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Abstract. In this paper, we consider a mixed boundary value problem for nonuniformly
elliptic equation in a variable exponent Sobolev space containing p(·)-Laplacian and
mean curvature operator. More precisely, we are concerned with the problem with the
Dirichlet condition on a part of the boundary and the Steklov boundary condition on an
another part of the boundary. We show the existence of a nontrivial weak solution and
at least two nontrivial weak solutions according to some hypotheses on given functions.
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1 Introduction

In this paper, we consider the following problem
−div [a(x,∇u(x))] = f (x, u(x)) in Ω,

u(x) = 0 on Γ1,

n(x) · a(x,∇u(x)) = g(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of Rd (d ≥ 2) with a Lipschitz-continuous (C0,1 for short)
boundary Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅, (1.2)

and the vector field n denotes the unit, outer, normal vector to Γ. The function a(x, ξ) is
a Carathéodory function on Ω × Rd satisfying some structure conditions associated with an
anisotropic exponent function p(x). Then the operator u 7→ div [a(x,∇u(x))] is more gen-
eral than the p(·)-Laplacian ∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)] and the mean curvature
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operator div [(1 + |∇u(x)|2)(p(x)−2)/2∇u(x)]. These generalities bring about difficulties and
requires some conditions.

We impose the mixed boundary conditions, that is, the Dirichlet condition on Γ1 and the
Steklov condition on Γ2. The given data f : Ω ×R → R and g : Γ2 ×R → R are Carathéodory
functions satisfying some conditions.

The study of differential equations with p(·)-growth conditions is a very interesting topic
recently. Studying such problem stimulated its application in mathematical physics, in partic-
ular, in elastic mechanics (Zhikov [28]), in electrorheological fluids (Diening [7], Halsey [15],
Mihăilescu and Rădulescu [18], Růžička [20]).

Over the last two decades, there are many articles on the existence of weak solutions for the
Dirichlet boundary condition, that is, in the case Γ2 = ∅ in (1.1), (for example, see Mashiyev
et al. [17], Duc and Vu [10], Wei and Chen [22], Yücedağ [25], Nápoli and Mariani [19]).

However, since we can only find a few of papers associate with the problem with the
mixed boundary condition in variable exponent Sobolev space as in (1.1). See Aramaki [1–3].
We are convinced of the reason for existence of this paper.

In particular, the authors in [10] considered the problem (1.1) when p(x) = p = const.
and Γ2 = ∅, and derived the existence of a nontrivial weak solution to (1.1). This paper is
an extension of the article [10] to the case of variable exponent and mixed boundary value
problem. In the paper [10], the authors derived the weakly continuous differentiability of the
corresponding energy functional and then applied a version of the Mountain-pass lemma in-
troduced in Duc [9]. However, in this paper we show that the corresponding energy functional
is of class C1, and so it suffices to apply the standard Mountain-pass lemma.

The paper is organized as follows. Section 2 consists of two subsections. In Subsection
2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces. In Subsection 2.2,
we give the assumptions to the main theorems. In Section 3, we state the main theorems
(Theorem 3.3 and Theorem 3.5) on the existence of at least one and two nontrivial weak
solutions. The proofs of the main theorems are given in Section 4.

2 Preliminaries and the main theorems

Let Ω be a bounded domain in Rd (d ≥ 2) with a C0,1-boundary Γ. Moreover, we assume that
Γ satisfies (1.2).

Throughout this paper, we only consider vector spaces of real valued functions over R.
For any space B, we denote Bd by the boldface character B. Hereafter, we use this character
to denote vectors and vector-valued functions, and we denote the standard inner product of
vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd by a · b = ∑d

i=1 aibi and |a| = (a · a)1/2.
Furthermore, we denote the dual space of B by B∗ and the duality bracket by ⟨·, ·⟩B∗,B.

2.1 Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue–Sobolev
spaces. See Diening et al. [8], Fan and Zhang [12], Kováčik and Rákosník [16] and refer-
ences therein for more detail. Throughout this paper, let Ω be a bounded domain in Rd

with a C0,1-boundary Γ and Ω is locally on the same side of Γ. Define P(Ω) = {p : Ω →
[1, ∞); p is a measurable function}, and for any p ∈ P(Ω), put

p+ = ess sup
x∈Ω

p(x) and p− = ess inf
x∈Ω

p(x).
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For any measurable function u on Ω, a modular ρp(·) = ρp(·),Ω is defined by

ρp(·)(u) =
∫

Ω
|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u; u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞}

equipped with the Luxemburg norm

∥u∥Lp(·)(Ω) = inf
{

λ > 0; ρp(·)

(u
λ

)
≤ 1

}
.

Then Lp(·)(Ω) is a Banach space. We also define, for any integer m ≥ 0,

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω); ∂αu ∈ Lp(·)(Ω) for |α| ≤ m},

where α = (α1, . . . , αd) is a multi-index, |α| = ∑d
i=1 αi, ∂α = ∂α1

1 · · · ∂αd
d and ∂i = ∂/∂xi, endowed

with the norm
∥u∥Wm,p(·)(Ω) = ∑

|α|≤m
∥∂αu∥Lp(·)(Ω).

Of course, W0,p(·)(Ω) = Lp(·)(Ω). Define

Wm,p(·)
0 (Ω) = the closure of the set of Wm,p(·)(Ω)-functions with compact supports in Ω.

The following three propositions are well known (see Fan et al. [14,22], Fan and Zhao [13],
Zhao et al. [27], and [25]).

Proposition 2.1. Let p ∈ P(Ω) and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .) Then we have

(i) ∥u∥Lp(·)(Ω) < 1(= 1,> 1) ⇐⇒ ρp(·)(u) < 1(= 1,> 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.

(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ P+(Ω), where

P+(Ω) = {p ∈ P(Ω); 1 < p− ≤ p+ < ∞}.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫
Ω
|u(x)v(x)|dx ≤

(
1

p−
+

1
(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Here and from now on, p′(·) is the conjugate exponent of p(·), that is, 1
p(x) +

1
p′(x) = 1.
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For p ∈ P(Ω), define

p∗(x) =

{ dp(x)
d−p(x) if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.3. Let Ω be a bounded domain with C0,1-boundary and let p ∈ P+(Ω) and m ≥ 0 be
an integer. Then we have the following:

(i) The spaces Lp(·)(Ω) and Wm,p(·)(Ω) are separable, reflexive and uniformly convex Banach
spaces.

(i) If q(·) ∈ P+(Ω) and satisfies q(x) ≤ p(x) for all x ∈ Ω, then Wm,p(·)(Ω) ↪→ Wm,q(·)(Ω),
where ↪→ means that the embedding is continuous.

(i) If q(x) ∈ P+(Ω) satisfies that q(x) ≤ p∗(x) for all x ∈ Ω, then the embedding W1,p(·)(Ω) ↪→
Lq(·)(Ω) is continuous. Moreover, if q(x) < p∗(x) for all x ∈ Ω, then the embedding
W1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

We say that p ∈ P(Ω) belongs to P log(Ω) if p has the log-Hölder continuity in Ω, that is,
p : Ω → R satisfies that there exists a constant Clog(p) > 0 such that

|p(x)− p(y)| ≤
Clog(p)

log(e + 1/|x − y|) for all x, y ∈ Ω.

We also write P log
+ (Ω) = {p ∈ P log(Ω); 1 < p− ≤ p+ < ∞}.

Proposition 2.4. If p ∈ P log
+ (Ω) and m ≥ 0 is an integer, then D(Ω) := C∞

0 (Ω) is dense in
Wm,p(·)

0 (Ω).

For the proof, see [8, Corollary 11.2.4].
Next we consider the notion of trace. Let Ω be a domain of Rd with a C0,1-boundary Γ

and p ∈ P+(Ω). Since W1,p(·)(Ω) ⊂ W1,1
loc (Ω), the trace γ(u) = u

∣∣
Γ to Γ of any function u in

W1,p(·)(Ω) is well defined as a function in L1
loc(Γ). We define

Tr(W1,p(·)(Ω)) = (Tr W1,p(·))(Γ) = { f ; f is the trace to Γ of a function F ∈ W1,p(·)(Ω)}

equipped with the norm

∥ f ∥(Tr W1,p(·))(Γ) = inf{∥F∥W1,p(·)(Ω); F ∈ W1,p(·)(Ω) satisfying F
∣∣
Γ= f }

for f ∈ (Tr W1,p(·))(Γ), where the infimum can be achieved. Then (Tr W1,p(·))(Γ) is a Banach
space. More precisely, see [8, Chapter 12]. In the later we also write F

∣∣
Γ= f by F = f on Γ.

Moreover, we denote

(Tr W1,p(·))(Γi) = { f
∣∣
Γi

; f ∈ (Tr W1,p(·))(Γ)} for i = 1, 2

equipped with the norm

∥g∥(Tr W1,p(·))(Γi)
= inf{∥ f ∥(Tr W1,p(·))(Γ); f ∈ (Tr W1,p(·))(Γ) satisfying f

∣∣
Γi
= g},

where the infimum can also be achieved, so for any g ∈ (Tr W1,p(·))(Γi), there exists F ∈
W1,p(·)(Ω) such that F

∣∣
Γi
= g and ∥F∥W1,p(·)(Ω) = ∥g∥(Tr W1,p(·))(Γi)

.
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Let q ∈ P+(Γ) := {q ∈ P(Γ); q− > 1} and denote the surface measure on Γ induced from
the Lebesgue measure dx on Ω by dσ. We define

Lq(·)(Γ) =
{

u; u : Γ → R is a measurable function with respect to dσ

satisfying
∫

Γ
|u(x)|q(x)dσ < ∞

}
equipped with the norm

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)
λ

∣∣∣∣q(x)

dσ ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =
∫

Γ
|u(x)|q(x)dσ.

Proposition 2.5. We have the following properties.

(i) ∥u∥Lq(·)(Γ) ≥ 1 =⇒ ∥u∥q−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q+

Lq(·)(Γ)
.

(ii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥q+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q−

Lq(·)(Γ)
.

Proposition 2.6. Let Ω be a bounded domain with a C0,1-boundary Γ and let p ∈ P log
+ (Ω). If

f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a constant C > 0 such that

∥ f ∥Lp(·)(Γ) ≤ C∥ f ∥(Tr W1,p(·))(Γ).

In particular, if f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γi) and ∥ f ∥Lp(·)(Γi)
≤ C∥ f ∥(Tr W1,p(·))(Γ).

For p ∈ P+(Ω), define

p∂(x) =

{
(d−1)p(x)

d−p(x) if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.7. Let p ∈ P+(Ω). Then if q(x) ∈ P+(Γ) satisfies q(x) < p∂(x) for all x ∈ Γ, then
the trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is well defined and compact. In particular, the trace mapping
W1,p(·)(Ω) → Lp(·)(Γ) is compact and there exists a constant C > 0 such that

∥u∥Lp(·)(Γ) ≤ C∥u∥W1,p(·)(Ω) for u ∈ W1,p(·)(Ω).

For the proof, see Yao [24, Proposition 2.6].
Define a space by

X = {v ∈ W1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W1,p(·)(Ω), so X is a reflexive and separable
Banach space. We show the following Poincaré type inequality (cf. Ciarlet and Dinca [6]).

Lemma 2.8. Let p ∈ P log
+ (Ω). Then there exists a constant C = C(Ω, d, p) > 0 such that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω) for all u ∈ X,

where ∥∇u∥Lp(·)(Ω) := ∥|∇u|∥Lp(·)(Ω).
In particular, the norm ∥∇u∥Lp(·)(Ω) is equivalent to ∥u∥W1,p(·)(Ω) for u ∈ X.
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For the direct proof, see Aramaki [4, Lemma 2.5].
Thus we can define the norm on the space X defined by (2.1) so that

∥v∥X = ∥∇v∥Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ∥v∥W1,p(·)(Ω) from Lemma 2.8.

2.2 Assumptions to the main theorems

In this subsection, we state the assumptions to the main theorems. Let p ∈ P log
+ (Ω) be fixed.

Let A : Ω × Rd → R be a function satisfying that for a.e. x ∈ Ω, the function A(x, ·) :
Rd ∋ ξ 7→ A(x, ξ) is of C1-class, and for all ξ ∈ Rd, the function A(·, ξ) : Ω ∋ x 7→ A(x, ξ) is
measurable. Moreover, suppose that A(x, 0) = 0 and put a(x, ξ) = ∇ξ A(x, ξ). Then a(x, ξ)

is a Carathéodory function. Assume that there exist constants c0, k0, k1 > 0 and nonnegative
functions h0 ∈ Lp′(·)(Ω) and h1 ∈ L1

loc(Ω) with h1(x) ≥ 1 a.e. x ∈ Ω such that the following
conditions hold.

(A1) |a(x, ξ)| ≤ c0(h0(x) + h1(x)|ξ|p(x)−1) for all ξ ∈ Rd, a.e. x ∈ Ω.

(A2) A is p(·)-uniformly convex, that is,

A
(

x,
ξ + η

2

)
+ k1h1(x)|ξ − η|p(x) ≤ 1

2
A(x, ξ) +

1
2

A(x, η)

for all ξ, η ∈ Rd and a.e. x ∈ Ω.

(A3) A is p(·)-subhomogeneous, that is,

0 ≤ a(x, ξ) · ξ ≤ p(x)A(x, ξ) for all ξ ∈ Rd and a.e. x ∈ Ω.

(A4) A(x, ξ) ≥ k0h1(x)|ξ|p(x) for all ξ ∈ Rd and a.e. x ∈ Ω.

Example 2.9.

(i) A(x, ξ) = h(x)
p(x) |ξ|

p(x) with p− ≥ 2, h ∈ L1
loc(Ω) satisfying h(x) ≥ 1.

(ii) A(x, ξ) = h(x)
p(x) ((1 + |ξ|2)p(x)/2 − 1) with p− ≥ 2, h ∈ Lp′(·)(Ω) satisfying h(x) ≥ 1 a.e.

x ∈ Ω.

Then A(x, ξ) and a(x, ξ) = ∇ξ A(x, ξ) satisfy (A1)–(A4).

Remark 2.10. When h(x) ≡ 1, (i) corresponds to the p(·)-Laplacian and (ii) corresponds to the
prescribed mean curvature operator for nonparametric surface.

For the function h1 ∈ L1
loc(Ω) with h1(x) ≥ 1 a.e. x ∈ Ω, we define a modular

ρp(·),h1(·)(∇v) =
∫

Ω
h1(x)|∇v(x)|p(x)dx for v ∈ W1,p(·)(Ω).

Define our basic space
Y = {v ∈ X; ρp(·),h1(·)(∇v) < ∞} (2.3)
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equipped with the norm

∥v∥Y = inf
{

λ > 0; ρp(·),h1(·)

(
∇v
λ

)
≤ 1

}
,

then Y is a Banach space (see Lemma 2.12 below). We note that C∞
0 (Ω) ⊂ Y. Since

ρp(·),h1(·)(∇v) = ρp(·)(h
1/p(·)
1 ∇v),

we have
∥v∥Y = ∥h1/p(·)

1 ∇v∥Lp(·)(Ω). (2.4)

Then we have the following lemma.

Lemma 2.11.

(i) Y ↪→ X and ∥v∥X ≤ ∥v∥Y for all v ∈ Y.

(ii) Let v ∈ Y. Then ∥v∥Y > 1(= 1,< 1) ⇐⇒ ρp(·),h1(·)(∇v) > 1(= 1,< 1).

(iii) Let v ∈ Y. Then ∥v∥Y > 1 =⇒ ∥v∥p−

Y ≤ ρp(·),h1(·)(∇v) ≤ ∥v∥p+

Y .

(iv) Let v ∈ Y. Then ∥v∥Y < 1 =⇒ ∥v∥p+

Y ≤ ρp(·),h1(·)(∇v) ≤ ∥v∥p−

Y .

(v) Let un, u ∈ Y. Then limn→∞ ∥un − u∥Y = 0 ⇐⇒ limn→∞ ρp(·),h1(·)(∇un −∇u) = 0.

(vi) Let un ∈ Y. Then ∥un∥Y → ∞ as n → ∞ ⇐⇒ ρp(·),h1(·)(∇un) → ∞ as n → ∞.

When q ∈ P log
+ (Ω) satisfies q(x) ≤ p∗(x) for all x ∈ Ω, define

λq = inf

{
∥v∥Y

∥v∥Lq(·)(Ω)

; v ∈ Y \ {0}
}

. (2.5)

By Proposition 2.3 and Lemma 2.11, there exists a constant c > 0 such that ∥v∥Lq(·)(Ω) ≤
c∥v∥X ≤ c∥v∥Y for all v ∈ Y, so we can see that λq > 0.

When q ∈ P log
+ (Ω) satisfies q(x) ≤ p∂(x) for all x ∈ Γ2, define

µq = inf

{
∥v∥Y

∥v∥Lq(·)(Γ2)

; v ∈ Y with v ̸= 0 on Γ2

}
. (2.6)

By Proposition 2.7 and Lemma 2.11, there exists a constant c > 0 such that ∥v∥Lq(·)(Γ2)
≤

c∥v∥X ≤ c∥v∥Y for all v ∈ Y, so we can see that µq > 0.

Lemma 2.12. The space (Y, ∥ · ∥Y) is a reflexive Banach space.

Proof. Since ∥v∥Y = ∥h1/p(·)
1 ∇v∥Lp(·)(Ω) for v ∈ Y(⊂ X), it is clear that Y is a normed linear

space. Let {vn} be a Cauchy sequence in Y. Then {∥vn∥Y} is bounded, so {ρp(·),h1(·)(∇vn)} is
bounded from Lemma 2.11 (vi) and we have

lim
n→∞

lim inf
j→∞

∫
Ω

h1(x)|∇uj(x)−∇un(x)|p(x)dx = 0.
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Since ∥v∥X ≤ ∥v∥Y for all v ∈ Y, {vn} is also a Cauchy sequence in X. Hence there exists
v ∈ X such that vn → v in X, that is, ∇vn → ∇v in Lp(·)(Ω). So there exists a subsequence
{vn′} of {vn} such that ∇vn′(x) → ∇v(x) a.e. in Ω. By the Fatou lemma,∫

Ω
h1(x)|∇v(x)|p(x)dx ≤ lim inf

n′→∞

∫
Ω

h1(x)|∇vn′(x)|p(x)dx < ∞.

Thereby v ∈ Y. Applying again the Fatou lemma,

lim
n′→∞

∫
Ω

h1(x)|∇v(x)−∇vn′(x)|p(x)dx ≤ lim
n′→∞

lim inf
j′→∞

∫
Ω

h1(x)|∇vj′(x)−∇vn′(x)|p(x)dx = 0.

This implies vn′ → v in Y. Since {vn} is a Cauchy sequence in Y, we see that vn → v in Y, so
(Y, ∥ · ∥Y) is a Banach space.

We claim that (Y, ∥ · ∥Y) is a uniformly convex Banach space. Since Lp(·)(Ω) is uniformly
convex, for any ε > 0, there exists δ > 0 such that if u, v ∈ Lp(·)(Ω) satisfy ∥u∥Lp(·)(Ω) ≤
1, ∥v∥Lp(·)(Ω) ≤ 1 and ∥u − v∥Lp(·)(Ω) > ε, then ∥(u + v)/2∥Lp(·)(Ω) < 1 − δ. Thus if u, v ∈ Y sat-

isfy ∥u∥Y ≤ 1, ∥v∥Y ≤ 1 and ∥u− v∥Y > ε, then ∥h1/p(·)
1 ∇u∥Lp(·)(Ω) ≤ 1, ∥h1/p(·)

1 ∇v∥Lp(·)(Ω) ≤ 1

and ∥h1/p(·)
1 ∇u − h1/p(·)

1 ∇v∥Lp(·)(Ω) > ε from (2.4). Hence we have

∥(h1/p(·)
1 ∇u + h1/p(·)

1 ∇v)/2∥Lp(·)(Ω) ≤ 1 − δ.

Therefore we get ∥(u + v)/2∥Y ≤ 1− δ. This implies the uniform convexity of Y. So it follows
from the Milman theorem (cf. Brezis [5, Theorem III.29]) that Y is reflexive.

We continue to state the assumptions of f and g in (1.1).
Let f is a real Carathéodory function on Ω × R having the following properties.

(F1) | f (x, t)| ≤ c1(1 + |t|q(x)−1) for all t ∈ R and a.e. x ∈ Ω, where c1 is a positive constant
and q ∈ P log

+ (Ω) such that q(x) < p∗(x) for all x ∈ Ω and p+ < q−.

(F2) There exist θ > p+ and t0 > 0 such that

0 < θF(x, t) ≤ f (x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Ω,

where

F(x, t) =
∫ t

0
f (x, s)ds. (2.7)

(F3) Let λp+ be defined by (2.5). There exist λ ∈ (0, k0 p+(λp+)
p+/4) and 0 < δ < 1 such that

f (x, t)
|t|p+−2t

≤ λ for all t ∈ (−δ, δ) \ {0} and a.e. x ∈ Ω.

Let g be a real Carathéodory function on Γ2 × R having the following properties.

(G1) |g(x, t)| ≤ c2(1 + |t|r(x)−1) for all t ∈ R and a.e. x ∈ Γ2, where c2 is a positive constant
and r ∈ P log

+ (Ω) such that r(x) < p∂(x) for all x ∈ Γ2 and p+ < r−.

(G2) Let θ and t0 be as in (F2). That is, there exist θ > p+ and t0 > 0 such that

0 < θG(x, t) ≤ g(x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Γ2,

where

G(x, t) =
∫ t

0
g(x, s)ds. (2.8)
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(G3) Let µp+ be defined by (2.6). There exist µ ∈ (0, k0 p+(µp+)
p+/4) and 0 < δ < 1 such that

g(x, t)
|t|p+−2t

≤ µ for all t ∈ (−δ, δ) \ {0} and a.e. x ∈ Γ2.

3 Main theorems

In this section, we state the main theorems.

Definition 3.1. We say u ∈ Y is a weak solution of (1.1) if u satisfies that∫
Ω

a(x,∇u(x)) ·∇v(x)dx =
∫

Ω
f (x, u(x))v(x)dx +

∫
Γ2

g(x, u(x))v(x)dσ for all v ∈ Y. (3.1)

Remark 3.2. Since {φ ∈ C∞(Ω); φ = 0 on Γ1} ⊂ Y, if u ∈ Y satisfies (3.1), then the equation
(1.1) holds in the distribution sense.

Then we obtain the following two theorems.

Theorem 3.3. Let Ω be a bounded domain of Rd (d ≥ 2) with a C0,1-boundary Γ satisfying (1.2).
Under the hypotheses (A1)-(A4), (F1)-(F3) and (G1)-(G3), the problem (1.1) has a nontrivial weak
solution.

Remark 3.4. This theorem extends the result of [10] in which the authors considered the case
where p(x) = p = const. and Γ2 = ∅.

We impose one more assumption.

(F4) There exist a constant c > 0 and 0 < m < 1 such that f (x, t) ≥ ctm−1 for 0 < t ≤ δ and
a.e. x ∈ Ω, where δ > 0 is as in (F3).

Theorem 3.5. Addition to the hypotheses of Theorem 3.3, assume that (F4) also holds. Then the
problem (1.1) has at least two nontrivial weak solutions.

Remark 3.6. The authors in [17] considered the equation

−div [a(x,∇u(x))] = m(x)|u(x)|r(x)−2u(x) + n(x)|u(x)|s(x)−2u(x)

and Γ2 = ∅. The authors got the same result of Theorem 3.5 under stronger hypotheses than
(A1) and (A4), that is, h1(x) ≡ 1. However, they use an inequality A(x, tξ) ≤ tp(x)A(x, ξ)

for small t > 0 which does not hold for the function in Example 2.9 (ii). To overcome their
mistake, we assume a stronger condition (F4).

4 Proofs of Theorem 3.3 and Theorem 3.5

In this section, we give proofs of Theorem 3.3 and Theorem 3.5. In order to do so, we use the
variational method. Define a functional on Y

I(u) = E(u)− J(u)− K(u) (4.1)
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where

E(u) =
∫

Ω
A(x,∇u(x))dx, (4.2)

J(u) =
∫

Ω
F(x, u(x))dx, F is defined by (2.7), (4.3)

K(u) =
∫

Γ2

G(x, u(x))dσ, G is defined by (2.8). (4.4)

The proof of Theorem 3.3 consists of several lemmas and propositions.

Lemma 4.1.

(i) |A(x, ξ)| ≤ c0(h0(x)|ξ|+ h1(x)|ξ|p(x)) for all ξ ∈ Rd and a.e. x ∈ Ω.

(ii)

E
(

u + v
2

)
+ k1ρp(·),h1(·)(∇u −∇v) ≤ 1

2
E(u) +

1
2

E(v) for all u, v ∈ Y

and
E((1 − τ)u + τv) ≤ (1 − τ)E(u) + τE(v) for all u, v ∈ Y and τ ∈ [0, 1].

(iii) There exists a constant c3 > 0 such that |F(x, t)| ≤ c3(1 + |t|q(x)) for all t ∈ R and a.e. x ∈ Ω.

(iv) There exists γ ∈ L∞(Ω) such that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for all t ∈ [t0, ∞)

and a.e. x ∈ Ω.

(v) There exists a constant c4 > 0 such that |G(x, t)| ≤ c4(1+ |t|r(x)) for all t ∈ R and a.e. x ∈ Γ2.

(vi) There exists δ ∈ L∞(Γ2) such that δ(x) > 0 a.e. x ∈ Γ2 and G(x, t) ≥ δ(x)tθ for all t ∈ [t0, ∞)

and a.e. x ∈ Γ2.

Proof. (i) Using (A1), we have

|A(x, ξ)| = |A(x, ξ)− A(x, 0)|

=

∣∣∣∣∫ 1

0

d
dt

A(x, tξ)dt
∣∣∣∣

=

∣∣∣∣∫ 1

0
a(x, tξ) · ξdt

∣∣∣∣
≤ c0

∫ 1

0
(h0(x) + h1(x)tp(x)−1|ξ|p(x)−1)|ξ|dt

≤ c0(h0(x)|ξ|+ h1(x)|ξ|p(x)).

(ii) The first inequality easily follows from (A2). Since A(x, ξ) is continuous with respect
to ξ, it follows from (A2) that A(x, (1 − τ)ξ + τη) ≤ (1 − τ)A(x, ξ) + τA(x, η) for all ξ, η ∈ Rd

and τ ∈ [0, 1], so the second inequality follows from this inequality.
(iii) From (F1),

|F(x, t)| =
∣∣∣∣∫ t

0
f (x, τ)dτ

∣∣∣∣ ≤ c1

∣∣∣∣∫ t

0
(1 + |τ|q(x)−1)dτ

∣∣∣∣ ≤ c1

(
|t|+ 1

q(x)
|t|q(x)

)
.

Since q(x) > 1, we have |t| ≤ 1 + |t|q(x), so (iii) follows.
(iv) From (F2), for t ≥ t0,

0 < θF(x, t) ≤ f (x, t)t. (4.5)
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Put γ(x) = F(x, t0)t−θ
0 . Then γ(x) > 0 a.e. x ∈ Ω and it follows from (iii) that

γ(x) ≤ c3(1 + tq(x)
0 )t−θ

0 ≤ c3(1 + max{tq+
0 , tq−

0 })t−θ
0 < ∞.

So γ ∈ L∞(Ω). From (4.5),
θ

τ
≤ f (x, τ)

F(x, τ)
=

∂F
∂τ (x, τ)

F(x, τ)
.

Integrating this inequality over (t0, t), we have

θ log
t
t0

≤ log
F(x, t)
F(x, t0)

for all t ≥ t0.

This implies F(x, t) ≥ γ(x)tθ for all t ≥ t0.
(v) and (vi) follow from the same arguments as (iii) and (iv), respectively.

Proposition 4.2. The functionals E, J, K ∈ C1(Y, R) and the Fréchet derivatives E′, J′ and K′ satisfy
the following equalities.

⟨E′(u), v⟩Y∗,Y =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx, (4.6)

⟨J′(u), v⟩Y∗,Y =
∫

Ω
f (x, u(x))v(x)dx, (4.7)

⟨K′(u), v⟩Y∗,Y =
∫

Γ2

g(x, u(x))v(x)dσ (4.8)

for all u, v ∈ Y.

Proof. Step 1. We show that E is continuous on Y. Let un → u in Y as n → ∞. Then from (2.4),

∥h1/p(·)
1 ∇un − h1/p(·)

1 ∇u∥Lp(·)(Ω) → 0 as n → ∞. (4.9)

From [2, Proposition A.1], there exist a subsequence {un′} of {un} and k ∈ Lp(·)(Ω) such that
h1(x)1/p(x)∇un′(x) → h1(x)1/p(x)∇u(x) a.e. x ∈ Ω, and since h1(x) ≥ 1 a.e. x ∈ Ω,

|∇un′(x)| ≤ |h1(x)1/p(x)∇un′(x)| ≤ k(x) a.e. x ∈ Ω.

In particular, ∇un′(x) → ∇u(x) a.e. x ∈ Ω. Since A(x, ξ) is a Carathéodory function,
A(x,∇un′(x)) → A(x,∇u(x)) a.e. x ∈ Ω as n′ → ∞. By Lemma 4.1 (i),

|A(x,∇un′(x))| ≤ c0(h0(x)|∇un′(x)|+ h1(x)|∇un′(x)|p(x)) ≤ c0(h0(x)k(x) + k(x)p(x)).

Since h0 ∈ Lp′(·)(Ω) and k ∈ Lp(·)(Ω), taking the Hölder inequality (Proposition 2.2) into
consideration, we see that the last term is an integrable function independent of n′. By the
Lebesgue dominated convergence theorem, we have

lim
n′→∞

∫
Ω

A(x,∇un′(x))dx =
∫

Ω
A(x,∇u(x))dx.

By the convergent principle (cf. Zeidler [26, Proposition 10.13 (i)], for the full sequence {un},

lim
n→∞

∫
Ω

A(x,∇un(x))dx =
∫

Ω
A(x,∇u(x))dx.

This means that E(un) → E(u) as n → ∞, so the functional E is continuous in Y.
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Step 2. We derive that E is Gateaux differentiable in Y. Let u, v ∈ Y and 0 < |t| ≤ 1. By the
mean value theorem,

E(u + tv)− E(u)
t

=
∫

Ω

A(x,∇u(x) + t∇v(x))− A(x,∇u(x)
t

dx

=
∫

Ω

∫ 1

0
a(x,∇u(x) + τt∇v(x)) ·∇v(x)dτdx.

From (A1), we have

|a(x,∇u(x) + τt∇v(x)) ·∇v(x)|
= c0(h0(x) + h1(x)|∇u(x) + τt∇v(x)|p(x)−1)|∇v(x)|
≤ c0(h0(x)|∇v(x)|+ h1(x)1/p(x)|∇v(x)|h1(x)(p(x)−1)/p(x)(|∇u(x)|+ |∇v(x)|)p(x)−1)

≤ c0(h0(x)|∇v(x)|+ h1(x)1/p(x)|∇v(x)|
(
(h1(x)1/p(x)(|∇u(x)|+ |∇v(x)|)

)p(x)−1.

Here since u, v ∈ Y, h0 ∈ Lp′(·)(Ω), h1/p(·)
1 |∇v| ∈ Lp(·)(Ω) and(

(h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(x)|)
)p(·)−1 ∈ Lp′(·)(Ω),

it follows from the Hölder inequality (Proposition 2.2), the last term of the above inequality
is an integrable function independent of t. On the other hand, a(x, ξ) is a Carathéodory
function, we have

a(x,∇u(x) + τt∇v(x)) ·∇v(x) → a(x,∇u(x)) ·∇v(x)

as t → 0. Using again the Lebesgue dominated convergence theorem, we have

E(u + tv)− E(u)
t

→
∫

Ω
a(x,∇u(x)) ·∇v(x)dx as t → 0.

Thus E is Gateaux differentiable at u and the Gateaux derivative DE satisfies

DE(u)(v) =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx.

Clearly DE(u) is linear in Y.

Step 3. We show that for every u ∈ Y, we have DE(u) ∈ Y∗. For any v ∈ Y,

DE(u)(v) =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx

=
∫

Ω
h1(x)−1/p(x)a(x,∇u(x)) · h1(x)1/p(x)∇v(x)dx.

We note that ∥v∥Y = ∥h1/p(·)
1 ∇v∥Lp(·)(Ω) from (2.4). On the other hand, from (A1),

ρp′(·)(h
−1/p(·)
1 a(·, u(·)))

=
∫

Ω
h1(x)−p′(x)/p(x)|a(x,∇u(x))|p′(x)dx

≤
∫

Ω
h1(x)−p′(x)/p(x)(c0(h0(x) + h1(x)|∇u(x)|p(x)−1)p′(x)dx

≤ max
{

c(p′)+
0 , c(p′)−

0

}
2(p′)+−1

∫
Ω
(h0(x)p′(x) + h1(x)|∇u(x)|p(x))dx < ∞.
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Hence h−1/p(·)
1 a(·,∇u) ∈ Lp′(·)(Ω). By the Hölder inequality (Proposition 2.2), we have

|DE(u)(v)| ≤ 2∥h−1/p(·)
1 a(·,∇u(·))∥Lp′(·)(Ω)∥v∥Y for all v ∈ Y.

Hence we see that DE(u) ∈ Y∗ and

∥DE(u)∥Y∗ ≤ 2∥h−1/p(·)
1 a(·,∇u(·))∥Lp′(·)(Ω). (4.10)

Step 4. We derive that the map Y ∋ u 7→ DE(u) ∈ Y∗ is continuous. Let un → u in Y as
n → ∞. Then (4.9) holds. So there exist a subsequence {un′} of {un} and k̃ ∈ Lp(·)(Ω) such
that ∇un′(x) → ∇u(x) a.e. x ∈ Ω and h1(x)1/p(x)|∇un′(x)| ≤ k̃(x) a.e. x ∈ Ω and all n′. By
(4.10),

∥DE(un′)− DE(u)∥Y∗ ≤ 2∥h1(·)−1/p(·)(a(·,∇un′(·))− a(·,∇u(·))
)
∥Lp′(·)(Ω).

In order to show that the right-hand side converges to zero, taking Proposition 2.1 into con-
sideration, it suffices to derive that

ρp′(·)
(
h1(·)−1/p(·)(a(·,∇un′(·))− a(·,∇u(·)))

)
→ 0 as n′ → ∞,

that is, ∫
Ω

h1(x)−p′(x)/p(x)|a(x,∇un′(x))− a(x,∇u(x))|p′(x)dx → 0 as n′ → ∞. (4.11)

Since a(x, ξ) is a Carathéodory function, and ∇un′(x) → ∇u(x) a.e. x ∈ Ω, we have

h1(x)−p′(x)/p(x)|a(x,∇un′(x))− a(x,∇u(x))|p′(x) → 0 a.e. x ∈ Ω.

As in the argument in Step 3, we have

h1(x)−p′(x)/p(x)|a(x,∇un′(x))|p′(x) ≤ max
{

c(p′)+
0 , c(p′)−

0

}
2(p′)+−1(h0(x)p′(x) + k̃(x)p(x)).

The right-hand side is an integrable function in Ω independent of n′. By the Lebesgue dom-
inated convergence theorem, (4.11) holds. Thus ∥DE(un′) − DE(u)∥Y∗ → 0 as n′ → ∞. By
the convergent principle (cf. [26, Proposition 10.13 (i)], for full sequence {un} we have
∥DE(un)− DE(u)∥Y∗ → 0 as n → ∞. Therefore, since the Gateaux differential DE is contin-
uous in Y, we see that E is Fréchet differentiable and the Fréchet derivative E′ is equal to the
Gateaux derivative DE. Hence E ∈ C1(Y, R) and (4.6) holds.

Step 5. We show that J and K belong to C1(Y, R) and (4.7) and (4.8) hold. By Lemma 4.1
(iii) and [2, Proposition 2.12], the Nemytskii operator NF : Lq(·)(Ω) ∋ u 7→ F(·, u(·)) ∈ L1(Ω)

is continuous. From (F1), we have Y ↪→ X ↪→ Lq(·)(Ω), so NF is continuous in Y, so we see
that J is continuous in Y. Since F(x, t) is a C1-function with respect to t, clearly J is Gateaux
differentiable in Y and

DJ(u)(v) =
∫

Ω
f (x, u(x))v(x)dx for all u, v ∈ Y.

By the Hölder inequality (Proposition 2.2),

|DJ(u)(v)| ≤ 2∥ f (·, u(·))∥Lq′(·)(Ω)∥v∥Lq(·)(Ω) ≤ C∥ f (·, u(·))∥Lq′(·)(Ω)∥v∥Y for all v ∈ Y.
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Hence DJ(u) ∈ Y∗ and ∥DJ(u)∥Y∗ ≤ C∥ f (·, u(·))∥Lq′(·)(Ω). Since | f (x, t)| ≤ c1(1 + |t|q(x)−1) =

c1(1 + |t|q(x)/q′(x)) from (F1), Nemytskii operator N f : u 7→ f (·, u(·)) is continuous from
Lq(·)(Ω) to Lq′(·)(Ω) (cf. [1, Proposition 2.9]). Thus if un → u in Lq(·)(Ω), then

∥ f (·, un(·))− f (·, u(·))∥Lq′(·)(Ω) → 0 as n → ∞.

Since Y ↪→ X ↪→ Lq(·)(Ω), we can see that J ∈ C1(Y, R) and (4.7) holds. Similarly, we can
prove that K ∈ C1(Y, R) and (4.8) holds.

Remark 4.3. When p(·) = p = const. and Γ2 = ∅, the authors of [10] only prove the weakly
continuously differentiable on Y, and so they must use a version of the Mountain-pass lemma
introduced in [9]. However, since we derived that E belongs to C1(Y, R), it suffices to use the
standard Mountain-pass lemma later.

Proposition 4.4.

(i) The functionals J and K are weakly continuous in Y, that is, if un → u weakly in Y as n → ∞,
then J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) The functional E is weakly lower semi-continuous in Y, that is, if un → u weakly in Y as n → ∞,
then E(u) ≤ lim infn→∞ E(un).

(iii) E(u)− E(v) ≥ ⟨E′(v), u − v⟩Y∗,Y for all u, v ∈ Y.

Proof. (i) Let un → u weakly in Y as n → ∞. Since the embedding Y ↪→ Lq(·)(Ω) is compact,
we see that un → u strongly in Lq(·)(Ω). Since J and K are continuous on Lq(·)(Ω), we see that
J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) A(x, ξ) is a Carathéodory function on Ω × Rd and A(x, ξ) ≥ 0 by (A4). Moreover,
from (A2), A(x, ξ) is convex with respect to ξ for a.e. x ∈ Ω. If un → u weakly in Y, then
un, u ∈ W1,1(Ω) and un → u strongly in L1(Ω) and ∇un → ∇u weakly in L1(Ω). Hence it
follows from Struwe [21, Theorem 1.6, p. 9] that E(u) ≤ lim infn→∞ E(un).

(iii) Since E is convex function in Y, for u, v ∈ Y and 0 < τ < 1,

E(v + τ(u − v))− E(v)
τ

=
E((1 − τ)v + τu)− E(v)

τ

≤ (1 − τ)E(v) + τE(u)− E(v)
τ

= E(u)− E(v).

Letting τ → +0, we get ⟨E′(v), u − v⟩Y∗,Y ≤ E(u)− E(v), so (iii) holds.

Lemma 4.5.

(i) There exist constants k3 > 0 and c3 > 0 such that

I(u) ≥ ∥u∥p+

Y

(
k3 − c3

(
∥u∥q−−p+

Y + ∥u∥r−−p+

Y

))
for all u ∈ Y with ∥u∥Y < 1.

(ii) There exist constants c3 > 0 and k4 ∈ R such that

I(u) ≥ ∥u∥Y

(
c4 min

{
∥u∥p+−1

Y , ∥u∥p−−1
Y

}
− 1

θ
∥I′(u)∥Y∗

)
+ k4 for all u ∈ Y.
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Proof. (i) From (F3), for a.e. x ∈ Ω,

F(x, t) =
∫ t

0
f (x, s)dx ≤ λ

p+
|t|p+ for all t ∈ (−δ, δ).

On the other hand, by Lemma 4.1 (iii), there exists c′3 > 0 such that |F(x, t)| ≤ c′3|t|q(x) for all
t ∈ R \ (−δ, δ). Hence

F(x, t) ≤ λ

p+
|t|p+ + c′3|t|q(x) for all t ∈ R and a.e. x ∈ Ω.

Therefore, we have

J(u) =
∫

Ω
F(x, u(x))dx ≤ λ

p+

∫
Ω
|u(x)|p+dx + c′3

∫
Ω
|u(x)|q(x)dx

≤ λ

p+
∥u∥p+

Lp+ (Ω)
+ c′3 max

{
∥u∥q+

Lq(·)(Ω)
, ∥u∥q−

Lq(·)(Ω)

}
.

Similarly, there exists c′4 > 0 such that

K(u) ≤ µ

p+
∥u∥p+

Lp+ (Γ2)
+ c′4 max

{
∥u∥p+

Lr(·)(Γ2)
, ∥u∥r−

Lr(·)(Γ2)

}
.

Since p+ < q− ≤ q(x) < p∗(x) for all x ∈ Ω from (F1), we have Y ↪→ X ↪→ Lp+(Ω),
Lq(·)(Ω). By (2.5), ∥u∥Lp+ (Ω) ≤

1
λp+

∥u∥Y and ∥u∥Lq(·)(Ω) ≤ 1
λq
∥u∥Y for all u ∈ Y. Since we have

p+ < r− ≤ r(x) < p∂(x) for all x ∈ Γ2 from (G2), it follows from (2.6) that we can see that
Y ↪→ X ↪→ Lp+(Γ2), Lr(·)(Γ2). Thus we have ∥u∥Lp+ (Γ2)

≤ 1
µp+

∥u∥Y and ∥u∥Lr(·)(Γ2)
≤ 1

µr
∥u∥Y

for all u ∈ Y. When ∥u∥Y < 1, there exist positive constants c5 and c6 such that

J(u) ≤ λ

p+
1

(λp+)p+ ∥u∥p+

Y + c5∥u∥q−

Y ,

K(u) ≤ µ

p+
1

(µp+)p+ ∥u∥p+

Y + c6∥u∥r−
Y .

On the other hand, from (A4),

E(u) =
∫

Ω
A(x,∇u(x))dx ≥ k0

∫
Ω

h1(x)|∇u(x)|p(x)dx ≥ k0∥u∥p+

Y .

Thus we have

I(u) = E(u)− J(u)− K(u) ≥ k0

2
∥u∥p+

Y − c5∥u∥q−

Y − c6∥u∥r−
Y

= ∥u∥p+

Y

(
k3 − c3(∥u∥q−−p+

Y + ∥u∥r−−p+

Y )
)
,

where k3 = k0/2 and c3 = max{c5, c6} for all u ∈ Y with ∥u∥Y < 1.
(ii) From (A3) and (A4), for any u ∈ Y,

E(u)− 1
θ
⟨E′(u), u⟩Y∗,Y =

∫
Ω

A(x,∇u(x))dx − 1
θ

∫
Ω

a(x,∇u(x)) ·∇u(x)dx

≥
∫

Ω
A(x,∇u(x))dx − 1

θ

∫
Ω

p(x)A(x,∇u(x))dx

≥
(

1 − p+

θ

) ∫
Ω

A(x,∇u(x))dx

≥
(

1 − p+

θ

)
k0

∫
Ω

h1(x)|∇u(x)|p(x)dx

≥ c4 min
{
∥u∥p+

Y , ∥u∥p−

Y

}
,
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where c4 = k0(1 − p+/θ) > 0. Put Ωu = {x ∈ Ω; |u(x)| > t0} and Γu = {x ∈ Γ2; |u(x)| > t0}.
From (F2) and (G2),

1
θ

f (x, u(x))u(x)− F(x, u(x)) ≥ 0 for a.e. x ∈ Ωu,

1
θ

g(x, u(x))u(x)− G(x, u(x)) ≥ 0 for a.e. x ∈ Γu,

and there exists a constant M > 0 such that∣∣∣∣1
θ

f (x, u(x))u(x)− F(x, u(x))
∣∣∣∣ ≤ M for a.e. x ∈ Ω \ Ωu,∣∣∣∣1

θ
g(x, u(x))u(x)− G(x, u(x))

∣∣∣∣ ≤ M for a.e. x ∈ Γ2 \ Γu.

Therefore, we have

1
θ
⟨J′(u), u⟩Y∗,Y − J(u)

=
∫

Ωu

(
1
θ

f (x, u(x))u(x)− F(x, u(x))
)

dx +
∫

Ω\Ωu

(
1
θ

f (x, u(x))u(x)− F(x, u(x))
)

dx

≥ − M|Ω \ Ωu| ≥ −M|Ω|

and
1
θ
⟨K′(u), u⟩Y∗,Y − K(u)

=
∫

Γu

(
1
θ

g(x, u(x))u(x)− G(x, u(x))
)

dσ +
∫

Γ2\Γu

(
1
θ

g(x, u(x))u(x)− G(x, u(x))
)

dσ

≥ − M|Γ2 \ Γu| ≥ −M|Γ2|.

Put k4 = −M|Ω| − M|Γ2|. Summing up, we have

I(u)− 1
θ
⟨I′(u), u⟩Y∗,Y

= E(u)− 1
θ
⟨E′(u), u⟩Y∗,Y − J(u) +

1
θ
⟨J′(u), u⟩Y∗,Y − K(u) +

1
θ
⟨K′(u), u⟩Y∗,Y

≥ c4 min
{
∥u∥p+

Y , ∥u∥p−

Y

}
+ k4.

Hence

I(u) ≥ c4 min
{
∥u∥p+

Y , ∥u∥p−

Y

}
+

1
θ
⟨I′(u), u⟩Y∗,Y + k4

≥ c4 min
{
∥u∥p+

Y , ∥u∥p−

Y

}
− 1

θ
∥I′(u)∥Y∗∥u∥Y + k4.

For a proof of Theorem 3.3, we apply the following standard Mountain-pass lemma
(cf. Willem [23]).

Proposition 4.6. Let (V, ∥ · ∥V) be a Banach space and I ∈ C1(V, R) be a functional satisfying the
Palais–Smale condition, that is, if a sequence {un} ⊂ V satisfies that limn→∞ I(un) = γ exists and
limn→∞ ∥I′(un)∥V∗ = 0, then {un} has a convergent subsequence. Assume that I(0) = 0, and there
exist ρ > 0 and z0 ∈ V such that ∥z0∥V > ρ, I(z0) ≤ I(0) = 0 and

α := inf{I(u); u ∈ V with ∥u∥V = ρ} > 0.

Put G = {φ ∈ C([0, 1], V); φ(0) = 0, φ(1) = z0} and β = inf{max I(φ([0, 1]); φ ∈ G}. Then
β ≥ α and β is a critical value of I.
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We apply Proposition 4.6 with (V, ∥ · ∥V) = (Y, ∥ · ∥Y). In order to do so, we must show
the following proposition.

Proposition 4.7.

(i) The functional I satisfies the Palais–Smale condition.

(ii) I(0) = 0.

(iii) There exists ρ > 0 such that inf{I(u); u ∈ Y with ∥u∥Y = ρ} > 0.

(iv) There exists z0 ∈ Y such that ∥z0∥Y > ρ and I(z0) ≤ 0.

(v) G ̸= ∅.

Proof. (i) Assume that a sequence {un} ⊂ Y satisfies that limn→∞ I(un) = γ exists and
limn→∞ ∥I′(un)∥Y∗ = 0.

Step 1. The sequence {un} is bounded in Y. Indeed, if {un} is unbounded, there exists a
subsequence {un′} of {un} such that ∥un′∥ ≥ n′ for any n′ ∈ N. By Lemma 4.5 (ii),

I(un′) ≥ ∥un′∥Y

(
c4∥un′∥p−−1

Y − 1
θ
∥I′(un′)∥Y∗

)
+ k4 → ∞ as n′ → ∞.

This contradicts limn′→∞ I(un′) = γ.

Step 2. Since {un} is bounded in Y and Y is a reflexive Banach space, passing to a subsequence,
we may assume that un → u weakly in Y. By Proposition 4.4 (ii) and (iii),

E(u) ≤ lim inf
n→∞

E(un) = lim
n→∞

(J(un) + K(un) + I(un)) = J(u) + K(u) + γ.

Since {∥un − u∥Y} is a bounded sequence and limn→∞ ∥I′(un)∥Y∗ = 0, we see that ⟨I′(un),
u − un⟩Y∗,Y → 0 as n → ∞. By the Rellich–Kondrachov theorem, un → u strongly in Lq(·)(Ω)

and un → u strongly in Lr(·)(Γ2). By (F1) and (G1), | f (·, un(·))| is bounded in Lq′(·)(Ω) and
|g(·, un(·))| is also bounded in Lr′(·)(Γ2). Hence

lim
n→∞

⟨J′(un), u − un⟩Y∗,Y = lim
n→∞

∫
Ω

f (x, un(x))(u(x)− un(x))dx = 0

and
lim
n→∞

⟨K′(un), u − un⟩Y∗,Y = lim
n→∞

∫
Γ2

g(x, un(x))(u(x)− un(x))dσ = 0.

Therefore.

lim
n→∞

⟨E′(un), u − un⟩Y∗,Y

= lim
n→∞

(
⟨I′(un), u − un⟩Y∗,Y + ⟨J′(un), u − un⟩Y∗,Y + ⟨K′(un), u − un⟩Y∗,Y

)
= 0.

On the other hand, by Proposition 4.4 (iii) and the above equality,

E(u)− lim sup
n→∞

E(un) = lim inf
n→∞

(E(u)− E(un)) ≥ lim
n→∞

⟨E′(un), u − un⟩Y∗,Y = 0.

Thus by Proposition 4.4 (ii), we have limn→∞ E(un) = E(u).
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Step 3. We show that un → u strongly in Y, that is, ρp(·),h1(·)(∇un −∇u) → 0 as n → ∞. If
this is not satisfied, there exist a subsequence {un′} of {un} and ε0 > 0 such that

ρp(·),h1(·)(∇un′ −∇u) ≥ ε0 for all n′ ∈ N.

By Lemma 4.1,

1
2

E(un′) +
1
2

E(u)− E
(

un′ + u
2

)
≥ k1ρp(·),h1(·)(∇un′ −∇u) ≥ k1ε0.

Letting n′ → ∞ and using Step 2, we have

E(u)− lim inf
n′→∞

E
(

un′ + u
2

)
≥ k1ε0. (4.12)

On the other hand, since un′+u
2 → u weakly in Y, it follows from Proposition 4.4 (ii) that

E(u) ≤ lim inf
n′→∞

E
(

un′ + u
2

)
.

This contradicts (4.12).
(ii) Since E(0) = J(0) = K(0) = 0, we have I(0) = 0.
(iii) Since k3 > 0, q− > p+ and r− > p+, there exists 0 < ρ < 1 such that

ρp+(k3 − c3ρq−−p+ − c3ρr−−p+) > 0.

By Lemma 4.5 (i),

I(u) ≥ ∥u∥p+

Y (k3 − c3∥u∥q−−p+

Y − c3∥u∥r−−p+

Y )

= ρp+(k3 − c3ρq−−p+ − c3ρr−−p+) > 0

for all u ∈ Y with ∥u∥Y = ρ.
(iv) Let t > 1 and choose v0 ∈ C∞

0 (Ω)(⊂ Y) such that v0(x) ≥ 0 and W = {x ∈ Ω; v0(x) ≥
t0} has a positive measure. By (F2), F(x, v0(x)) > 0 for a.e. x ∈ Ω. If we put Wt = {x ∈
Ω; tv0(x) ≥ t0}, then W ⊂ Wt. By Lemma 4.1 (iv),∫

Wt

F(x, tv0(x))dx ≥
∫

Wt

γ(x)tθv0(x)θdx ≥ tθ L(v0),

where L(v0) =
∫

W γ(x)v0(x)θdx > 0. By Lemma 4.1 (iii), there exists a constant M > 0 such
that |F(x, t)| ≤ M for t ∈ [0, t0] and a.e. x ∈ Ω. We note that (F2) implies that

F(x, st) ≥ F(x, t)sθ for all t ∈ R \ (−t0, t0), s > 1 and a.e. x ∈ Ω. (4.13)

Indeed, if we define g(s) = F(x, st), then

g′(s) = f (x, st)t =
1
s

f (x, st)st ≥ θ

s
F(x, st) =

θ

s
g(s).

Thus g′(s)/g(s) ≥ θ/s, so log g(s)/g(1) ≥ θ log s. This implies g(s) ≥ g(1)sθ .
On the other hand, (A3) implies that

A(x, sξ) ≤ A(x, ξ)sp(x) for all ξ ∈ Rd, a.e. x ∈ Ω and s > 1. (4.14)
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In fact, if we define g(s) = A(x, sξ), then

g′(s) = a(x, sξ) · ξ ≤ p(x)
s

A(x, sξ) =
p(x)

s
g(s).

Hence g′(s)/g(s) ≤ p(x)/s. We also get g(s) ≥ g(1)sp(x). From (4.14), we have

E(tv0) =
∫

Ω
A(x, t∇v0(x))dx ≤

∫
Ω

A(x,∇v0(x))tp(x)dx

≤ tp+
∫

Ω
A(x,∇v0(x))dx = tp+E(v0).

Since v0 ∈ C∞
0 (Ω), we have K(tv0) = 0. Therefore,

I(tv0) = E(tv0)− J(tv0)

= E(tv0)−
∫

Wt

F(x, tv0(x))dx −
∫

Ω\Wt

F(x, tv0(x))dx

≤ tp+E(v0)− tθ L(v0) + M|Ω|.

Since θ > p+ and L(v0) > 0, I(tv0) → −∞ as t → ∞. Hence there exists t1 > 1 such that
∥t1v0∥Y > ρ and I(t1v0) ≤ 0. If we put z0 = t1v0, then the conclusion of (iv) holds.

(v) If we define φ(t) = tz0, then φ ∈ G, so G ̸= ∅.

Proof of Theorem 3.3. By Propositions 4.2 and 4.7, we see that all the hypotheses in Proposition
4.6 hold. Hence there exists u0 ∈ Y such that 0 < α ≤ I(u0) = β and I′(u0) = 0, so

⟨I′(u0), v⟩Y∗,Y =
∫

Ω
a(x,∇u0(x)) ·∇v(x)dx

=
∫

Ω
f (x, u0(x))v(x)dx +

∫
Γ2

g(x, u0(x))v(x)dσ for all v ∈ Y.

Thus u0 is a weak solution of (1.1). Since I(u0) = β > I(0) = 0, u0 is a nontrivial weak
solution of (1.1).

Proof of Theorem 3.5. By (F4),

F(x, t) =
∫ t

0
f (x, τ)dτ ≥ c

m
tm for 0 ≤ t ≤ δ and a.e. x ∈ Ω.

Choose φ ∈ C∞
0 (Ω) so that 0 ≤ φ ≤ 1 and φ ̸≡ 0. Let 0 < t < δ(< 1). Since A(x, ξ) is convex

with respect to ξ and A(x, 0) = 0, we have A(x, tξ) = A(x, tξ + (1 − t)0) ≤ tA(x, ξ). Thus

I(tφ) = E(tφ)− J(tφ)

=
∫

Ω
A(x, t∇φ(x))dx −

∫
Ω

F(x, tφ(x))dx

≤ t
∫

Ω
A(x,∇φ(x))dx − c

m
tm

∫
Ω

φ(x)mdx.

Since m < 1 and c
m

∫
Ω φ(x)mdx > 0, we see that I(tφ) < 0 for small t > 0. By Lemma 4.5 (i), I

is bounded from below on Bρ(0), where Bρ(0) = {v ∈ Y; ∥v∥Y < ρ}. Hence

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.
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Let 0 < ε < infv∈∂Bρ(0) I(v)− infv∈Bρ(0)
I(v). Then there exists u ∈ Bρ(0) such that

inf
v∈Bρ(0)

I(v) ≤ I(u) ≤ inf
v∈Bρ(0)

I(v) + ε2.

Since infv∈Bρ(0)
I(v) < 0, we can choose u ∈ Bρ(0) so that I(u) < 0. Applying the Ekeland

variational principle [11, Theorem 1.1] to the complete metric space Bρ(0), there exists uε ∈
Bρ(0) such that

I(uε) ≤ I(u), (4.15)

I(uε) ≤ I(v) + ε∥v − uε∥Y for all v ∈ Bρ(0), (4.16)

∥u − uε∥Y ≤ ε. (4.17)

Define Φ : Bρ(0) → R by Φ(v) = I(v) + ε∥v − uε∥Y for v ∈ Bρ(0). Since I(uε) ≤ I(u) < 0
and I(v) > 0 for all v ∈ ∂Bρ(0), we have uε ∈ Bρ(0). Choose ρ′ > 0 small enough, so that if
w ∈ Bρ′(0), then uε + w ∈ Bρ(0). From (4.16), since Φ(uε) ≤ Φ(uε + w) for all w ∈ Bρ′(0). We
have

⟨I′(uε), w⟩Y∗,Y + ε∥w∥Y

∥w∥Y

=
⟨I′(uε), tw⟩Y∗,Y + εt∥w∥Y − (Φ(uε + tw)− Φ(uε))

t∥w∥Y
+

Φ(uε + tw)− Φ(uε)

t∥w∥Y

≥ ⟨I′(uε), tw⟩Y∗,Y − (I(uε + tw)− I(uε))

t∥w∥Y
→ 0 as t → +0.

Hence ⟨I′(uε), w⟩Y∗,Y + ε∥w∥Y ≥ 0 for all w ∈ Bρ(0), so ⟨I′(uε), w⟩Y∗,Y ≥ −ε∥w∥Y. Replacing
w with −w, we have |⟨I′(uε), w⟩Y∗,Y| ≤ ε∥w∥Y for all w ∈ Bρ(0). Thus ∥I′(uε)∥Y∗ ≤ ε. Letting
ε → 0, we see that I(uε) → c and I′(uε) → 0 in Y∗. Since I satisfies the Palais–Smale
condition in Y and I ∈ C1(Y, R), there exist a subsequence {un} of {uε} and u2 ∈ Bρ(0)
such that un → u2 in Y and I′(u2) = 0. Therefore, u2 is a weak solution of (1.1). Since
I(u2) = c < 0 = I(0), u2 is a nontrivial weak solution of (1.1). Since I(u2) = c < 0 < I(u1),
we have u1 ̸= u2. This completes the proof of Theorem 3.5.
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