ and f̂m,L
is bounded, it follows that

lim
n→∞

β̃(m,n) = lim
n→∞

1

an

αnq∑
j=1

f̂m,L(jLn)

= lim
n→∞

1

an

q∑
η=1

αn−1∑
i=0

f̂m,L((iq + η)Ln)

= lim
n→∞

1

an

q∑
η=1

αn−1∑
i=0

f̂m,L(ip+ ηL+ (iq + η)δn)

=

q∑
η=1

(
lim
n→∞

1

an

αn−1∑
i=0

f̂m,L(ηL+ sgn(δn)xi)

)
,

where xi = (iq + η)|δn|. Our assumption that an|δn| → k ∈ (0,∞] implies that there
exists n1 ≥ n0 such that δn 6= 0 for all n ≥ n1. Set ∆x = xi+1 − xi = q|δn|. Then

lim
n→∞

β̃(m,n) =
1

q

q∑
η=1

(
lim
n→∞

1

an|δn|

αn−1∑
i=0

f̂m,L(ηL+ sgn(δn)xi)∆x

)
.
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Let ε > 0 be arbitrary. Since fm,L is uniformly continuous on [0, 1], we may find n2 ≥ n1

such that for all n ≥ n2,
sup

|x−y|≤∆x
x,y∈[0,1]

|fm,L(x)− fm,L(y)| < ε.

Note that if bxc = byc, then {x} − {y} = x− y. Thus,

sup
|x−y|≤∆x
bxc=byc

|f̂m,L(x)− f̂m,L(y)| < ε, (2.4)

for all n ≥ n2. Let

Jn = {0 ≤ i < αn : bηL+ sgn(δn)xic = bηL+ sgn(δn)xi+1c}.

Note that if i ∈ Jn and x ∈ [xi, xi+1], then

bηL+ sgn(δn)xc = bηL+ sgn(δn)xic .

Thus, using (2.4), we obtain∣∣∣∣f̂m,L(ηL+ sgn(δn)xi)∆x−
∫ xi+1

xi

f̂m,L(ηL+ sgn(δn)x) dx

∣∣∣∣ ≤ ε∆x = εq|δn|,

for all i ∈ Jn and n ≥ n2. Also, since f̂m,L is bounded, there is a constant M such that∣∣∣∣f̂m,L(ηL+ sgn(δn)xi)∆x−
∫ xi+1

xi

f̂m,L(ηL+ sgn(δn)x) dx

∣∣∣∣ ≤M∆x = Mq|δn|,

for all i /∈ Jn and n ≥ n2. Therefore,

αn−1∑
i=0

f̂m,L(ηL+ sgn(δn)xi)∆x =

∫ xαn

x0

f̂m,L(ηL+ sgn(δn)x) dx+Rn,

where
|Rn| ≤ (ε|Jn|+M(αn − |Jn|))q|δn|.

Note that αn − |Jn| is the number of times that the monotonic sequence,

{ηL+ sgn(δn)xi}αni=0,

crosses an integer. Thus, αn − |Jn| ≤ |xαn − x0| + 1 = αnq|δn| + 1. Combined with
|Jn| ≤ αn and αn ≤ ant/q, we have

|Rn| ≤ εan|δn|t+Mqan|δn|2t+Mq|δn|.

Hence, since an →∞, we have

lim sup
n→∞

|Rn|
an|δn|

≤ εt.

Since ε was arbitrary, it follows that

lim
n→∞

β̃(m,n) =
1

q

q∑
η=1

(
lim
n→∞

1

an|δn|

∫ xαn

x0

f̂m,L(ηL+ sgn(δn)x) dx

)
.

Now, note that x0 = η|δn| and

xαn = (αnq + η)|δn| = (bantc − rn + η)|δn|.
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Since |η − rn| ≤ q, we have |xαn − an|δn|t| ≤ (q + 1)|δn|. Thus, since an →∞ and f̂m,L is
bounded, we have

lim
n→∞

β̃(m,n) =
1

q

q∑
η=1

(
lim
n→∞

1

an|δn|

∫ an|δn|t

0

f̂m,L(ηL+ sgn(δn)x) dx

)
. (2.5)

Step 2. Assume L ∈ Q and an|δn| → ∞. Then, taking into account that the function
f̂m,L has period one, we can write∫ an|δn|t

0

f̂m,L(ηL+ sgn(δn)x) dx

= ban|δn|tc
∫ 1

0

f̂m,L(x) dx+

∫ an|δn|t−ban|δn|tc

0

f̂m,L(ηL+ sgn(δn)x) dx.

From (2.5) and the fact that f̂m,L is bounded, we then obtain

lim
n→∞

β̃(m,n) =
1

q

q∑
η=1

lim
n→∞

(
ban|δn|tc
an|δn|

∫ 1

0

f̂m,L(x) dx

+
1

an|δn|

∫ an|δn|t−ban|δn|tc

0

f̂m,L(ηL+ sgn(δn)x) dx

)
= t

∫ 1

0

f̂m,L(x) dx.

By (2.3) and the fact that fL =
∑
m∈Z fm,L is periodic with period 1, this gives

lim
n→∞

Sn(t) =
3t

4L

∫ 1

0

fL(x) dx.

In light of (2.2), this completes half the proof of Theorem 2.2(ii). To complete the proof
of Theorem 2.2(ii), it remains only to consider the case L /∈ Q, and this will be done in
the final step of this proof.

Step 3. Assume L ∈ Q, an|δn| → k ∈ (0,∞), and δn > 0 for all n. From (2.5), we have

lim
n→∞

β̃(m,n) =
1

q

q∑
η=1

(
1

k

∫ kt

0

f̂m,L(ηL+ x) dx

)
.

From (2.3), the fact that fL has period 1, the identity L = p/q, and the substitution
x = ks, this gives

lim
n→∞

Sn(t) =
3

4Lk

∫ kt

0

1

q

q∑
η=1

fL(ηL+ x) dx

=

∫ t

0

3

4p

q∑
η=1

fL(ηL+ ks) ds.

Step 4. Assume L ∈ Q, an|δn| → k ∈ (0,∞), and δn < 0 for all n. As in Step 3, we have

lim
n→∞

Sn(t) =

∫ t

0

3

4p

q∑
η=1

fL(ηL− ks) ds.

By Lemma 2.1,

lim
n→∞

Sn(t) =

∫ t

0

3

4p

q∑
η=1

fL((q − η + 1)L+ ks) ds

=

∫ t

0

3

4p

q∑
η=1

fL(ηL+ ks) ds.
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Step 5. We now prove Theorem 2.2(i). From the discussion following the statement
of Theorem 2.2(i), we have that Theorem 2.2(i) with k = 0 is equivalent to Theorem
1.1(i). Thus, we may assume an|δn| → k ∈ (0,∞). Let {Snm}m∈N be any subsequence
of {Sn}n∈N. Recall from Step 1 that δn 6= 0 for all n ≥ n1. Choose a subsequence
{Snm(j)

}j∈N of {Snm}m∈N such that sgn(δnm(j)
) does note depend on j. By Steps 3 and 4,

lim
j→∞

Snm(j)
(t) =

∫ t

0

3

4p

q∑
η=1

fL(ηL+ ks) ds.

Since every subsequence has a subsequence converging to this limit, there is only one
accumulation point, and since R is complete, it follows that

lim
n→∞

Sn(t) =

∫ t

0

3

4p

q∑
η=1

fL(ηL+ ks) ds.

Note that ηL = ηp/q and, since p and q are relatively prime, the set of fractional parts
{{ηp/q} : 1 ≤ η ≤ q}, coincides with the set {j/q : 1 ≤ j ≤ q}. Thus,

lim
n→∞

Sn(t) =

∫ t

0

3

4p

q∑
j=1

fL

(
j

q
+ ks

)
ds.

By (2.2), this completes the proof of Theorem 2.2(i).

Step 6. We now prove Theorem 2.2(ii). From Step 2, it suffices to consider L /∈ Q. As
in the proof of the equidistribution theorem, the idea is to approximate the 1-periodic
function fm,L by its truncated Fourier series.

Fix m ∈ Z and let ε > 0 be arbitrary. Set

FN (x) =

N∑
k=−N

cke
2πikx,

where

ck =

∫ 1

0

fm,L(y)e2πikydy.

Since ‖fm,L‖∞ ≤ 8 (see [1, (2.23)]), we have |ck| ≤ 8.
The function fm,L is Hölder continuous of order 1/3. Therefore, by Jackson’s theo-

rem, the sequence FN converges uniformly on [0, 1] to fm,L, and we may choose N ∈ N
such that for all x ∈ [0, 1],

|FN (x)− fm,L(x)| < ε.

Recalling that {x} = x− bxc, we then have for any fixed t > 0,

β̃(m,n) =
1

an

bantc∑
j=1

fm,L({jLn}) =
1

an

bantc∑
j=1

FN ({jLn}) +O(ε)

=
1

an

N∑
k=−N

ck

bantc∑
j=1

e2πikjLn +O(ε).

In the above and for the remainder of this proof, the coefficients implied by the big O
notation depend only on t.

Note that for any integer M ≥ 1 and for any complex number α,

M∑
j=1

αj =

{
α(1−αM )

1−α if α 6= 1,

M if α = 1.
(2.6)
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Set σk,n =
∑bantc
j=1 e2πikjLn . Then, σk,n = bantc if kLn ∈ Z. If kLn /∈ Z, then

|σk,n| =
∣∣∣∣e2πikLn

1− e2πikLnbantc

1− e2πikLn

∣∣∣∣ ≤ 2

|1− e2πikLn |
.

Since Ln converges to L, which is irrational, we have limn→∞ |1 − e2πikLn | > 0. There-
fore, there exists δ(k) > 0 and n0(k) ∈ N such that for all n ≥ n0(k), we have |1 −
e2πikLn | ≥ δ(k). Note that for any such n, we must have kLn /∈ Z, since kLn ∈ Z im-
plies |1 − e2πikLn | = 0. Now let δ = min−N≤k≤N δ(k) and n0 = max−N≤k≤N n0(k). Then
|σk,n| ≤ 2/δ whenever n ≥ n0 and k ∈ {−N, . . . , N}.

Recall that Ln = pn/qn, where pn and qn are relatively prime numbers. Hence,
kLn ∈ Z if and only if qn | k. Therefore, we obtain

β̃(m,n) =
1

an

N∑
k=−N

ckσk,n +O(ε)

=
1

an

N∑
k=−N
qn|k

ck bantc+Rn +O(ε),

where

|Rn| =
∣∣∣∣ 1

an

N∑
k=−N
qn-k

ckσk,n

∣∣∣∣ ≤ 2

anδ

N∑
k=−N

|ck| = O(Na−1
n δ−1).

By (2.6),

1

qn

qn∑
j=1

(e2πik/qn)j =

{
1 if qn | k,
0 if qn - k.

As a consequence, we can write

β̃(m,n) =
bantc
an

N∑
k=−N

ck
1

qn

qn∑
j=1

e2πikj/qn +O(Na−1
n δ−1) +O(ε)

=
bantc
anqn

qn∑
j=1

FN (j/qn) +O(Na−1
n δ−1) +O(ε)

=
bantc
anqn

qn∑
j=1

fm,L(j/qn) +O(Na−1
n δ−1) +O(ε).

In [1], it is shown that qn → ∞ when L /∈ Q. Thus, letting n tend to infinity and using
the fact that fm,L is Riemann integrable on [0, 1] gives

lim sup
n→∞

∣∣∣∣β̃(m,n)− t
∫ 1

0

fm,L(x) dx

∣∣∣∣ = O(ε).

Since ε was arbitrary, and from (2.3) and (2.2), this completes the proof.

Examples. Here are some examples that were not covered by the results of [1]. Sup-
pose that an = n2 and bn = (n + 1)2. In this case Ln → 1 and an|δn| = |bn − anL| =

2n+ 1→∞. Therefore,

ρ(t) =
3

4

∫ 1

0

f1(x) dx.

If an = 2n and bn = 3n+1, then Ln → 3/2 and an|δn| = |bn−anL| = 1 for all n. Therefore,

ρ(t) =
1

4

(
f3/2

(
1

2
+ t

)
+ f3/2(t)

)
.
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eds.), Springer Proceedings in Mathematics & Statistics, vol. 34, Springer US, 2013, pp. 95–
111 (English).

[9] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79,
Springer-Verlag, New York, 1982. MR-648108

ECP 18 (2013), paper 81.
Page 11/11

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2722787
http://www.ams.org/mathscinet-getitem?mr=2573556
http://www.ams.org/mathscinet-getitem?mr=2745728
http://www.ams.org/mathscinet-getitem?mr=2394845
http://www.ams.org/mathscinet-getitem?mr=2126978
http://www.ams.org/mathscinet-getitem?mr=648108
http://dx.doi.org/10.1214/ECP.v18-2840
http://ecp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

