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Abstract

In discrete contexts such as the degree distribution for a graph, scale-free has tra-
ditionally been defined to be power-law. We propose a reasonable interpretation of
scale-free, namely, invariance under the transformation of p-thinning, followed by
conditioning on being positive.

For each β ∈ (1, 2), we show that there is a unique distribution which is a fixed
point of this transformation; the distribution is power-law-β, and different from the
usual Yule–Simon power law-β that arises in preferential attachment models.

In addition to characterizing these fixed points, we prove convergence results for
iterates of the transformation.
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1 Introduction and statement of results

In the context of of random graphs, many authors define the term scale-free to mean
that the degree distribution follows a power law – see for example [1, 4]. In this paper,
we adopt a different point of view, in which scale-free means that the degree distribution
is invariant under a natural transformation on the graph. As we will see, the power law
property is then a consequence of this definition.

To motivate our transformation, consider a continuous random variable X ≥ 1. It
appears natural to say that its distribution is scale-free if cX conditioned on cX ≥ 1 has
the same same distribution as X, i.e.,

P(X ≥ x) = P(cX ≥ x | cX ≥ 1).

It is not hard to check that the only such distributions are the Pareto distributions

P(X ≥ x) = x−α, x ≥ 1.

See [12, 14] for similar observations. One can also consider convergence to these fixed
points, and easily show that

lim
c→0

P(cX ≥ x | cX ≥ 1) = x−α, x ≥ 1
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Scale-free laws via thinning

if and only if the tail probabilities P(X ≥ x) are of the form L(x)x−α, where L is slowly
varying.

We consider now a discrete analogue of this setup. If D is a nonnegative integer
valued random variable, cD is no longer integer valued, so we replace multiplication by
thinning. A p−thinning of D is defined by

SD =

D∑
i=1

Xi, (1.1)

where Xi are i.i.d. Bernoulli (p) random variables that are independent of D. In terms
of the probability generating function GD(s) = E sD, this becomes

GSD
(s) = GD(1− p+ ps) = GD(1− p(1− s)). (1.2)

In the graph context, this corresponds to thinning by edges.
We are concerned here with fixed points of the transformation T = Tp = Tp,m given

by

T : D → (SD | SD ≥ m)

where m is an integer ≥ 1, and convergence to these fixed points. (The case m = 1 is
the most natural.)

There are other contexts in which fixed points and convergence of transformations
that are the composition of two operations that change a distribution in opposite direc-
tions have been studied. Examples are [2, 7].

Similar questions for other families of transformations acting on discrete distribu-
tions have been studied before – see [5, 6, 18] for example. The main feature that
distinguishes our setting from these others is the conditioning.

We will use two forms of the power-law-β property:

P(D = k) ∼ ck−β , (1.3)

P(D ≥ n) ∼ L(n)n1−β (1.4)

where β > 1 and L is slowly varying. The latter property is known as regular variation.
Our characterization of fixed points is the following. It is proved in Section 3.

Theorem 1.1. Let m be a positive integer, and let D be a nonnegative integer valued
random variable, with P(D ≥ m) > 0. The following are equivalent:

• The distribution of D is fixed by the transformation D 7→ Tp,mD for all p ∈ (0, 1).

• Either D ≡ m is constant, or else D has power-law-β distribution (1.3), with β =

α+ 1, 0 < α < m, P(D < m) = 0, and

P(D = k + 1)/P(D = k) = (k − α)/(k + 1) for k ≥ m. (1.5)

For the convergence results, we consider separately the cases of nontrivial and triv-
ial fixed points. For the motivation for taking p ↓ 0 in these results, see Remark 2.2 in
the next section.

Theorem 1.2. Suppose the distribution of D is power-law-β, as specified by (1.4). Then
for every integer k ≥ β

lim
p→0+

P(SD = k)

P(SD = k − 1)
=
k − β
k

. (1.6)
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Scale-free laws via thinning

Theorem 1.3. Take m ≥ β − 1, and suppose the distribution of D is such that (1.6)
holds for k ≥ β. Then the distributions of (SD | SD ≥ m) are tight as p ↓ 0. It follows
that these distributions have a limit as p ↓ 0, which is the fixed point described in (1.5)
in case β < m+ 1, or P(D = m) = 1 in case β = m+ 1.

Theorem 1.4. Suppose EDk−1 <∞. Then

lim
p→0

P(SD ≥ k)

P(SD = k − 1)
= 0, (1.7)

provided that the denominator above is strictly positive. As a consequence, if EDm <∞
and P(D ≥ m) > 0, then

lim
p→0

P(SD = m | SD ≥ m) = 1.

These three results are proved in Sections 4 and 5. In the final section, we prove
that the nontrivial fixed points are infinitely divisible.

2 The tranformations Tp,m and their fixed points

If D is a nonnegative integer valued random variable and 0 < p < 1, the p-thinning
SD of D, defined by (1.1), has, using the notation (z)k = z(z − 1) · · · (z − k + 1) for the
falling product,

P(SD = n) =

∞∑
l=n

P(D = l)

(
l

n

)
pn(1− p)l−n

=

(
p

1− p

)n
1

n!

∞∑
l=n

(l)n(1− p)lP(D = l).

(2.1)

Fix an integer m = 1, 2, . . .. For p ∈ (0, 1), the transformations T ≡ Tp ≡ Tp,m for
which we consider fixed points and convergence of iterates are given by

P(TD = l) = P(SD = l | SD ≥ m). (2.2)

In Section 3, we will prove that the fixed points of the transformation are precisely
those described by (2.3) – (2.6) below, and in Section 4 and 5 we will prove results
where these fixed points arise as limits of iterates of the transformation.

Remark 2.1. We are referring here to distributions that are fixed points for all p, not
just for some p. It would be interesting to know whether these are the only fixed points
for a given p.

For m = 1, 2, . . ., the distribution with P(D = m) = 1 is a trivial fixed point of Tp,m.
For m = 1, all nontrivial fixed points have the form: for some α ∈ (0, 1),

GD(s) := E sD = 1− (1− s)α =:
∑
k≥0

ck(α)sk. (2.3)

The right hand side of (2.3) defines ck(α) to be the coefficient of sk in 1 − (1 − s)α,
so for k ≥ 1, ck(α) = (−1)k−1(α)k/k!, and for m = 1, with the restriction α ∈ (0, 1),
P(D = k) = ck(α), k = 1, 2, . . . .

In general, for m = 1, 2, . . . and α ∈ (0,m) there is a nontrivial fixed point for Tp,m,
which is power-law-β for β = 1 + α, with

GD(s) := E sD =
1− (1− s)α −

∑
1≤k<m ck(α)sk

1−
∑

1≤k<m ck(α)
, (2.4)
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Scale-free laws via thinning

and this gives all nontrivial fixed points of Tp,m. A unified description of the fixed points
(for all p) of Tp,m, including both the trivial fixed point, obtained by taking α = m, is:
1 + α = β ∈ (1,m+ 1], P(D ∈ {m,m+ 1,m+ 2, . . .}) = 1, P(D = m) > 0, and

P(D = k + 1)

P(D = k)
=
k − α
k + 1

, k ≥ m. (2.5)

or equivalently, shifting the dummy variable k by 1,

P(D = k)

P(D = k − 1)
=
k − β
k

, k > m. (2.6)

The Yule–Simon distribution for power-law-β has point probabilities given by
P(D = k) = (β − 1) Γ(k)Γ(β)/Γ(k + β), and hence ratios

P(D = k)

P(D = k − 1)
=

k − 1

k − 1 + β
. (2.7)

In comparison with (2.6), both formulas have denominator minus numerator = β, for
every k, but for non-integer β, (2.6) has the integer in the denominator, while the Yule–
Simon ratio (2.7) has the integer in the numerator.

Remark 2.2. For eachm = 1, 2, . . ., it is true that for all p, q ∈ (0, 1) one has Tq◦Tp = Tpq;
we omit the easy proof. It then follows that the k-fold iterate (Tq)

k of Tq is Tp with p = qk.
Theorem 1.3 allows p → 0 with only the restriction p > 0, and the special case where
p goes to zero along a geometric sequence qk yields convergence for iterates of the
transformation Tq, for one fixed q.

3 Uniqueness

The goal is to show that, for m = 1, 2, . . ., any distribution D on the nonnengative
integers which is unchanged by p-thinning followed by conditioning on being at least
m, for all p ∈ (0, 1), is either the constant D ≡ m or else, as specified by (2.6), the law
with 1 < β < m+ 1 and ratios P(D = k)/P(D = k − 1) = (k − β)/k for k ≥ m+ 1.

Lemma 3.1. Suppose A and B are two nonnegative integer valued random variables
with probability generating functions GA, GB. Let m be a positive integer. Assume
P(A ≥ m) > 0 and P(B ≥ m) > 0. Consider the statements

(a) P(A = k) = P(B = k) for all k ≥ m.

(b) (A|A ≥ m) and (B|B ≥ m) have the same distribution.

(c) G
(m)
A (s) = G

(m)
B (s) for all s ∈ [0, 1).

(d) G
(m)
A (s) = cG

(m)
B (s) for all s ∈ [0, 1), for some constant c > 0.

(Here G(m)
A (s) denotes the mth derivative of GA(s).) Then (a) if and only if (c), and (b) if

and only if (d).

Proof. Let ak := P(A = k) and bk := P(B = k) so that GA(s) =
∑
k≥0 aks

k and likewise
for GB. These are power series with radius of convergence ≥ 1, hence differentiable
term-by-term, with G

(m)
A (s) =

∑
k≥m k(m)aks

k−m for |s| < 1, and likewise for GB. This
immediately shows that (a) implies (c); to see that (c) implies (a), given k ≥ m, differen-
tiate k −m times and evaluate at s = 0.

The equivalence of (b) and (d) follows, with c = P(B ≥ m)/P(A ≥ m).
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Scale-free laws via thinning

We apply this with A = D and B = SD. We are looking for a fixed point of
D 7→ TD, where TD ≡ Tp,mD := (SD|SD ≥ m) and SD is the p-thinning of D. Since
1 = P(TD ≥ m), we can have D and TD equal in distribution only if 1 = P(D ≥ m).
Thus we assume that 1 = P(D ≥ m), so that D = (D|D ≥ m), and now we have a
fixed point of D 7→ TD if and only if (D|D ≥ m) = (SD|SD ≥ m). Combine Lemma
3.1 with (1.2), so that the two generating functions of interest are GA(s) = G(s) and
GB(s) = G(1− p(1− s)).

Write f for the mth derivative of G, so that

G
(m)
B (s) = (G(1− p+ ps))(m) = pm f(1− p(1− s)).

Assuming that 1 = P(D ≥ m), we have a fixed point of D 7→ Tp,mD if and only if

f(s) = c pm × f(1− p(1− s)), for all s ∈ [0, 1).

Lemma 3.2. Let f be a continuous function from [0, 1) to (0,∞), with f(0) = 1, and let
p 7→ c(p) be any function on (0, 1). If

∀p ∈ (0, 1),∀s ∈ [0, 1), f(1− p(1− s)) = c(p)f(s), (3.1)

then for some constant d we have f(s) = (1− s)−d.

Proof. First let s = 1− t so that (3.1) becomes

∀p ∈ (0, 1),∀t ∈ (0, 1], f(1− pt) = c(p)f(1− t),

and then consider g(t) := f(1− t) so that the system to solve becomes

∀p ∈ (0, 1),∀t ∈ (0, 1], g(pt) = c(p)g(t), (3.2)

with g(1) = 1. Plugging in t = 1 we see that c(p) = g(p), and (3.2) becomes g(pt) =

g(p)g(t). It follows that g(u) = u−d for some d.

Proof of Theorem 1.1. Start by assuming that D is a fixed point. We combine Lem-
mas 3.1 and 3.2, as in the remarks before Lemma 3.2, so that G(s) = E sD, f is the
mth derivative of G, and the conclusion of Lemma 3.2 applied to f(s)/f(0) is that
f(s) = c (1− s)−d with c > 0. [We have c = f(0) > 0 because P(D ≥ m) > 0 im-
plies P(SD = m) > 0, hence P(D = m|D ≥ m) = P(SD = m|SD ≥ m) > 0, hence
c = m!P(D = m) > 0.]

In case d = 0, we have f is constant and D ≡ m. We cannot have d negative, since
then the coefficient of s1 in f is d, while G has nonnegative coefficients. In case d > 0,
writing [sk]f(s) for the coefficient of sk in f , so that [sk]G(s) = P(D = k), we have for
k ≥ m

k(m)P(D = k) = [sk−m]f(s) = [sk−m](c (1− s)−d) = c (−1)k−m
(−d)(k−m)

(k −m)!
.

Hence for k ≥ m

P(D = k) = c (−1)k−m
(−d)(k−m)

k!

and
P(D = k + 1)

P(D = k)
=
−(−d− (k −m))

k + 1
=
k − α
k + 1

,

with α = m− d < m. The requirement
∑
P(D = k) <∞ implies that α > 0.

The implication in the opposite direction is easy, again by combining Lemmas 3.1
and 3.2.
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Scale-free laws via thinning

4 Convergence to nontrivial fixed points

Before proving Theorem 1.2, we state part of a Tauberian theorem that can be found
on page 447 of [8]. Many other Tauberian theorems can be found in [3].

Theorem 4.1. Let ql ≥ 0 and suppose Q(s) =
∑∞
l=0 qls

l converges for 0 ≤ s < 1. If L is
slowly varying, ρ > 0, and ql ∼ lρ−1L(l), then

Q(s) ∼ Γ(ρ)

(1− s)ρ
L

(
1

1− s

)
as s ↑ 1.

Proof of Theorem 1.2. Write H(k) = P(D ≥ k), so that (1.4) gives H(k) = k1−βL(k),
where L is slowly varying. Sum by parts, make a change of variables in the second sum
below, and apply the Tauberian theorem to each of the resulting sums. By (2.1),

P (SD = k)k!

(
1− p
p

)k
=

∞∑
l=k

(l)k(1− p)lP(D = l)

=

∞∑
l=k

(l)k(1− p)l[H(l)−H(l + 1)]

=

∞∑
l=k

(l)k(1− p)lH(l)−
∞∑

l=k+1

(l − 1)k(1− p)l−1H(l)

= k!(1− p)kH(k) +

∞∑
l=k+1

(l − 1)k−1(k − lp)(1− p)l−1H(l)

= k!(1− p)kH(k) + k

∞∑
l=k+1

(l − 1)k−1(1− p)l−1H(l)

− p
∞∑

l=k+1

(l)k(1− p)l−1H(l)

∼ kΓ(k − β + 1)pβ−k−1L(p−1)− Γ(k − β + 2)pβ−k−1L(p−1)

= Γ(k − β + 1)(β − 1)pβ−k−1L(p−1),

provided that k − β + 1 > 0. This gives (1.6) if k > β. If k = β, the above computation
with k replaced by k − 1 gives

∞∑
l=k−1

l(l − 1) · · · (l − k + 2)(1− p)lP(D = l) ∼ (k − 1)!H(k − 1) + (k − 1)L∗(p−1),

so (1.6) holds in this case as well.

Convergence of the ratios of probabilities in (1.6) does not immediately imply tight-
ness of the distributions of (SD | SD ≥ m) as p ↓ 0. This tightness is needed to conclude
that the iterates of the transformation converge to the appropriate fixed point. We
therefore now turn our attention to that issue.

Proof of Theorem 1.3. Tightness of these conditional distributions means that

lim
k→∞

lim sup
p→0+

P(SD ≥ k)

P(SD ≥ m)
= 0. (4.1)

Thus we need to deduce the asymptotics of ratios of tail probabilities from the asymp-
totics of ratios of point probabilities.
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Scale-free laws via thinning

A key identity that allows for this transition is

d

dp
P(SD ≥ k) = kp−1P(SD = k). (4.2)

Students of the theory of percolation will recognize this as a very simple form of Russo’s
formula – see page 35 of [9], for example. The proof of (4.2) is also simple: Use (2.1) to
write

P(SD ≥ k) =

∞∑
l=k

P(D = l)

[
1−

k−1∑
n=0

(
l

n

)
pn(1− p)l−n

]
. (4.3)

Differentiating gives

d

dp
P(SD ≥ k) = p−1

∞∑
l=k

P(D = l)

k−1∑
n=0

(
l

n

)
pn(1− p)l−n−1(lp− n).

To prove (4.2) one needs to check

k−1∑
n=0

(
l

n

)
pn(1− p)l−n−1(lp− n) = k

(
l

k

)
pk(1− p)l−k. (4.4)

The easiest way to check this is to note that the two sides of (4.4) agree for k = 0, and
differences of the two sides of (4.4) for successive values of k also agree.

By L’Hospital’s Rule, whenever (1.6) holds, it follows from (4.2) that

lim
p→0+

P(SD ≥ k)

P(SD ≥ k − 1)
=
k − β
k − 1

. (4.5)

Using (4.5) repeatedly gives

lim
p→0+

P(SD ≥ m+ k)

P(SD ≥ m)
=

k∏
j=1

m+ j − β
m+ j − 1

.

Now (4.1) follows from this and the fact that
∑
j(β − 1)(m+ j − 1) =∞.

5 Convergence to trivial fixed points

Next we consider what happens in the less interesting regime m < β − 1.

Remark 5.1. If (1.4) holds with m = β − 1, then Theorems 1.2 and 1.3 provide the
conclusion of Theorem 1.4 even though EDm may be infinite.

Proof of Theorem 1.4. From (2.1) with n = k − 1 and the dominated convergence theo-
rem, we see that

P(SD = k − 1) ∼ pk−1E
(

D

k − 1

)
as p ↓ 0. (5.1)

We need to show that

lim
p→0

P(SD ≥ k)

pk−1
= 0.

This will follow from (4.3) and the dominated convergence theorem provided that

1−
k−1∑
n=0

(
l

n

)
pn(1− p)l−n ≤ C(lp)k−1 (5.2)
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Scale-free laws via thinning

for some C depending only on k, and

1−
k−1∑
n=0

(
l

n

)
pn(1− p)l−n = o(pk−1) (5.3)

as p→ 0 for each l. Both (5.2) and (5.3) follow from

1−
k−1∑
n=0

(
l

n

)
pn(1− p)l−n ≤ C(lp)k (5.4)

for some (different) constant C, again depending only on k; (5.4) is a Chernoff bound;
see [10, formula (12)]. That (5.3) follows from (5.4) is immediate. To deduce (5.2) from
(5.4) write

1−
k−1∑
n=0

(
l

n

)
pn(1− p)l−n = 1−

k−2∑
n=0

(
l

n

)
pn(1− p)l−n −

(
l

k − 1

)
pk−1(1− p)l−k+1 (5.5)

and apply (5.4) to the first part of (5.5) with k replaced by k − 1.
The final statement follows from (5.1) with k = m+ 1.

6 Infinite divisibility

We will show that the distributions in (2.4) are infinitely divisible; this is relatively
easy, thanks to a result from renewal theory.

Proposition 6.1. Suppose the sequence {u(n), n ≥ 0} satisfies u(0) = 1,

u(n) > 0, u(n− 1)u(n+ 1) ≥ u2(n) for n ≥ 1 and lim
n

u(n)

u(n+ 1)
> 0. (6.1)

Let

log

( ∞∑
n=0

u(n)sn
)

=

∞∑
n=1

λ(n)sn. (6.2)

Then λ(n) ≥ 0 for n ≥ 1.

Proof. Let {f(n), n ≥ 1} be the sequence associated to u(·) by the renewal equation:

u(n) =

n∑
k=1

f(k)u(n− k), (6.3)

and consider the two generating functions

U(s) =

∞∑
n=0

u(n)sn and F (s) =

∞∑
n=1

f(n)sn.

Multiplying (6.3) by sn and summing for n ≥ 0 gives

U(s) = 1 + U(s)F (s), or equivalently U(s) =
1

1− F (s)
.

Therefore, (6.2) can be written as

log[U(s)] = − log(1− F (s)) =

∞∑
n=1

[F (s)]n

n
.

Kaluza ([11]) proved that f(k) ≥ 0 for all k ≥ 1. (See [13, Theorem 1] for generaliza-
tions of this statement; see also [16].) Therefore the series in (6.2) has nonnegative
coefficients.
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Scale-free laws via thinning

The inequality in (6.1) is known as log-convexity of the sequence u. There is a long
history of connections between log-convexity and infinite divisibility; see [17] [19] and
[15, Thm. 51.3; Notes on p. 426], for example.

Corollary 6.2. For m = 1, 2, . . ., and α ∈ (0,m), the probability distribution for D
specified by (2.4) and (2.5) is infinitely divisible.

Proof. Let X = D −m, and define u(n) = P(X = n)/P(X = 0) for n ≥ 0. This yields

∞∑
n=0

u(n)sn =

[
1− (1− s)α −

m−1∑
k=0

(−1)k
(α)k
k!

sk
]/

(−1)m
(α)m
m!

sm,

so that u(0) = 1, u(n) > 0 for all n > 0 and u(n)/u(n+ 1) = (m+ n+ 1)/(m+ n− α),
which is decreasing in n, so that (6.1) is satisfied. The probability generating function
of X is

GX(s) := E sX = P(X = 0)

∞∑
n=0

u(n)sn = P(X = 0) exp

( ∞∑
n=1

λ(n)sn

)
,

and Proposition 6.1 shows that λ(n) ≥ 0 for n = 1, 2, . . .. Hence X is equal in distribu-
tion to

∑
n≥1 nZn, where Z1, Z2, . . . are independent, and Zn is Poisson distributed with

parameter λ(n).
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