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Abstract

Consider a walker performing a random walk in an i.i.d. random environment, and
assume that the walker tells us at each time the environment it sees at its present
location. Given this history of the transition probabilities seen from the walker - but
not its trajectory - can we reconstruct the law of the environment? We show that in a
one-dimensional environment, the law of the environment can be reconstructed. This
model can be seen as a special case of a scenery reconstruction problem, where the
steps of the random walker depend on the scenery.
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1 Introduction

For a fixed mapping ω : Z→ (0, 1) the random walk X : N0 → Z in the environment
ω is the Markov chain starting in 0 and law Pω given by the transition probabilities

Pω
(
X(n+ 1) = x+ 1|X(n) = x

)
= ω(x),

Pω
(
X(n+ 1) = x− 1|X(n) = x

)
= 1− ω(x).

If we endow the set Ω of all environments with a probability measure P , this process is
called a random walk in random environment (RWRE) and Pω is called quenched law.
We assume that P = µ⊗Z is a product measure with marginal µ. We refer to [8] and
[9] for results on the RWRE, for instance, a criterion for recurrence and transience; our
arguments will not need them.

In this paper we deal with the following question: Suppose that we only observe the
sequence

χ :=
(
χ(0), χ(1), . . .

)
:=
(
ω(X(0)), ω(X(1)), . . .

)
,

the history of transition probabilities at the walker’s position, but we do not know the
trajectory, is it possible to recover the marginal µ?

Of course, the same question may be asked for RWRE on Zd. Let Pd denote the set
of probability measures on {+ei,−ei, 1 ≤ i ≤ d} where e1, . . . , ed are the unit vectors of
Zd. For a fixed mapping ω : Zd → Pd, the random walk X : N0 → Zd in the environment
ω is the Markov chain starting in 0 and law Pω given by the transition probabilities

Pω
(
X(n+ 1) = x+ e|X(n) = x

)
= ω(x, e).
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Reconstructing the environment seen by a RWRE

for a unit vector e ∈ {+ei,−ei, 1 ≤ i ≤ d}. Suppose that we only observe the sequence

χ :=
(
χ(0), χ(1), . . .

)
:=
(
ω(X(0), ·), ω(X(1), ·), . . .

)
, (1.1)

the history of transition probabilities at the walker’s position, but we do not know the
trajectory, is it possible to recover the marginal µ? Note that in contrast to the one-
dimensional case, recovering µ will not always tell us if the RWRE is recurrent or tran-
sient - despite some recent progress, there is still no criterion for recurrence/transience
of RWRE in an i.i.d. environment on Zd.

These questions are motivated from the classical scenery reconstruction problem,
where the walk is a simple random walk on Zd, d ∈ {1, 2}, the “scenery” is a colouring
of Zd and the walker tells us at each time the colour of its present location. Given this
sequence of observations - but not the trajectory of the walker - can we then reconstruct
the scenery (up to translations, reflections and rotations)? This problem goes back to
Itai Benjamini and Harry Kesten, see [2], and has lead to lot of interesting research,
we refer to [4] for some nice (and still open!) problems. One direction of research is
to ask about the ergodic properties of the observation sequence given by (1.1), see [3].
In the one-dimensional case, the original question can be answered in the positive in
the sense that an i.i.d. scenery can be reconstructed almost surely, up to translation
and reflection, see [6]. In the two-dimensional case, this is possible if the number of
colours in the scenery is large enough, see [7]. In these situations, the movement of the
random walker is assumed to be independent of the scenery. Our model can be seen
as a combination of the scenery reconstruction problem with the theory of a RWRE,
and in particular, we have to account for the dependency between the walkers’ steps
and the scenery. Typically, scenery reconstruction is easier if the scenery has more
colours. Clearly, if d ∈ {1, 2} and each location has a different colour, the trajectory of
the walk can be reconstructed from the sequence of observations (up to symmetries,
i.e. reflections and rotations). In the same way, in our case, the question will be much
easier if µ has a non-atomic part, cf. the argument below.

A related, but different question for RWRE was asked by Omer Adelman and Nathanaël
Enriquez in [1]: if we know a single “typical” trajectory of the walk, can we reconstruct
the law of the environment? This questions is answered in the positive by [1] for i.i.d.
environments on Zd.

If d = 1, the reconstruction of µ is possible, which is made more precise in the
following theorem. We denote by M the set of all probability measures on (0, 1) and
endow it with the weak topology and the corresponding Borel σ-algebra.

Theorem 1. Assume d = 1. There exists a measurable mapping A : (0, 1)N0 →M, such
that for any measure µ ∈M

Pω
(
A(χ) = µ

)
= 1

for P -almost all ω.

Before we begin the proof, let us consider the simple case, where µ has a non-
atomic part. We denote by µ = µa + µna the decomposition into the atomic part µa and
the non-atomic part µna. Note that whether µna is non-zero can be read off from the ob-
servations: the support of µ is almost surely equal to the closure of S = {χ(0), χ(1), . . . }
and the set of atoms is almost surely given by

Sa = {η ∈ S| ∃k ≥ 0 : χ(k) = χ(k + 1) = η},

as only atoms can appear twice in the environment. Now µna is non-zero if and only if
Sna = S \ Sa 6= ∅. In this case, observations χ(n) ∈ Sna can be used as perfect markers,
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as χ(n) = χ(m) implies X(n) = X(m). We give an informal description how this allows
a reconstruction of µ:

• Wait for observations (. . . , χ(m−2), χ(m−1), χ(m), . . . ) in χ, where χ(m−2), χ(m−
1) ∈ Sna, χ(m) 6= χ(m− 2) and both “markers” χ(m− 2) and χ(m− 1) have never
before appeared in the sequence of observations.

• If the assumptions are met for the n-th time, denote by ηn the value of the corre-
sponding χ(m).

• When the two markers are seen for the first time, X(m) must be at a point not
visited before and χ(m) is the value of the environment at a point not visited
before. Also, the choice of χ(m) is independent of the earlier entries of χ, which
implies Pω-almost surely

1
n

n∑
k=1

δηk
w−−−−→

n→∞
µ.

The perfect markers in χ also reveal whether X returns to such a marker infinitely
often or not. Thus, we can immediately tell whether the RWRE is recurrent or transient,
without referring to the criterion of [8]. In the recurrent case, the following procedure
constructs (a.s.) an environment which is up to translation equal to ω.

• Choose two values η1, η2 ∈ Sna.
• Among all words (χ(n), χ(n+1), . . . , χ(n+m)) in χ with χ(n) = η1, χ(n+m) = η2 (of

which there are infinitely many), there will be infinitely many of minimal length
m. This word corresponds to a straight path of X from X(n) to X(m). Therefore,
(χ(n), . . . , χ(n + m)) is a block of transition probabilities appearing in this order
(or reversed) in ω.

• Repeat this step with new end points η2, η3 with a new marker η3 ∈ Sna and con-
catenate the two obtained blocks of transition probabilities. It may happen that
one block has to be contained in the other, which is the case if η1 appears in the
second block or η3 in the first.

• Continuing in this way, we obtain in the limit an environment ω̂, which is up to
translation either ω or ω̃, where ω̃(z) = ω(−z) is the reflected environment.

• To decide on the orientation, consider all movements from a point z with ω̂z 6= 1
2 .

A proportion of ω̂z of those movements needs to be made to the right.

2 The main idea: the environment as a random walk

We now assume that µ is a purely atomic measure, and as above, we consider the
case d = 1. We follow [5]. There can only be countably many support points η1, η2, . . .
which can be found in S. We denote by N ∈ [1,∞] the cardinality of S and exclude the
deterministic environments where N = 1. Let T be the rooted tree with root o where
each vertex has exactly N neighbours. We label the vertices by a mapping ϕ : T → S
which satisfies

• ϕ(o) = χ(0)

• ϕ restricted to the neighbours of any vertex v is a bijection. That is, each vertex
has exactly one neighbour which is labeled by a specific ηi.

Given an environment ω, we define R : Z → T to be the bi-infinite path on T with
R(0) = o and ϕ(R(z)) = ω(z) for all z ∈ Z. Due to the second property in the definition
of ϕ, this determines R uniquely. As the environment is chosen under P in an i.i.d.
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way, R performs under P a random walk on T , starting at the root. In each step,
both on the positive and negative time axis, R moves from a vertex v to a neighbour w
with probability µ(ϕ(w)). Roughly speaking, this provides us with an embedding of the
environment into the tree. Note that since we do not observe ω, we do not know the
path of R.
In a second step, the random walk X on Z can be represented as a random walk T on
the trajectory of R. Given X, there is exactly one T : Z → {. . . , R(−1), R(0), R(1), . . . }
such that

T (n) = (R ◦X)(n)

for all n ∈ N0. The crucial point is that although we observe neither X nor R, we know
the path of T , as the labels of vertices visited by T must coincide with the observation
χ, we have

(ϕ ◦ T )(n) = (ϕ ◦R ◦X)(n) = (ω ◦X)(n) = χ(n),

which we observe. In other words, as X performs a random walk on Z and yields χ, the
process T moves along a path on the tree giving the same observation χ when reading
the labels of the vertices provided by ϕ. Due to the structure of the labeling, there is
only one such path.

Example 1
To illustrate this construction, we look at the case N = 2, where the tree reduces to Z
and the labeling by ϕ is periodic repeating the word η0η0η1η1. Let us assume that the
environment from position 0 to position 10 takes the values

(ω(0), . . . , ω(10)) = (η0, η0, η1, η0, η1, η1, η0, η0, η0, η1, η0).

The first observation at time 0 will be given by η0, so we choose our labeling ϕ such that
ϕ(0) = ϕ(1) = η0. This determines ϕ uniquely on the whole integer line. The steps of R
representing this part of the environment are given by

(R(0), . . . , R(10)) = (0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4),

see Figure 2 for an illustration. To keep this example simple, we do not consider R
in negative time, which corresponds to ω on the negative integers. Next, say the first
steps of X are as follows:

(X(0), . . . , X(10)) = (0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 6)

This path gives us the observations

(χ(0), . . . , χ(10)) = (η0, η0, η1, η0, η1, η0, η1, η1, η0, η0, η0),

which, given our choice of ϕ, implies the following movement of T :

(T (0), . . . , T (10)) = (0, 1, 2, 1, 2, 1, 2, 3, 4, 5, 4)

The process T can only be transient if both X and R are transient, otherwise it is
recurrent. Even though the increments of R are not i.i.d. under P , the behaviour is
essentially the same as for the simple random walk on the tree.
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0 1 2 3 4 5 6 7 R(n)
η0 η0 η1 η1 η0 η0 η1 η1 ϕ

2

4

6

8

10

n

Figure 1: The first moves of R representing the enviroment and of X as a random walk
on the trajectory of R. The dashed arrows indicate the movements of (R ◦ X,X), the
path of T is obtained by projecting onto the first coordinate.

Lemma 2. R visits the root infinitely often if and only if N = 2.

In order to make statements about the movement of X when we only observe T , we
look for specific crossings of finite paths by T . For a generic process S : I → W with
I ⊂ Z and W a tree, we call (i1, i2) a crossing of (w1, w2) by S, when S(i1) = w1, S(i2) =

w2 and S(i) /∈ {w1, w2} for min{i1, i2} < i < max{i1, i2}. We call this crossing positive, if
i1 < i2 and negative otherwise. The crossing is said to be straight, if |i2 − i1| is equal to
the path distance between w1 and w2.
Consider again the example above, where (0, 5) is a crossing of (0, 3) by R. Since R

steps back during the time interval (0, 5), this is not a straight crossing. On the other
hand, (4, 7) is a straight crossing of (2, 5) by R.
Of central importance to us are straight crossings of a path (v1, v2) in the tree by T , as
T can only move in a straight way on the trajectory of R if R moves in a straight way on
the tree T .

If (i1, i2) is a straight crossing of (v1, v2) by T then (i1, i2) is a straight crossing
by X of a straight crossing by R, that is, there are (z1, z2) such that (i1, i2) is a
straight crossing of (z1, z2) by X and (z1, z2) is a straight crossing of (v1, v2) by
R.

(∗)

In our example, (6, 9) is a straight crossing of (2, 5) by T . Indeed, during the time
(6, 9), X performs a straight crossing of (4, 7) and (4, 7) is a straight crossing of (2, 5) by
R, see figure 1.

3 Proofs

Proof of Theorem 1:
We first consider N = 2, that is, µ = λ0δη0 + λ1δη1 with λ1 = 1 − λ0 and T = Z.
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Without loss of generality, we assume χ(0) = η0 and choose our labeling ϕ such that
ϕ(0) = ϕ(1) = η0. Consequently, we have ϕ(4m) = ϕ(4m + 1) = η0 and ϕ(4m + 2) =

ϕ(4m+ 3) = η1 for all m ∈ Z. For a stochastic process Z on a tree, we denote by

τZ(v) = inf{n|Z(n) = v}

the hitting time of vertex v. For m ≥ 0, define Im = (4m + 1, 4m + 4) and let Wm be
the indicator random variable which is 1 if the first crossing of Im by T is straight and
0 otherwise. By (∗), Wm = WR

mW
X
m , where WR

m is an indicator variable equal to 1 if
and only if the first crossing of Im by R is straight and WX

m is 1 if and only if the first
crossing by X of the first crossing of Im by R is straight. We will show that W0,W1, . . .

are independent and identically distributed, this time following [6].
For the independence, note that conditioned on R (or on ω, i.e. under the quenched

law Pω), the random variables WX
0 ,W

X
1 , . . . depend only on the path of X between

ladder times of X – the times when X reaches a point z ∈ Z where a crossing of a new
Im by R begins. That is, if z1,m = τR(4m+ 1), z2,m = τR(4m+ 4), then WX

m depends only
on

X(τX(z1,m) + 1)−X(τX(z1,m)), X(τX(z1,m) + 2)−X(τX(z1,m)), . . . , X(τX(z2,m))−X(τX(z1,m))

and these collections of increments ofX are independent for differentm, since [z1,m, z2,m]

are disjoint intervals. This implies that WX
0 ,W

X
1 , . . . are independent conditioned on R.

Moreover, the conditional probability of the event {WX
m = 1} depends only on the path

segment of R in the time interval [z1,m, z2,m] given by the random variable

Rm =
(
R(z1,m + 1)−R(z1,m), . . . , R(z2,m)−R(z1,m)

)
,

which again are independent for different m. In particular, WR
0 ,W

R
1 , . . . are indepen-

dent. Note that although X may leave the corresponding path segment of R during
[τX(z1,m), τX(z2,m)], this does not influence the distribution of WR

m. Consequently, we
have

P
(
Wi1 = 1, . . . ,Wik = 1

)
= E

[
P
(
Wi1 = 1, . . . ,Wik = 1|R

)]
= E

[
P
(
WX
i1 = 1, . . . ,WX

ik
= 1|R

)
· 1{WR

i1
=1,...,WR

ik
=1}
]

= E
[
P
(
WX
i1 = 1|R

)
· · ·P

(
WX
ik

= 1|R
)
· 1{WR

i1
=1,...,WR

ik
=1}
]

= E
[
P
(
WX
i1 = 1|Ri1

)
· · ·P

(
WX
ik

= 1|Rik
)
· 1{WR

i1
=1,...,WR

ik
=1}
]

= E
[
P
(
WX
i1 = 1|Ri1

)
1{WR

i1
=1}
]
· · ·E

[
P
(
WX
ik

= 1|Rik
)
1{WR

ik
=1}
]

= P
(
WX
i1 = 1

∣∣WR
i1 = 1

)
P
(
WR
i1 = 1

)
· · ·P

(
WX
ik

= 1
∣∣WR

ik
= 1
)
P
(
WR
ik

= 1
)

= P
(
Wi1 = 1

)
· · ·P

(
Wik = 1

)
,

which proves the independence.
We now evaluate the probability

P (Wm = 1) = P (WX
m = 1|WR

m = 1)P (WR
m = 1).

By our definition, Im is labeled as (η0, η1, η1, η0) and R moves to a neighbour labeled by
ηi with probability λi. Let Pm denote the law of R when starting at the left end point
4m + 1 and let Em be the event that R reaches 4m + 4 before returning to 4m + 1. In
order to reach 4m+4 before returning to 4m+1, R needs to make two steps to the right
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(with probability λ21), then make any number k of steps between 4m+ 3 and 4m+ 2 and
back before moving to 4m+ 4. This gives

P (WR
m = 1) = Pm(τR(4m+ 4) = 3|Em) =

Pm(τR(4m+ 4) = 3)

Pm(Em)

=
λ21λ0

λ21
(∑∞

k=0 λ
2k
1

)
λ0

= 1− λ21.

Given that the first crossing of Im by R is straight, the probability of {WX
m = 1} depends

on whether X moves on the positive or on the negative integers. If the first crossing of
Im by R happens during an interval (tm,1, tm,2) in positive time (which corresponds to
the environment on the positive integers), the process X needs to move to the right for
T to cross Im. In this case the first crossing of Im by T is a crossing by X of a positive
crossing by R. If on the other hand the first crossing of Im by R is by the trajectory in
negative time, X performs a crossing of the crossing by R by moving to the left and the
corresponding crossing of R is negative. Let Dm be the event that tm,1 > 0, then

P (WX
m = 1|WR

m = 1, Dm) =
η0η

2
1

η0η1 (
∑∞
k=0((1− η1)η1)k) η1

= 1− (1− η1)η1,

as X moves from tm,1 (or tm,1 + 1) to tm,1 + 1 (or tm,1 + 2) with probability η0 (η1,
respectively) and in the other direction with probability 1 − η0 (and 1 − η1). Given Dc

m,
we need to interchange ηi and 1− ηi, which by our choice of Im leads to

P (WX
m = 1|WR

m = 1, Dc
m) = 1− η1(1− η1) = P (WX

m = 1|WR
m = 1, Dm).

Using that {WR
m = 1} is independent of Dm, we get P (WX

m = 1|WR
m = 1) = 1−η1(1−η1)

and therefore,

P (Wm = 1) =
(
1− η1(1− η1)

)(
1− λ21

)
.

This proves that WX
0 ,W

X
1 , . . . are independent identically Bernoulli-distributed random

variables. By the law of large numbers, we have Pω-almost surely

1

n(1− η1(1− η1))

n∑
k=1

Wk −−−−→
n→∞

1− λ21.

Since the Wm are functions of χ, this convergence provides us with a measurable map-
ping which, given χ yields λ1. In the case N = 2, this already determines the measure
µ.

In the general case N ≥ 2 we reduce this to the procedure above. Fix two values
η0, η1 ∈ S to which µ assigns weights λ0 and λ1. The intervals Im are now replaced by
disjoint vertex-sets (Im(η0, η1))m≥0 in the tree T , such that each set Im(η0, η1) contains
exactly four neighbouring vertices v1,m, . . . , v4,m with strictly increasing distance from
the root and labels ϕ(v1,m) = ϕ(v4,m) = η0 and ϕ(v2,m) = ϕ(v3,m) = η1. When T crosses
the m-th of such a set for the first time without leaving this set of vertices, let Wm(η0, η1)

be equal to 1 if this crossing is straight and 0 otherwise. The same arguments as in the
case N = 2, this time conditioning on a movement of R within Im(η0, η1), show that
W0(η0, η1),W1(η0, η1), . . . are again independent and

P
(
Wm(η0, η1) = 1

)
=
(
1− η1(1− η1)

)(
1− λ21

)
.

The law of large numbers allows us to recover λ1 and repeating this with different
choices of values η1 shows that we can recover any λi. The (countable) combination of
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all these operations yields a weight vector (λ0, λ1, . . . ) as a measurable function of χ by
which we can define A(χ) =

∑N
k=0 λkδηk .

Proof of Lemma 2:
Suppose N = 2, then the tree T is just Z and µ = λ0δω0

+ λ1δω1
. Without loss of

generality, assume that ϕ(0) = ϕ(1) = η0. We show that R, when only observed at points
4m,m ∈ Z, behaves as a symmetric random walk. Let τ0 = 0 and for n ≥ 0,

τn+1 = inf{k ≥ τn|Xk ∈ 4Z}.

To move from 4m to 4m + 4 without backtracking to 4m, R needs to make two steps to
the right, then any number l of steps from 4m+ 2 to 4m+ 1 and back and any number r
of steps from 4m+ 2 to 4m+ 3 and back, and then move two steps further to the right.
Similar to the calculations in the proof of Theorem 1, we get

P (X(τn+1) = 4m+ 4|X(τn) = 4m) = λ0λ1

∑
l,r≥0

(λ0λ1)l(λ1λ1)r

λ1λ0

and the same reasoning gives for the probability of moving to the left

P (X(τn+1) = 4m− 4|X(τn) = 4m) = λ1λ1

∑
l,r≥0

(λ0λ1)l(λ1λ1)r

λ0λ0,

which shows that the process X(τn) is a simple symmetric random walk with holding,
and therefore visits the origin infinitely often.

For N = 3, transience of R is proven in Lemma 5 in [5]. If N > 3, T contains a
subtree on which R is transient, so R is transient on T as well.

Finally, we give a statement and an open question for the case d ≥ 2. In order to
make sure that the RWRE visits infinitely many sites, assume that µ is concentrated on
the subset P̃d = {γ ∈ Pd : γ(ei) > 0, γ(−ei) > 0, 1 ≤ i ≤ d}, and let Md be the set of
probability measures on P̃d.

Theorem 3. Assume d ≥ 2 and assume that µ has a non-atomic part. Then, there exists
a measurable mapping A : (P̃d)N0 →Md, such that for any measure µ ∈Md

Pω
(
A(χ) = µ

)
= 1

for P -almost all ω.

The proof of Theorem 3 goes along the same lines as the informal description after
Theorem 1, which showed how to reconstruct µ in the case where µ has a non-atomic
part.

Question 4. Assume d ≥ 2 and assume that µ is purely atomic. Is there a measurable
mapping A : (P̃d)N0 →Md, such that for any measure µ ∈Md

Pω
(
A(χ) = µ

)
= 1

for P -almost all ω?
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