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Abstract. This paper deals with necessary and sufficient conditions for weak and strong
minimizers of functionals Φ(u) =

∫ b
a f (x, u(x), u′(x)) dx, where u ∈ C1([a, b], RN). We

first derive conditions which are simpler than the known ones, and then apply them to
several particular problems, including stability problems in the elasticity theory. In par-
ticular, we solve some open problems in [A. Majumdar, A. Raisch, Stability of twisted
rods, helices and buckling solutions in three dimensions, Nonlinearity 27(2014), 2841–
2867] by finding optimal conditions for the stability of a naturally straight Kirchhoff
rod under various types of endpoint constraints.
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1 Introduction

This paper deals with necessary and sufficient conditions for local minimizers of one-dimen-
sional variational problems for vector-valued functions. We consider the functional

Φ : C1([a, b], RN) → R : u 7→
∫ b

a
f (x, u(x), u′(x)) dx, (1.1)

where −∞ < a < b < ∞, u = (u1, u2, . . . , uN), and the Lagrangian1

f : [a, b]× RN × RN → R : (x, u, p) 7→ f (x, u, p)

is sufficiently smooth ( f ∈ C3 or f ∈ C2). We also fix a function u0 ∈ C1([a, b], RN) and
(possibly empty) subsets IDa , IDb of the index set I := {1, 2, . . . , N}, and we look for conditions
guaranteeing that u0 is a local minimizer of Φ in the set

M := {u ∈ C1([a, b], RN) : (ui − u0
i )(a) = 0 for i ∈ IDa , (ui − u0

i )(b) = 0 for i ∈ IDb }. (1.2)
BEmail: quittner@fmph.uniba.sk

1As in [8, pp. 11–12], by u we denote both the functions [a, b] → RN and the independent variable in RN , and
by p we denote the last argument of f ; see also similar notation L(t, x(t), ẋ(t)) vs. L(t, x, v) in [15], for example.
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This means that at x = a we consider Dirichlet endpoint constraints for the components ui
with i ∈ IDa , while the endpoints of the remaining components uj with j ∈ I \ IDa are free;
similarly for x = b. It is well known (see Proposition 2.1) that if u0 is a local minimizer of this
problem, then u0 has to satisfy the natural boundary conditions

∂ f
∂pj

(a, u0(a), (u0)′(a)) = 0 for j /∈ IDa and
∂ f
∂pj

(b, u0(b), (u0)′(b)) = 0 for j /∈ IDb .

We say that u0 is a weak (or strong, resp.) local minimizer if there exists ε > 0 such that
Φ(u0) ≤ Φ(u) for any u ∈ M satisfying ∥u − u0∥C1 < ε (or ∥u − u0∥C < ε, resp.), where
∥ · ∥C1 and ∥ · ∥C are the usual norms in C1 and C, respectively (see Definition 2.2 and the
subsequent comments for more details). If u0 is a steady state of a mechanical system with
potential energy Φ, and u0 is a weak (or strong) local minimizer of Φ, then u0 is stable with
respect to perturbations which are small in C1 (or C), respectively. On the other hand, if u0 is
not a minimizer, then u0 is unstable.

If IDa = IDb = I, i.e. if one considers the Dirichlet endpoint constraints for all components
and both ends, then necessary and sufficient conditions for u0 to be a minimizer belong to
the classical results in the calculus of variations, see [5, 7, 8], for example. They are based on
the Jacobi theory (conjugate points) or the Weierstrass theory (field of extremals and excess
function). In the general case such conditions are also known (see [15, 16] and the references
therein, and cf. also [17]); however, they use the notion of a coupled point which is more
complicated than the classical notion of a conjugate point. This might be the reason why – as
far as the author is aware – that general theory has not yet been applied in the elasticity theory,
for example. In the scalar case, another approach to problems with variable endpoints (and
a special class of Lagrangians) can be found in [12] but the conditions there are even more
complicated than those in [15, 16]. Reference [12] has been cited by several papers dealing
with problems in the elasticity theory: Some of those papers use the complicated theory in
[12] for scalar problems with special Lagrangians (see [10], for example), some use various
ad-hoc estimates to obtain at least partial results in the vector-valued case (when the theory
in [12] does not seem to apply, see [11], for example) and some refrain from considering
variable endpoints because of the complexity of the theory in [12], see [3], for example, where
the authors write: “. . . the application of the conjugate point test with nonclamped ends is a
delicate issue . . . ”. Difficulties arising in a scalar problem with variable endpoints have also
been analyzed in [14], for example.

The main purpose of this paper is to derive simple conditions for u0 to be a minimizer,
and to show how they can be applied to particular problems.

In Section 3 we derive necessary and sufficient conditions for weak minimizers by mod-
ifying the Jacobi theory (see Theorem 3.4 and also Remark 7.1 for the comparison of our
conditions with those in [15, 16]). In Section 4 we use the results from Section 3 to find op-
timal conditions for the stability of a naturally straight Kirchhoff rod under various types of
endpoint constraints. The reasons for this particular application are the following:

• We show that our general results can easily be applied to vector-valued problems in the
elasticity theory.

• We solve some open problems (and correct an erroneous result) in [11].

• We show how the choice of endpoint constraints influences the stability of the rod.
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In Section 5 we use the Weierstrass theory to derive conditions for weak, strong and global
minimizers, see Theorem 5.2. In this case we restrict our applications in Section 6 to the scalar
case N = 1. The reason for this restriction is the following: If N = 1 and the Lagragian f is
independent of its first variable x, then the phase plane analysis of the corresponding Du Bois-
Reymond equation yields a very simple and efficient way to prove (or disprove) the existence
of a suitable field of extremals; hence it is sufficient to verify the nonnegativity of the excess
function in order to check our conditions. In particular, this approach does not require the
verification of sufficient conditions based on the Jacobi theory and it can be used even if we
do not know an explicit formula for u0. In Section 6 we first determine the stability of a planar
weightless inextensible and unshearable rod (see Example 6.3). This problem has already been
analyzed in [1,10], for example, but our analysis is simpler than that in [10] and more complete
than that in [1]. The notions of weak and strong minimizers are equivalent for functionals
Φ in Section 4 and Example 6.3 (see Remark 4.2(vi) and Proposition 2.3, respectively). To
illustrate various interesting features of minimizers in a more general case and demonstrate
the applicability of our theory, in Example 6.5 we consider Lagrangians of the form f (u, p) =
u2 + g(p), where g is a double-well function. In particular, the corresponding functional can
possess both strong (even global) minimizers and minimizers which are weak but not strong.

Some of our results in the scalar case N = 1 have been obtained in the Master thesis [2].

2 Preliminaries

Throughout this paper we will use the symbols Φ, f , u0, a, b, N, I, IDa and IDb introduced in the
Introduction. The partial derivatives of f will be denoted by fx, fui , fpi , fpi pj , . . .

Given f ∈ { f , fx, fui , fpi , fpi pj , . . . }, we will use the notation2

f0(x) := f(x, u0(x), (u0)′(x)).

If x ∈ {a, b} and W is a space of functions [a, b] → RN , then we set

INx := I \ IDx ,

RN
D,x := {ξ ∈ RN : ξi = 0 for i ∈ IDx },

RN
N ,x := {ξ ∈ RN : ξi = 0 for i ∈ INx },

WD,x := {v ∈ W : v(x) ∈ RN
D,x},

WD := WD,a ∩ WD,b.

In particular, if W = C1 = C1([a, b], RN), then

C1
D = {v ∈ C1([a, b], RN) : vi(a) = 0 for i ∈ IDa , vi(b) = 0 for i ∈ IDb } (2.1)

is the space of C1-test functions. (Notice that the set M in (1.2) satisfies M = u0 + C1
D.)

The norm in a general Banach space X will be denoted by ∥ · ∥X; the norm in W1,2 will also
be denoted by ∥ · ∥1,2. In particular, if X = C1 = C1([a, b], RN) or X = C = C([a, b], RN), then
∥u∥C1 = maxx∈[a,b] |u(x)| + maxx∈[a,b] |u′(x)| or ∥u∥C = maxx∈[a,b] |u(x)|, respectively, where
|u(x)| denotes the Euclidean norm of u(x) ∈ RN . We also set Bε := {ξ ∈ RN : |ξ| < ε}.

2The superscript 0 in f0 denotes evaluation of f along the reference arc u0; cf. similar notation L̂(t) =
L(t, x̂(t), ˙̂x(t)) in [15] or f(x) = f(x, u(x), u′(x)) in [8, formulas (30), (39) in Section 2.3, pp. 114–116]. The ad-
vantages of our notation will become evident in Section 6: See the notation introduced in Theorem 6.1.
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We will assume that u0 is a critical point of Φ in the set u0 +C1
D, i.e. Φ′(u0)h = 0 for any test

function h ∈ C1
D, where Φ′ denotes the Fréchet derivative of Φ. The following proposition is

well known, but for the reader’s convenience we explain the idea of its proof in the Appendix.

Proposition 2.1. Let f ∈ C1 and let u0 be a critical point of Φ in u0 + C1
D. Then u0 is an extremal

(i.e. it satisfies the Euler equations d
dx ( f 0

pi
) = f 0

ui
, i = 1, 2, . . . , N), and u0 also has to satisfy the natural

boundary conditions

f 0
pj
(a) = 0 for j ∈ INa and f 0

pj
(b) = 0 for j ∈ INb . (2.2)

If fpi ∈ C1 for i = 1, 2, . . . , N, and the strengthened Legendre condition

(∃c0 > 0)
N

∑
i,j=1

f 0
pi pj

(x)ξiξ j ≥ c0|ξ|2, ξ ∈ RN , x ∈ [a, b], (2.3)

is true, then u0 ∈ C2.

It is known that the Legendre condition (i.e. condition (2.3) with c0 = 0) is necessary for u0

to be a minimizer, but even the strengthened Legendre condition is not sufficient, in general.
Assuming that

f ∈ C3 satifies (2.3), where u0 ∈ C1([a, b], RN) is an extremal satisfying (2.2), (2.4)

and denoting ∑k = ∑N
k=1, we set

Ψ(h) :=
∫ b

a
F(x, h(x), h′(x)) dx, h ∈ W1,2([a, b], RN), (2.5)

where

F = F(x, u, p) := ∑
i,j

(
f 0
pi pj

(x)pi pj + f 0
piuj

(x)piuj + f 0
ui pj

(x)ui pj + f 0
uiuj

(x)uiuj

)
. (2.6)

If h ∈ C1, then Ψ(h) = Φ′′(u0)(h, h), i.e. Ψ is the second variation of Φ at u0. In addition, if
h ∈ C2, then integration by parts yields

Ψ(h) =
∫ b

a
∑

i
(Aih)hi dx + ∑

i
(Bih)hi

∣∣∣b

a
, (2.7)

where

Aih := − d
dx

(Bih) + Cih, Bih := ∑
j

(
f 0
pi pj

h′j + f 0
piuj

hj

)
, Cih := ∑

j

(
f 0
ui pj

h′j + f 0
uiuj

hj

)
. (2.8)

Set also

Ah := (A1h, . . . ,ANh), Bh := (B1h, . . .BNh), fp := ( fp1 , . . . , fpN ), fu = ( fu1 , . . . , fuN ).

The (vector-valued) second-order linear differential equation Ah = 0 is called the Jacobi
equation (for Φ and u0): it will play a fundamental role in the study of positive definiteness of
Ψ. Notice also that the Jacobi equation is the Euler equation for functional Ψ. More precisely,
by using the symmetry relations fpi pj = fpj pi , fpiuj = fuj pi and fuiuj = fujui we obtain

Fpi(x, h(x), h′(x)) = 2Bih(x), Fui(x, h(x), h′(x)) = 2Cih(x), (2.9)
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hence
2Aih(x) = − d

dx
Fpi(x, h(x), h′(x)) + Fui(x, h(x), h′(x)). (2.10)

Notice also that, given h, w ∈ W1,2, (2.9) and the symmetry of the second-order derivatives of
f mentioned above imply

Ψ′(h)w =
∫ b

a
∑

i

(
Fpi(x, h(x), h′(x))w′

i(x) + Fui(x, h(x), h′(x))wi(x)
)

dx

= 2
∫ b

a
∑

i

(
Bih · w′

i + Cih · wi
)

dx = 2
∫ b

a
∑

i

(
Biw · h′i + Ciw · hi

)
dx = Ψ′(w)h.

(2.11)

Definition 2.2. Let w ∈ M, where M is a subset of C1([a, b], RN). The function w is called a
weak or strong local minimizer in M if there exists ε > 0 such that Φ(v) ≥ Φ(w) for any v ∈ M
satisfying ∥v − w∥C1 < ε or ∥v − w∥C < ε, respectively.

Let w ∈ N , where N is a subset of W1,2([a, b], RN). The function w is called a local
minimizer in N if there exists ε > 0 such that Φ(v) ≥ Φ(w) for any v ∈ N satisfying ∥v∥1,2 < ε.

If the inequalities Φ(v) ≥ Φ(w) in the definitions above are strict for v ̸= w, then the
minimizer w is called strict.

Since the adjectives weak and strong are not meaningful in the case of global minimizers,
we often omit the word “local” in the notions of weak and strong local minimizers. Each
strong minimizer is a weak minimizer but the opposite is not true, in general. For example,
if N = 1 and f (x, u, p) = p2 + p3, then u0 ≡ 0 is a weak but not strong minimizer of Φ in
u0 + C1

D for any choice of a, b, IDa and IDb (see also Example 6.5 for a less trivial example). On
the other hand, the following Proposition 2.3 and Remark 4.2(vi) show that in some cases the
notions of weak and strong minimizers are equivalent. The choice of the class of Lagrangians
in Proposition 2.3 is motivated by Example 6.3, where we consider the stability of a planar
rod. Proposition 2.3 is true for any choice of a, b, IDa and IDb ; its proof is postponed to the
Appendix.

Proposition 2.3. Let N = 1 and f (x, u, p) = (p − K)2 + g(u), where K ∈ R and g ∈ C1(R). If
u0 ∈ C1 is a weak minimizer, then it is a strong minimizer.

The following proposition is a consequence of well known facts (see [5, 8], for example).
The assumptions in that proposition are much stronger than necessary, but the proposition
will be sufficient for our purposes (see Remark 4.2(vi), Section 6 and the proof of Proposi-
tion 3.5).

Proposition 2.4.

(i) Let f ∈ Ck, k ≥ 2.

If u0 ∈ C1 is a critical point of Φ in u0 + C1
D and (2.3) is true, then u0 ∈ Ck and u0 satisfies the

Du Bois-Reymond equation

d
dx

( f 0 − (u0)′ · f 0
p) = f 0

x in [a, b]. (2.12)

Conversely, if u0 ∈ C2 satisfies (2.12) and (u0)′ ̸= 0 a.e., then u0 is an extremal.

(ii) Let f ∈ C1 satisfy the growth condition (1 + |p|)| fp|+ | fu| ≤ M(|u|)(1 + |p|)2, where M :
[0, ∞) → [0, ∞) is nondecreasing. Then Φ ∈ C1(W1,2). In addition, if u0 ∈ W1,2 is a local
minimizer of Φ in u0 + W1,2

D , then there exists C ∈ RN such that

f 0
p(x) =

∫ x

a
f 0
u(ξ) dξ + C for a.e. x ∈ [a, b].
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3 Jacobi theory

In this section we will prove necessary and sufficient conditions for weak minimizers by
modifying the classical Jacobi theory. Throughout this section we assume (2.4).

The following proposition is well known, but for the reader’s convenience we provide its
proof in the Appendix.

Proposition 3.1. Assume (2.4) and let Ψ be defined by (2.5).

(i) If Ψ is positive definite in W1,2
D , then u0 is a strict weak minimizer in u0 + C1

D.

(ii) If Ψ(h) < 0 for some h ∈ W1,2
D , then u0 is not a weak minimizer in u0 + C1

D.

We will consider the scalar case first. Assume that

h is a nontrivial solution of the Jacobi equation Ah = 0. (3.1)

Then the following classical result for problems with Dirichlet endpoint constraints is well
known.

Theorem 3.2. Assume (2.4) with N = 1 and (3.1). Let INa = INb = ∅ and h(a) = 0.

(i) If h(y) = 0 for some y ∈ (a, b), then u0 is not a weak minimizer.

(ii) If h(y) ̸= 0 for any y ∈ (a, b], then u0 is a strict weak minimizer.

Our analogue in the case of variable endpoints is the following theorem.

Theorem 3.3. Assume (2.4) with N = 1 and (3.1). Let INa = INb = {1} and Bh(a) = 0.

(i) If h(y) = 0 for some y ∈ (a, b] or Bh(b)h(b) < 0, then u0 is not a weak minimizer.

(ii) If h(y) ̸= 0 for any y ∈ (a, b] and Bh(b)h(b) > 0, then u0 is a strict weak minimizer.

In fact, a slight generalization of Theorem 3.3(ii) has been proved in [2]: The initial condi-
tion Bh(a) = 0 can be replaced with Bh(a)h(a) ≤ 0. Unfortunately, the method of the proof
in [2] does not seem to be easily extendable to the vector-valued case.

Theorems 3.2 and 3.3 are special cases of the following general theorem.

Theorem 3.4. Assume (2.4). Let h(1), . . . , h(N) be linearly independent solutions of the Jacobi equation
Ah = 0 satisfying the initial conditions h(a) ∈ RN

D,a, Bh(a) ∈ RN
N ,a. Set

D(x) := det(h(1)(x), . . . , h(N)(x)), H := span(h(1), . . . , h(N)), H0 := {h ∈ H : h(b) = 0}.

(i) If D(x) = 0 for some x ∈ (a, b) or

INb ̸= ∅ and Bh(b) · h(b) < 0 for some h ∈ HD,b,

then u0 is not a weak minimizer.

(ii) If D ̸= 0 in (a, b] and

either INb = ∅ or Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0},

then u0 is a strict weak minimizer.
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(iii) Let D ̸= 0 in (a, b), D(b) = 0 (hence H0 ̸= {0}), and INb ̸= ∅. If

there exists h ∈ H0 such that Bih(b) ̸= 0 for some i ∈ INb , (3.2)

then u0 is not a weak minimizer. If IDb = ∅, then (3.2) is always true.

The proof of Theorem 3.4 is based on a modification of the classical Jacobi theory, and
this is also true in the case of the corresponding proof in [16]. However, our conditions in
Theorem 3.4 are simpler than those in [15, 16], see Remark 7.1 in the Appendix.

In order to prove Theorem 3.4, we need some preparation. Given y ∈ (a, b], let

Xy := {h ∈ W1,2([a, b], RN) : h(a) ∈ RN
D,a, h(x) = 0 for x ≥ y}

be endowed with the norm ∥h∥Xy := (
∫ b

a ∑i,j f 0
pi pj

h′ih
′
j dx)1/2 (which is equivalent to the stan-

dard norm in W1,2 for h ∈ Xy due to (2.3) and the boundary condition h(b) = 0), and let Sy

denote the unit sphere in Xy. If ỹ ∈ (y, b], then Xy ⊂ Xỹ, hence Sy ⊂ Sỹ. Set also

λ1 = λ1(y) := inf
h∈Sy

Ψ(h) = 1 + inf
h∈Sy

Ψ̂(h), (3.3)

where

Ψ̂(h) :=
∫ b

a
∑
i,j

(
f 0
piuj

h′ihj + f 0
ui pj

hih′j + f 0
uiuj

hihj

)
dx.

Since Sy ⊂ Sỹ if y < ỹ, the function λ1 is nonincreasing. In addition, one can easily show that
λ1 is continuous, and the estimate

|h(x)| =
∣∣∣ ∫ y

x
h′(ξ) dξ

∣∣∣ ≤ (∫ y

x
|h′(ξ)|2 dξ

)1/2√
y − x

≤ 1√
c0

(∫ b

a
∑
i,j

f 0
pi pj

h′ih
′
j dξ

)1/2√
y − a =

1√
c0

√
y − a

for h ∈ Sy and x ∈ (a, y) implies limy→a+ λ1(y) = 1.

Proposition 3.5. Let D be as in Theorem 3.4 and y ∈ (a, b].

(i) If λ1(y) = 0, then D(y) = 0 and λ1(z) < 0 for z ∈ (y, b]. If D(y) = 0, then λ1(y) ≤ 0.

(ii) If h ∈ Xb, then Ψ(h) ≥ λ1(b)∥h∥2
Xb

. If λ1(b) < 0, then there exists h ∈ Xb such that Ψ(h) < 0.

Proof. Let λ1(y) = 0 and let By denote the closed unit ball in Xy. Since Ψ̂ is weakly sequentially
continuous, there exists hy ∈ By such that Ψ̂(hy) = infBy Ψ̂ = −1. We have hy ∈ Sy (otherwise
thy ∈ By for some t > 1, and Ψ̂(thy) = t2Ψ̂(hy) < infBy Ψ̂, which yields a contradiction). Since
Ψ(hy) = infSy Ψ = 0, hy is a global minimizer of Ψ in Xy. Notice that F ∈ C1 satisfies the
growth condition

(1 + |p|)|Fp(x, u, p)|+ |Fu(x, u, p)| ≤ C(1 + |p|)(|u|+ |p|) ≤ 2C(1 + |u|2)(1 + |p|2),

where C depends only on the sup-norm of f 0
pi pj

, f 0
piuj

, f 0
ui pj

, f 0
uiuj

, hence Proposition 2.4(ii) and
(2.9) imply

2Bihy(x) = Fpi(x, hy(x), h′y(x)) =
∫ x

a
Fui(ξ, hy(ξ), h′y(ξ)) dξ + ci =

∫ x

a
2Cihy dξ + ci (3.4)
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for a.e. x ∈ [a, y]. Since the right-hand side of (3.4) is a continuous function of x, f ∈ C3

and (2.3) is true (hence the matrix f 0
pi pj

is invertible and the inverse matrix is a continuous
function of x), we see that the restriction of hy to [a, y] is C1. Denote this restriction by h̄y

and set C1
y := {w ∈ C1([a, y]) : w(a) ∈ RN

D,a, w(y) = 0}, Ψy(h) =
∫ y

a F(x, h(x), h′(x)) dx.
Then h̄y is a critical point of Ψy in h̄y + C1

y = C1
y. Now Proposition 2.1, (2.10) and (2.9)

imply that h̄y is C2, it satisfies the Jacobi equation Ah = 0 in [a, y] and the natural boundary
conditions Bh(a) ∈ RN

N ,a. Since we also have hy(a) ∈ RN
D,a, there exists α ∈ RN \ {0} such that

hy = ∑k αkh(k) on [a, y], where h(k) are as in Theorem 3.4. Since hy(y) = 0, we have D(y) = 0.
Next assume on the contrary that λ1(y) = 0 = λ1(z) for some z ∈ (y, b]. Then the

minimizer hy is a global minimizer of Ψ in Xz. Similarly as above we deduce that hy ∈
C2([a, z]) and hy solves the Jacobi equation in [a, z]. Consequently, hy(y) = h′y(y) = 0, which
yields a contradiction with the uniqueness of solutions of the initial value problem for the
Jacobi equation.

Next assume that D(y) = 0. Then there exists α = (α1, . . . , αN) ∈ RN \ {0} such that
h := ∑k αkh(k) satisfies h(y) = 0, hence if we set h̃(x) := h(x) for x ≤ y and h̃(x) := 0
otherwise, then h̃ ∈ Xy. In addition, using Aih = 0, Bih(a) ∈ RN

N ,a, h(a) ∈ RN
D,a and h(y) = 0

we obtain

Ψ(h̃) =
∫ b

a
F(x, h̃(x), h̃′(x)) dx =

∫ y

a
F(x, h(x), h′(x)) dx =

∫ y

a
∑

i
(Aih)hi dx + ∑

i
(Bih)hi

∣∣∣y

a
= 0,

hence λ1(y) ≤ 0.
If h ∈ Xb \ {0}, then Ψ(h) = ∥h∥2

Xb
Ψ(h/∥h∥Xb) ≥ λ1(b)∥h∥2

Xb
by the definition of λ1. If

λ1(b) < 0, then the definition of λ1 implies the existence of h ∈ Sb such that Ψ(h) < 0.

Proof of Theorem 3.4. We will show that

the assumptions in (i) (or (iii)) imply Ψ(h) < 0 for some h ∈ W1,2
D , (3.5)

while
the assumptions in (ii) guarantee that Ψ is positive definite in W1,2

D , (3.6)

hence the assertions in Theorem 3.4 will follow from Proposition 3.1.
(i) If D(x) = 0 for some x ∈ (a, b), then Proposition 3.5(i) implies λ1(x) ≤ 0 and λ1(b) < 0,

hence Proposition 3.5(ii) implies the existence of h ∈ Xb ⊂ W1,2
D such that Ψ(h) < 0.

If INb ̸= ∅ and Bh(b) · h(b) < 0 for some h ∈ HD,b ⊂ W1,2
D , then Ah = 0, hi(a) = 0 for

i ∈ IDa and Bih(a) = 0 for i ∈ INa , hence (2.7) implies

Ψ(h) = Bh · h
∣∣∣b

a
= Bh(b) · h(b) < 0.

(ii) Assume that D ̸= 0 in (a, b]. Then Proposition 3.5 implies λ1(b) > 0 and Ψ(h) ≥
λ1(b)∥h∥2

Xb
for h ∈ Xb. If INb = ∅, then Xb = W1,2

D , hence we are done.
Next assume that INb ̸= ∅ and Bh̃(b) · h̃(b) > 0 for any h̃ ∈ HD,b \ {0} (hence Bh̃(b) · h̃(b) ≥

c1∥h̃∥2
1,2 for some c1 > 0 due to dim HD,b < ∞), and let h ∈ W1,2

D be fixed. Since D(b) ̸= 0,
there exists α ∈ RN such that h̃ := ∑k αkh(k) satisfies h̃(b) = h(b). In particular, h̃ ∈ HD,b.
Set ĥ := h − h̃. Then ĥ ∈ Xb, hence Ψ(ĥ) ≥ λ1(b)∥ĥ∥2

Xb
. In addition, Ψ(h̃) = Bh̃(b) · h̃(b) ≥

c1∥h̃∥2
1,2. Since Ψ is a quadratic functional, we have Ψ′′(h̃)(ĥ, ĥ) = 2Ψ(ĥ) and Ψ′′′ = 0. Using

(2.11) and integration by parts we also obtain

Ψ′(ĥ)h̃ = Ψ′(h̃)ĥ = 2
∫ b

a
Ah̃ · ĥ dx + 2Bh̃ · ĥ

∣∣∣b

a
= 0,
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hence there exists c > 0 such that

Ψ(h) = Ψ(h̃ + ĥ) = Ψ(h̃) + Ψ′(h̃)ĥ +
1
2

Ψ′′(h̃)(ĥ, ĥ) = Ψ(h̃) + Ψ(ĥ) ≥ c∥h∥2
1,2.

(iii) Let h ∈ H0 and Bih(b) ̸= 0 for some i ∈ INb . Then Ah = 0, h(a) ∈ RN
D,a, Bh(a) ∈ RN

N ,a
and h(b) = 0, hence

Ψ(h) =
∫ b

a
Ah · h dx + Bh · h

∣∣∣b

a
= 0.

Notice also that h ̸= 0 due to Bih(b) ̸= 0. Since D ̸= 0 in (a, b), D(b) = 0, limy→a+ λ1(y) = 1
and λ1 is continuous and nonincreasing, Proposition 3.5(i) implies λ1(b) = 0, hence h is a
global minimizer of Ψ in Xb. Choose h̃ ∈ C1

D with h̃(a) = 0, h̃j(b) = δij for j = 1, 2, . . . , N.
Then

Ψ′(h)h̃ = 2
∫ b

a
Ah · h̃ dx + 2Bh · h̃

∣∣∣b

a
= 2Bih(b) ̸= 0,

hence
Ψ(h + εh̃) = εΨ′(h)h̃ + o(ε) < 0

provided |ε| is small enough and εBih(b) < 0.
If IDb = ∅ and h ∈ H0 \ {0}, then Ah = 0 and h(b) = 0, hence the uniqueness of the

initial value problem for the Jacobi equation implies the existence of i ∈ INb = I such that
Bih(b) ̸= 0.

Remark 3.6.

(i) If Ψ is positive semidefinite but not positive definite, then there exists h∗ ∈ W1,2
D \ {0}

such that 0 = Ψ(h∗) = infW1,2
D

Ψ and h∗ can be determined from our analysis. For

example, if N = 1 and IDa = IDb = ∅ (cf. Theorem 3.3), then h∗ is a positive (or negative)
solution of the Jacobi equation satisfying Bh∗(a) = Bh∗(b) = 0. If Φ depends smoothly
on a parameter θ, u0 is a critical point of Φ for any θ, and u0 is (or is not, respectively)
a weak minimizer for θ > θ∗ (or θ < θ∗, respectively), then the critical parameter θ∗

corresponds to the case where h∗ exists. (Such situation occurs, for example, in the
study of stability of a twisted rod in Section 4.) In this case one can expect bifurcation
for the problem Φ′(u) = 0 at θ = θ∗ in the direction of h∗, cf. [6, Theorem 5.6].

(ii) Let h(k), k = 1, 2, . . . , N, be as in Theorem 3.4, ξ ∈ RN and hξ := ∑k ξkh(k). Set A :=
(akl)

N
k,l=1, where akl = Bh(k)(b) · h(l)(b), and

ΞD := {ξ ∈ RN : hξ(b) ∈ RN
D,b}.

Then Bhξ(b) · hξ(b) = Aξ · ξ, i.e. the condition Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0}
in Theorem 3.4(ii), for example, is equivalent to Aξ · ξ > 0 for any ξ ∈ ΞD \ {0}. In
particular, if IDb = ∅ (and D(b) ̸= 0), then that condition is equivalent to the positive
definiteness of the matrix A. Notice also that akl = alk due to 2akl = Ψ′(h(k))h(l) and
Ψ′(h(k))h(l) = Ψ′(h(l))h(k).

(iii) Assertions (3.6) or (3.5) show that some of the assumptions in Theorem 3.4 are suffi-
cient for the positivity or the negativity of Ψ, respectively. We will show that those
assumptions are also necessary, at least in some cases.
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Let Ψ be positive definite in W1,2
D . Since Xb ⊂ W1,2

D , Ψ is also positive definite in Xb and
Proposition 3.5(i) implies D ̸= 0 in [a, b]. If INb ̸= ∅ and h ∈ HD,b \ {0}, then h ∈ W1,2

D ,
Bh(a) ∈ RN

N ,a, Ah = 0, hence

0 < Ψ(h) =
∫ b

a
Ah · h dx + Bh · h

∣∣∣b

a
= Bh(b) · h(b),

so that the assumptions in Theorem 3.4(ii) are satisfied. This fact and (3.6) show that the
positive definiteness of Ψ in W1,2

D and the assumptions of Theorem 3.4(ii) are equivalent.

Let Ψ(h̄) < 0 for some h̄ ∈ W1,2
D and

IDb = ∅ or INb = ∅. (3.7)

Assume that the assumptions of Theorem 3.4(i) are not satisfied. Then D ̸= 0 in (a, b)
(hence λ1(b) ≥ 0 due to Proposition 3.5(i)) and either INb = ∅ or Bh(b) · h(b) ≥ 0 for
any h ∈ HD,b. If INb = ∅, then W1,2

D = Xb, hence Ψ ≥ 0 in W1,2
D , which is a contradiction.

Consequently, INb ̸= ∅, Bh(b) · h(b) ≥ 0 for any h ∈ HD,b and IDb = ∅ (due to (3.7)). If
D(b) ̸= 0, then there exists h̃ ∈ HD,b such that h̃(b) = h̄(b). Set ĥ := h̄ − h̃ ∈ Xb. Then
similarly as in the proof of Theorem 3.4(ii) we obtain

0 > Ψ(h̄) = Ψ(h̃ + ĥ) = Ψ(h̃) + Ψ(ĥ) ≥ Bh̃(b) · h̃(b) + λ1(b)∥ĥ∥2
Xb

≥ 0,

which is a contradiction. Consequently, D(b) = 0. Since IDb = ∅ implies (3.2), all
assumptions of Theorem 3.4(iii) are satisfied. These considerations and (3.5) show that if
(3.7) is true, then the condition Ψ(h̄) < 0 for some h̄ ∈ W1,2

D is satisfied if and only if the
assumptions of Theorem 3.4(i) or the assumptions of Theorem 3.4(iii) are satisfied.

4 Stability of a twisted rod

In this section we use Theorem 3.4 in order to determine the stability of an unbuckled state of
an inextensible, unshearable, isotropic Kirchhoff rod. Under suitable assumptions the strain
energy of the rod is given by

Φ(u) =
∫ 1

0

(
A
2
(
(u′

1)
2 + (u′

2)
2 sin2 u1

)
+

C
2
(u′

3 + u′
2 cos u1)

2 + FL2 sin u1 cos u2

)
dx,

where u1, u2, u3 are so called Euler angles describing the orientation of the director basis,
A, C > 0 are constants, L is the rod-length and F ∈ R is an external terminal load; the
rod is oriented horizontally (along the x axis), see [11, (9)]. The unbuckled state is given by
u0(x) := (π

2 , 0, 2πMx) where M is a twist parameter. Notice that u0 is an extremal satisfying
the natural boundary conditions f 0

pi
(x) = 0 for i = 1, 2 and x = 0, 1. The stability of u0 was

studied in [11] under the Dirichlet boundary conditions u3(x) = u0
3(x) for x = 0, 1, and one

of the following sets of boundary conditions for u1, u2:

u1(0) = u1(1) = π/2, u2(0) = u2(1) = 0, (4.1)

u1(0) = u1(1) = π/2, u′
2(0) = u′

2(1) = 0, (4.2)

u′
1(0) = u′

1(1) = 0, u′
2(0) = u′

2(1) = 0. (4.3)

The results in [11] are essentially optimal in case (4.1), but the results in cases (4.2) and (4.3) are
only partial, leaving several open problems. Notice that the Neumann boundary conditions



Necessary and sufficient conditions 11

are not the same as the natural boundary conditions in general (see [13] for related issues), but
one can easily show (see Proposition 7.2 and Remark 7.3 in the Appendix) that the problem of
stability of u0 considered in [11] in cases (4.2) and (4.3) is equivalent to the question whether u0

is a weak minimizer of Φ in u0 + C1
D with IN0 = IN1 = {2} and IN0 = IN1 = {1, 2}, respectively;

hence we can use Theorem 3.4 in order to solve those problems. In fact, we will consider all
possible subsets IN0 , IN1 of {1, 2}, and in each case we will find the borderline between the
stability and instability (i.e. between the situations when u0 is and is not a weak minimizer,
respectively). On the other hand, we will always assume 3 ∈ ID0 ∩ ID1 , i.e. we will always
consider the Dirichlet boundary conditions for the third component u3.

In order to have a more graphic notation, given IN0 , IN1 ⊂ {1, 2}, we denote the correspond-

ing case by
(c1

0c1
1

c2
0c2

1

)
, where ci

j = N if i ∈ INj , ci
j = D if i ∈ IDj , i = 1, 2, j = 0, 1. For example,(DD

NN
)

corresponds to the case IN0 = IN1 = {2}, i.e. (4.2), and
(NN
NN

)
corresponds to the case

IN0 = IN1 = {1, 2}, i.e. (4.3). Set also

α :=
2πCM

A
, β := −FL2

A
, γ :=

√∣∣∣β − 1
4

α2
∣∣∣, δ :=

α

2
, θ :=

2γδ

γ2 + δ2 . (4.4)

We will show that we may assume α > 0, and for any
(c1

0c1
1

c2
0c2

1

)
with ci

j ∈ {D,N} we will find a

function g = g
c1

0c1
1

c2
0c2

1
: (0, ∞) → R : α 7→ β which describes the borderline between stability and

instability. In the particular cases (4.1), (4.2) and (4.3) we will also use the notation

gD := gDD
DD , gM := gDD

NN , and gN := gNN
NN ,

respectively (the notation gM reflects the fact that case (4.2) is called “Mixed” in [11, (13)]).

Proposition 4.1. Let u0 be as above, α > 0, and let IN0 , IN1 ⊂ {1, 2} be fixed. Then there exists
a continuous function g : (0, ∞) → R having the properties mentioned above, i.e. if β > g(α) (or
β < g(α), resp.), then u0 is a strict weak minimizer (or is not a weak minimizer, resp.).

(i) Let ID0 ∩ {1, 2} ̸= ∅ ̸= ID1 ∩ {1, 2}. Then

gDD
ND = gDD

DN = gDN
DD = gND

DD , gDN
ND = gND

DN , gDD
NN = gNN

DD (= gM), (4.5)

gD(α) =
α2

4
− π2, gDD

ND(α) =
α2

4
− π2

4
,

gDN
ND(α) = (k + 1

2 )π(α − (k + 1
2 )π) if α ∈ [2kπ, 2(k + 1)π], k = 0, 1, 2, . . . ,

gM(α) = kπ(α − kπ) if α ∈ [(2k − 1)π, (2k + 1)π], k = 0, 1, 2, . . . .

 (4.6)

(ii) Let either ID0 ∩ {1, 2} = ∅ or ID1 ∩ {1, 2} = ∅. Then

gND
ND = gDN

DN , gNN
ND = gNN

DN , gND
NN = gDN

NN , (4.7)
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gN(α) = inf
{

β ≥ 1
2

α2 : (1 − θ2) cosh(2γ) + θ2 cos(2δ) = 1
}

∈
[

1
2

α2, α2
]

,

gND
ND(α) =


sup{β ∈ ( 1

4 α2, 1
2 α2) : (α2 − 2β) cosh(2γ) = 2β} if α > 2,

1
4 α2 if α = 2,

sup{β ∈ ( 1
4 (α

2 − π2), 1
4 α2) : (α2 − 2β) cos(2γ) = 2β} if α ∈ (0, 2),

gNN
ND (α) = inf{β ≥ βα : (γ2 − δ2) sinh(2γ) = 2γδ sin(2δ)}, βα :=

{
1
2 α2 if α ≤ π,

gND
ND(α) if α > π,

gND
NN (α) =


inf{β ≥ gND

ND(α) : (γ2 − δ2) sinh(2γ) = −2γδ sin(2δ)} if α ≥ α0,

inf{β ≥ gND
ND(α) : ξ2

1 sin ξ2 cos ξ1 = ξ2
2 sin ξ1 cos ξ2} if α ∈ ( 1

2 π, α0),

0 if α ∈ (0, 1
2 π],

where ξi := − 1
2 α ± γ and α0 > 0 is defined by α0 = 2 sin α0.

Remark 4.2. (i) If u0 is a weak minimizer of Φ with given IN0 , IN1 (and the borderline function
g), then it remains a weak minimizer if we replace INx with any subset of INx for x = 0, 1,
since the set C1

D becomes smaller. Therefore the new borderline function g̃ has to satisfy
g̃ ≤ g. In particular, gD ≤ g ≤ gN for any borderline function g, gND

ND ≤ min(gNN
ND , gND

NN ),
and gND

ND(α) ≥ gDD
ND(α) =

1
4 (α

2 − π2). We also have gN(α) ≤ α2 since the Cauchy inequality
implies that the corresponding functional Ψ is positive definite for β > α2.

(ii) If α ∈ (0, α0) is fixed, then the function Ξ(β) := ξ2
1 sin ξ2 cos ξ1 − ξ2

2 sin ξ1 cos ξ2 ap-
pearing in the formula for gND

NN in Proposition 4.1 has a unique root β∗ in in the interval
[gND

ND(α),
1
4 α2): This follows from our proof, since any root in that interval corresponds to the

case when the corresponding functional Ψ is positive semidefinite but not positive definite,
and the form of Ψ guarantees that, given α, this can happen only for one β. Consequently,

gND
NN (α) = sup

{
β <

1
4

α2 : ξ2
1 sin ξ2 cos ξ1 = ξ2

2 sin ξ1 cos ξ2

}
if α ∈ (0, α0).

In addition, our proof implies that if β∗ > gND
ND(α), then Ξ changes sign at β∗. Similarly, if α >

α0 (or α > 0, resp.), then the function (γ2 − δ2) sinh(2γ) + 2γδ sin(2δ) (or (γ2 − δ2) sinh(2γ)−
2γδ sin(2δ), resp.) has a unique root β∗ in the interval [gND

ND(α), ∞) (or [βα, ∞), resp.), and
it changes sign at β∗ if β∗ > gND

ND(α) (or β∗ > βα, resp.). In addition, the estimates in (i)
guarantee that that root β∗ satisfies β∗ ≤ gN(α) ≤ α2. Analogous statements are true in the
case of gN .

(iii) Our definition of α and β in (4.4) implies that the borderline function gM was estimated
above and below in [11, Proposition 6] by functions

gM(α) := max(0, α2 − π2) and gM(α) := π2(α2 − π2)/(α2 + π2),

respectively, see Figure 4.1. Let us also mention that the upper bound gN(α) := 1
4 α2 for gN(α)

in [11, Proposition 5] is incorrect: The error is explained below.
(iv) The function ĝ(α) := 1

2 α2 is a good approximation of functions g in Proposition 4.1(ii)
for α large, see Table 4.1 and Figure 4.2. The functions gND

NN , gNN
ND oscillate between gN and

gND
ND , they intersect each other whenever α = kπ, k = 1, 2, . . . , and then their common val-

ues equal ĝ(α) (and also gN(α) if k is even). Similarly, min(gND
NN (α), gNN

ND (α)) = gND
ND(α)

if α = (k + 1
2 )π, k = 0, 1, 2, . . . . Similar behavior of functions g̃(α) = 1

4 α2 and gM, gDN
ND ,

gDD
ND can be observed in Figure 4.1. The formulas for functions g in Proposition 4.1(ii) can



Necessary and sufficient conditions 13

α = 2πCM
A

π 2π 3π 4π 5π

β = − FL2

A

0

π2

−π2

2π2

3π2

4π2

5π2

6π2

1
4 α2

gD

gDD
ND

gDN
ND

•

•

•

•

•
gM = gDD

NN

•

•

•

•

•

gM

gM

gM

Figure 4.1: The case ID0 ∩ {1, 2} ̸= ∅ ̸= ID1 ∩ {1, 2}.

be used in the numerical computations of g, but they also can be used in the study of the
asymptotic or qualitative behavior of g. For example, they imply that limα→0+

gN(α)
α2 = 1,

limα→∞(ĝ − gND
ND)(α) = 0, gND

ND is C1 \ C2 at α = 2, and gN is C \ C1 at α = 2kπ, k = 1, 2 . . . .
(v) Numerical computations determining the borderlines for stability could be used also

if we did not know the formulas for functions g in Proposition 4.1. If β0 < β1 and the
problem with parameters (α0, β0) or (α0, β1) is unstable or stable, respectively, then one can set
β2 := (β0 + β1)/2 and numerically solve the Jacobi equations with suitable initial conditions
and parameters (α0, β2) (by the Euler method, for example). If that problem is stable or
unstable, then one can set β3 := (β0 + β2)/2 or β3 := (β2 + β1)/2, respectively, and solve the
problem with parameters (α0, β3) etc. In fact, we used such general approach to compute the
numerical values of functions gN and gND

ND first, and we verified a posteriori that the computed
critical parameters correspond to the critical values determined by Proposition 4.1.

(vi) Let u0 be a weak minimizer. Then a straightfoward modification of the proof of
Proposition 2.3 shows that u0 is also a strong minimizer. In fact, assume first that there exist
vk ∈ W1,2

D such that rk := ∥vk∥1,2 → 0 and Φ(u0 + vk) < Φ(u0). Since Φ ∈ C1(W1,2) is weakly
sequentially lower semicontinuous, we can find a minimizer uk of Φ in {u ∈ u0 + W1,2

D :
∥u − u0∥1,2 ≤ rk} and Lagrange multipliers λk ≤ 0 such that Φ′(uk)h = λkΘ′(uk)h for any
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αππ
2

•

•

α0 2 2π

β

0

π2

2π2

1
4 α2

1
2 α2

gNN
ND

•

gND
NN

•

gND
ND

gND
ND

gN

Figure 4.2: The case ID0 ∩ {1, 2} = ∅.

h ∈ W1,2
D , where Θ(u) = ∥u − u0∥2

1,2. The arguments in [5, Section 2.6] guarantee that uk ∈ C2

and uk satisfy the Euler equations (Fk
p(x))′ = Fk

u(x), where Fk
p(x) := Fp(λk, x, uk(x), (uk)′(x))

(similarly Fk
u) and F(λ, x, u, p) := f (x, u, p) − λ(|p − (u0)′(x)|2 + |u − u0(x)|2). These equa-

tions, the particular form of f , u0, the positive definiteness of Fk
pp and the convergence uk → u0

in W1,2 guarantee that {uk} is a Cauchy sequence in W2,1, hence in C1, thus uk → u0 in C1.
However, this contradicts our assumption that u0 is a weak minimizer. Consequently, u0 is
a local minimizer in u0 + W1,2

D . Next assume that there exist vk ∈ C1
D such that ∥vk∥C → 0

and Φ(u0 + vk) < Φ(u0). Then it is not difficult to show that there exists c > 0 such that
0 > Φ(u0 + vk) − Φ(u0) ≥ c∥vk∥2

1,2 + o(1), hence ∥vk∥1,2 → 0, which yields a contradiction
and concludes the proof.

Proof of Proposition 4.1. Notice that u0 is a critical point of Φ for any choice of IN0 , IN1 ⊂ {1, 2}.
By Proposition 3.1, we have to determine the positivity of functional Ψ in W1,2

D . We have
Ψ(h) = Ψ1(h1, h2) + Ψ2(h3), where

Ψ1(h1, h2) = A
∫ 1

0

(
(h′1)

2 + (h′2)
2 − 2αh′2h1 + β(h2

1 + h2
2)
)

dx, Ψ2(h3) = C
∫ 1

0
(h′3)

2 dx.

Since the positivity of Ψ does not change if we replace α by −α (consider −h1 instead of h1),
we may assume α ≥ 0. Since the case α = 0 is trivial, we assume α > 0. Since Ψ2 is positive
definite in W1,2

0 ([0, 1]), it is sufficient to study the positivity of the functional

Ψ̃(h1, h2) :=
1

2A
Ψ1(h1, h2) =

1
2

∫ 1

0

(
(h′1)

2 + (h′2)
2 − 2αh′2h1 + β(h2

1 + h2
2)
)

dx (4.8)
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α/π gN(α)/π2 gNN
ND (α)/π2 ĝ(α)/π2 gND

NN (α)/π2 gND
ND(α)/π2 ∆max(α)/π2

0 0 0 0 0 -0.25 0.25
0.3 0.0842 0.0732 0.045 0.0000 -0.1222 0.2064
0.5 0.2137 0.1679 0.125 0.0000 0.0000 0.2137
0.7 0.3792 0.2820 0.245 0.1826 0.1533 0.2258
1.0 0.6717 0.5000 0.500 0.5000 0.4446 0.2271
1.3 1.0067 0.8197 0.845 0.8663 0.8129 0.1938
1.5 1.2549 1.1032 1.125 1.1440 1.1032 0.1516
1.7 1.5279 1.4334 1.445 1.4558 1.4305 0.0973
2.0 2.0000 2.0000 2.000 2.0000 1.9923 0.0076
2.5 3.2058 3.1274 3.125 3.1225 3.1225 0.0832
3.0 4.5759 4.5000 4.500 4.5000 4.4992 0.0767
3.5 6.1596 6.1248 6.125 6.1252 6.1248 0.0348
4.0 8.0000 8.0000 8.000 8.0000 7.9999 0.0001

Table 4.1: Numerical values of functions g and ∆max := gN − gND
ND if ID0 ∩

{1, 2} = ∅.

in the space

W̃D := {h ∈ W1,2([0, 1], R2) : hi(j) = 0 for i ∈ IDj , i = 1, 2, j = 0, 1}. (4.9)

In fact, Ψ is positive definite (or semidefinite, resp.) in W1,2
D if and only if Ψ̃ is positive definite

(or semidefinite, resp.) in W̃D. Therefore, in what follows, we will apply the Jacobi theory
from Section 3 to the functional Ψ̃ with α > 0. Notice that the assumptions in Theorem 3.4
depend only on the corresponding functional Ψ, and the conclusions can also be formulated
in terms of Ψ, see (3.5), (3.6). We will use Theorem 3.4 in this way. More precisely, we will
use assertions (3.5), (3.6) (with Ψ and W1,2

D replaced by Ψ̃ and W̃D, respectively) to determine
the positivity of Ψ̃ (hence the positivity of Ψ) and then we will use Proposition 3.1 (with
Ψ(h) = Ψ(h1, h2, h3)) to conclude that u0 is (or is not) a minimizer of Φ.

Notice that the index sets for functional Ψ̃ satisfy ĨDj = IDj ∩ {1, 2} and ĨNj = INj ∩ {1, 2} =

INj for j = 1, 2, hence we will use the notation INj instead of ĨNj . Similarly, the corresponding
operators B̃i, i = 1, 2 (cf. (2.8)), satisfy B̃i(h1, h2) = Bi(h1, h2, 0) for i = 1, 2, and – without
fearing confusion – we will use the notation Bih instead of B̃ih and Bh := (B1h,B2h) if
h = (h1, h2) and i = 1, 2. The same applies to operators Ci and Ai. Since

B1h = h′1, B2h = −αh1 + h′2, C1h = βh1 − αh′2, C2h = βh2, (4.10)

the corresponding system of Jacobi equations is

h′′1 + αh′2 − βh1 = 0,

h′′2 − αh′1 − βh2 = 0,

}
in (0, 1), (4.11)

and the initial conditions for h(1), h(2) in Theorem 3.4 (with N = 2) are hi(0) = 0 if i ∈ ĨD0 and
i = 1, 2, h′1(0) = 0 if 1 ∈ IN0 , and h′2(0) = αh1(0) if 2 ∈ IN0 .
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The existence of continuous borderline functions g follows from the form of Ψ̃. Notice that
if the index sets ĨD0 and ĨD1 are nonempty, then h1h2(0) = h1h2(1) = 0 for any h ∈ W̃D, hence∫ 1

0
h′2h1 dx = −

∫ 1

0
h′1h2 dx. (4.12)

Identity (4.12) shows that the value of Ψ̃ does not change if we replace h1 with h2 and α with
−α. In general, the value of Ψ̃ does not change if we replace hi with h̃i(x) = hi(1 − x) and α

with −α. These two observations guarantee (4.5) and (4.7).
Let us first consider the cases in Proposition 4.1(i), i.e. ĨD0 ̸= ∅ ̸= ĨD1 . Then (4.12) guaran-

tees
∫ 1

0 2h′2h1 dx =
∫ 1

0 (h
′
2h1 − h′1h2) dx and the Cauchy inequality implies that

Ψ̃ is positive definite if α2 < 4β. (4.13)

Hence it is sufficient to study the case α2 ≥ 4β.
Case

(DD
DD

)
has already been solved in [11, Proposition 3], but Theorem 3.4 enables us to

to show gD(α) =
α2

4 − π2 in a simpler way. Assume α2 > 4β. We can set h(1)(x) = (sin ξ1x −
sin ξ2x, cos ξ1x − cos ξ2x) and h(2)(x) = (− cos ξ1x + cos ξ2x, sin ξ1x − sin ξ2x), where ξ1,2 =

− 1
2 α ± γ. The function D in Theorem 3.4 satisfies D(x) = 2 − 2 cos(ξ1 − ξ2)x, hence D ̸= 0 in

(0, 1] if and only if |ξ1 − ξ2| < 2π, i.e. if β > gD(α). Consequently, if β > gD(α), then u0 is
a strict weak minimizer (this remains true also if 4β = α2 due to the monotonicity of Ψ̃ with
respect to β), and if β < gD(α), then u0 is not a weak minimizer.

The remaining cases in Proposition 4.1(i) are
(DD
ND

)
,
(DN
ND

)
, and

(DD
NN

)
. Assume α2 > 4β.

Since IN0 = {2}, the initial conditions for h(1), h(2) in Theorem 3.4 are h1(0) = 0 and h′2(0) = 0.
One can easily check that we can set h(i)(x) := (sin ξix, cos ξix), i = 1, 2, where ξ1,2 := − 1

2 α ±
γ. The function D in Theorem 3.4 satisfies

D(x) = sin(ξ1 − ξ2)x = sin 2γx = sin
√

α2 − 4β x,

hence
if α2 − 4β > π2, then D(x) = 0 for some x ∈ (0, 1), (4.14)

if 0 < α2 − 4β < π2, then D(x) ̸= 0 in (0, 1]. (4.15)

Theorem 3.4(i) (more precisely, assertion (3.5)) and (4.14) imply that

Ψ̃ is not positive semidefinite if α2 − 4β > π2. (4.16)

Let IN1 = ∅. If 0 < α2 − 4β < π2, then (4.15) and Theorem 3.4(ii) (more precisely, assertion
(3.6)) guarantee that Ψ̃ is positive definite. If 0 = α2 − 4β < π2 and we replace β by β̃ := β − ε

with ε > 0 small, then 0 < α2 − 4β̃ < π2, hence the modified functional Ψ̃β̃ (with β replaced
by β̃) is positive definite, and the monotonicity of Ψ̃ with respect to β implies that Ψ̃ is positive
definite as well. These facts together with (4.13) and (4.16) imply gDD

ND(α) =
α2

4 − π2

4 .
If IN1 = {2} and α2 > 4β, then HD,b = {h̃ ∈ span(h(1), h(2)) : h̃1(1) = 0} is spanned by

h := sin ξ2h(1) − sin ξ1h(2). We have

B := Bh(1) · h(1) = h′2(1)h2(1) = (ξ2 − ξ1) sin(ξ2 − ξ1) sin ξ1 sin ξ2

and, assuming α ∈ [(2k − 1)π, (2k + 1)π], k = 0, 1, 2, . . . , α > 0, we have B > 0 or B < 0 if and
only if β is greater or less than kπ(α − kπ), respectively. Notice that

α2/4 ≥ kπ(α − kπ) ≥ (α2 − π2)/4. (4.17)
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These facts, Theorem 3.4(ii) and (4.13) imply that Ψ̃ is positive definite if β > kπ(α − kπ),
β ̸= α2/4. The assumption β ̸= α2/4 can be removed by the same argument as above (by
considering β̃ = β − ε). If β < kπ(α − kπ), then α2 > 4β due to (4.17), hence B < 0 and
Theorem 3.4(i) imply that Ψ̃ is not positive semidefinite. Consequently, the formula for gM =

gDD
NN in (4.6) is true.

If IN1 = {1}, then we can use the same arguments as in the case IN1 = {2} to show that the
formula for gDN

ND in (4.6) is true. In particular, if α2 > 4β, then HD,b = {h̃ ∈ span(h(1), h(2)) :
h̃2(1) = 0} is spanned by h := cos ξ2h(1) − cos ξ1h(2) and we have

B := Bh(1) · h(1) = h′1(1)h1(1) = (ξ1 − ξ2) sin(ξ1 − ξ2) cos ξ1 cos ξ2,

hence assuming α ∈ [2kπ, 2(k + 1)π], k = 0, 1, 2, . . . , we obtain B > 0 or B < 0 if and only if β

is greater or less than (k + 1
2 )π(α − (k + 1

2 )π), respectively.

Next consider the cases in Proposition 4.1(ii), i.e.
(ND
ND

)
,
(NN
ND

)
,
(ND
NN

)
and

(NN
NN

)
. Since

IN0 = {1, 2}, the initial conditions for h(1), h(2) in Theorem 3.4 are h′1(0) = 0 and h′2(0) =

αh1(0). We will distinguish the following four subcases:

(ii-1) β = 1
2 α2,

(ii-2) β = 1
4 α2,

(ii-3) β > 1
4 α2 and β ̸= 1

2 α2,

(ii-4) β < 1
4 α2.

(ii-1) Assume that β = 1
2 α2. We will show that Ψ̃ is positive definite (hence u0 is a strict

weak minimizer) in case
(ND
ND

)
and Ψ̃ is not positive semidefinite (hence u0 is not a weak

minimizer) in case
(NN
NN

)
if α ̸= 2kπ. In addition, in case

(NN
ND

)
, u0 is or is not a weak

minimizer if α ∈ ((2k − 1)π, 2kπ) or α ∈ (2kπ, (2k + 1)π), respectively, and the opposite is
true in case

(ND
NN

)
.

Recall that δ = α/2. If we set

h(1)(x) := (eδx(cos(δx)− sin(δx)), eδx(cos(δx) + sin(δx))),

h(2)(x) := (e−δx(cos(δx) + sin(δx)), e−δx(− cos(δx) + sin(δx))),

then we obtain D ≡ −2, hence Ψ̃ is positive definite in case
(ND
ND

)
due to Theorem 3.4(ii).

Considering case
(NN
NN

)
, one can check that the matrix A = (akl) in Remark 3.6(ii) satisfies

a11 = 4δe2δ sin2 δ, a22 = −4δe−2δ sin2 δ, a12 = a21 = −4δ sin δ cos δ.

If δ ̸= kπ, then choosing ξ := (0, 1) and h := ∑2
k=1 ξkh(k) = h(2) ∈ HD,1 = H we obtain

Bh(1) · h(1) = Aξ · ξ = a22 < 0, i.e. Ψ̃ is not positive semidefinite due to Theorem 3.4(i).
Notice also that Bh(0) = 0, hence

Ψ̃(h) = Bh · h
∣∣∣1
0
< 0. (4.18)

If δ = kπ, then A = 0 (degenerate case). Already these facts contradict [11, Proposition 5]
which claims the stability for β > 1

4 α2. In fact, the authors of [11] mention in their proof that
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“We have not used any integration by parts . . . ”, but they seem to use [11, (35)–(37)], and [11,
(35)] does use an integration by parts requiring the boundary conditions h1h2(0) = h1h2(1).

In case
(ND
NN

)
we set

h := e−δ(cos δ + sin δ)h(1) − eδ(cos δ − sin δ)h(2).

Since at least one of the numbers h(1)1 (1) and h(2)1 (1) is non-zero, we have dim HD,1 ≤ 1. Since
h1(1) = 0, we obtain HD,1 = span(h), and

Bh(1) · h(1) = B2h(1) · h2(1) = (−αh1 + h′2)(1) · h2(1) = 2α sin α

due to h2(1) = 2 and h′2(1) = α sin α. Consequently, Bh(1) · h(1) > 0 if α ∈ (2kπ, (2k + 1)π)

and Bh(1) · h(1) < 0 if α ∈ ((2k − 1)π, 2kπ), so that our assertion follows from Theorem 3.4(ii)
and Theorem 3.4(i), respectively.

Similarly, in case
(NN
ND

)
we set

h := e−δ(cos δ − sin δ)h(1) + eδ(cos δ + sin δ)h(2).

Then h2(1) = 0 and HD,1 = span(h);

Bh(1) · h(1) = B1h(1) · h(1) = h′1(1)h1(1) = −2α sin α (4.19)

due to h1(1) = 2 and h′1(1) = −α sin α. The rest of the proof is the same as in case
(ND
NN

)
.

Notice also that (similarly as in the case of (4.18)), (4.19) implies

Ψ̃(h) = Bh · h
∣∣∣1
0
< 0 (4.20)

provided α ∈ (2kπ, (2k + 1)π).
(ii-2) Assume that β = 1

4 α2. Set ξ := − 1
2 α and

h(1)(x) := (sin(ξx)− ξx cos(ξx), cos(ξx) + ξx sin(ξx)),

h(2)(x) := (cos(ξx)− ξx sin(ξx),− sin(ξx)− ξx cos(ξx)).

Notice that the function D in Theorem 3.4 satisfies D(x) = ξ2x2 − 1, hence D < 0 in [0, 1]
if α < 2, and D(x) = 0 for some x ∈ (0, 1) if α > 2. This shows that 1

4 α2 < gND
ND(α) ≤

min
(

gNN
ND (α), gND

NN (α), gN(α)
)

if α > 2, i.e. u0 cannot be a weak minimizer in any case.

Let α < 2. Then u0 is a strict weak minimizer in case
(ND
ND

)
. Next consider case

(NN
NN

)
. If

β = α2/2, then (4.18) implies that Ψ̃ is not positive semidefinite. The monotonicity of Ψ̃ with
respect to β shows that Ψ̃ cannot be positive semidefinite if β = α2/4 either, hence u0 is not
a weak minimizer. The same arguments show that u0 is not a weak minimizer in case

(NN
ND

)
,

see (4.20). It remains to consider case
(ND
NN

)
. Set

h := (cos ξ − ξ sin ξ)h(1) − (sin ξ − ξ cos ξ)h(2),

so that h1(1) = 0. Then the restriction α < 2 implies h2(1) = 1 − ξ2 > 0. Since h′2(1) =

−ξ2 + ξ sin(2ξ), we see that h′2(1)h2(1) > 0 only if α < α0, where α0 is defined by α0 = 2 sin α0

(α0 ≈ 0.6π).
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(ii-3) Assume β > 1
4 α2, β ̸= 1

2 α2, and set

φ(x) := eγx(γ2 − δ2), ψ±(x) := e−γx(γ ± δ)2.

Then we can take

h(1)(x) := [(φ(x) + ψ+(x))(cos(δx) + sin(δx)), (φ(x) + ψ+(x))(− cos(δx) + sin(δx))],

h(2)(x) := [(φ(x) + ψ−(x))(cos(δx)− sin(δx)), (φ(x) + ψ−(x))(cos(δx) + sin(δx))],

and an easy computation yields

D(x) = 4(γ2 − δ2)
(
(γ2 − δ2) cosh(2γx) + γ2 + δ2

)
. (4.21)

The function D does not vanish in (0, 1] if and only if γ > δ (i.e. β > 1
2 α2), or γ < δ and

cosh(2γ) < γ2+δ2

δ2−γ2 . The last inequality can be written in the form

(α2 − 2β) cosh(2γ) < 2β. (4.22)

In case
(NN
NN

)
, one has to consider the numbers akl in Remark 3.6(ii):

a11 = 2γ(φ2 − ψ2
+)(1) + 2δ(φ + ψ+)

2(1) cos(2δ),

a22 = 2γ(φ2 − ψ2
−)(1)− 2δ(φ + ψ−)

2(1) cos(2δ),

a12 = a21 = −2δ(φ + ψ+)(φ + ψ−)(1) sin(2δ).

If γ > δ (i.e. β > 1
2 α2), then

a11(γ + δ)−2 + a22(γ − δ)−2 = 8(γ2 + δ2)(γ − θδ cos(2δ)) sinh(2γ) > 0,

hence the matrix A is positive definite if and only if a11a22 > a2
12, which is equivalent to

(1 − θ2) cosh(2γ) + θ2 cos(2δ) > 1. (4.23)

We used the assumption β > 1
2 α2 in order to derive (4.23), but this is not restrictive, since

we know that u0 can only be a weak minimizer of our problem in case
(NN
NN

)
when β > 1

2 α2.
Hence in this case the condition (4.23) determines the domain of stability.

In cases
(NN
ND

)
and

(ND
NN

)
, we set

h := (φ(1) + ψ−(1))(cos δ + sin δ)h(1) + (φ(1) + ψ+(1))(cos δ − sin δ)h(2)

and
h := (φ(1) + ψ−(1))(cos δ − sin δ)h(1) − (φ(1) + ψ+(1))(cos δ + sin δ)h(2),

respectively. Then h2(1) = 0, h1(1) = D(1),

Bh(1) · h(1) = h′1h1(1) = 4γ(γ2 − δ2)D(1)
(
(γ2 − δ2) sinh(2γ)− 2γδ sin(2δ)

)
,

and h1(1) = 0, h2(1) = −D(1),

Bh(1) · h(1) = h′2h2(1) = 4γ(γ2 − δ2)D(1)
(
(γ2 − δ2) sinh(2γ) + 2γδ sin(2δ)

)
,
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respectively, where D is as in (4.21). Consequently, assuming that D does not vanish in [0, 1]
(i.e. (4.22) is true), the stability conditions are

(γ2 − δ2) sinh(2γ)− 2γδ sin(2δ) > 0 (4.24)

and
(γ2 − δ2) sinh(2γ) + 2γδ sin(2δ) > 0, (4.25)

respectively. Notice that if β = 1
2 α2 (hence γ = δ), then (4.24) and (4.25) are equivalent to the

corresponding stability conditions in case (ii-1).
(ii-4) If β < 1

4 α2, then we can set

h(1)(x) := (ξ2 sin(ξ1x)− ξ1 sin(ξ2x), ξ2 cos(ξ1x)− ξ1 cos(ξ2x)),

h(2)(x) := (ξ1 cos(ξ1x)− ξ2 cos(ξ2x),−ξ1 sin(ξ1x) + ξ2 sin(ξ2x)),

where ξ1,2 = − 1
2 α ± γ, and we obtain

D(x) = −2β + (α2 − 2β) cos(2γx). (4.26)

If α2 − 4β ≥ π2, then D changes sign in [0, 1]. Hence the condition D > 0 in [0, 1] is equivalent
to

α2 − 4β < π2 and (α2 − 2β) cos(2γ) > 2β. (4.27)

It is not difficult to check (cf. case (ii-2)) that if α < 2 or α > 2, then (4.27) or (4.22), respectively,
is the (essentially optimal) sufficient condition for the stability in our problem in case

(ND
ND

)
.

If α = 2, then that sufficient condition is β > 1.
Case (ii-2) shows that it remains to consider only case

(ND
NN

)
and α < α0. Take

h := (ξ1 cos ξ1 − ξ2 cos ξ2)h(1) − (ξ2 sin ξ1 − ξ1 sin ξ2)h(2).

Then h1(1) = 0, h2(1) = −D(1) (where D is as in (4.26)), and

h′2(1) = (ξ2
1 sin ξ2 cos ξ1 − ξ2

2 sin ξ1 cos ξ2)(ξ2 − ξ1).

Assuming D > 0 in [0, 1] (i.e. (4.27)), the condition h′2h2(1) > 0 is equivalent to

ξ2
1 sin ξ2 cos ξ1 > ξ2

2 sin ξ1 cos ξ2. (4.28)

Since ξ1 = 0 if β = 0, (4.28) can only be true if β > 0. It is not difficult to see that gND
NN (α) = 0

for α ≤ 1
2 π and gND

NN (α0) =
1
4 α2

0. If α > α0, then (4.25) determines gND
NN (α).

The formulas for functions g in Proposition 4.1(ii) follow from the stability conditions
(4.22), (4.23), (4.24), (4.25), (4.27), (4.28).

Remark 4.3. Consider case
(DD
NN

)
. We have gDD

NN (α) = gM(α) > gDD
ND(α) except for α = αk :=

(2k− 1)π, k = 1, 2, . . . . If α = αk and β = gM(α) = gDD
ND(α), then the function D in Theorem 3.4

satisfies D ̸= 0 in (0, 1), D(1) = 0, hence condition (3.2) cannot be satisfied (otherwise (3.5)
would imply Ψ̃(h̄) < 0 for some h̄ ∈ W̃D, so that Ψ̃(h̄) < 0 also if β is slightly greater than
gM(α), which is a contradiction). For example, if k = 2 (i.e. α = 3π, β = 2π2), then our
proof shows that H0 is spanned by h(x) := (− sin(πx)− sin(2πx), cos(πx) + cos(2πx)) and
B2h(1) = h2(1) = h1(1) = 0 which violates (3.2). This degeneracy seems to be also responsible
for the non-smooth behavior of gM at α = αk.
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5 Field of extremals

In this section we modify the Weierstrass theory to provide necessary and sufficient conditions
for weak, strong and global minimizers. Recall that Bε := {ξ ∈ RN : |ξ| < ε}.

Definition 5.1. Let f ∈ C2, ε̃ > 0, and let u0 ∈ C2 be an extremal. The image P of a C1-
diffeomorphism P : [a, b]× Bε̃ → [a, b]× RN : (x, α) 7→ (x, φ(x, α)) is called a field of extremals
for u0 if φx ∈ C1, φ(·, α) is an extremal for each α, and φ(·, 0) = u0. The slope of the field of
extremals P is defined as ψ : P → RN : (x, v) 7→ φx(x, α(x, v)), where α(x, v) is defined by
φ(x, α(x, v)) = v.

It is known that in the case of the Dirichlet boundary conditions, the existence of a field of
extremals φ(x, α) satisfying the self-adjointness condition (5.1), and the nonnegativity of the
excess function

E(x, u, p, q) := f (x, u, q)− f (x, u, p)− (q − p) · fp(x, u, p)

for suitable (x, u, p, q) imply that u0 is a strong minimizer. In addition, the existence of the
field is guaranteed by the sufficient condition for the weak minimizer in Theorem 3.4(ii). In
the general case we have the following analogue (see Theorem 6.1 for a simpler version in the
scalar case N = 1):

Theorem 5.2. Let f ∈ C2, ε > 0, and let u0 ∈ C2 be an extremal satisfying (2.2).

(i) Let there exist a field of extremals P for u0 satisfying the conditions

∂ fpi(a, v, ψ(a, v))
∂vj

=
∂ fpj(a, v, ψ(a, v))

∂vi
whenever i, j ∈ I, v − u0(a) ∈ Bε, (5.1)

fp(a, v, ψ(a, v)) · (v − u0(a)) ≤ 0, whenever v − u0(a) ∈ RN
D,a ∩ Bε, (5.2)

fp(b, v, ψ(b, v)) · (v − u0(b)) ≥ 0, whenever v − u0(b) ∈ RN
D,b ∩ Bε, (5.3)

where ψ denotes the slope of the field. Assume also

E(x, v, ψ(x, v), q) ≥ 0 for all ((x, v), q) ∈ P × RN . (5.4)

Then u0 is a strong minimizer.

If (5.4) is only true for all (x, v) ∈ P and q = q(x, v) satisfying |q − ψ(x, v)| ≤ η for some
η > 0, then u0 is a weak minimizer.

If the field is global (i.e. P = [a, b]×RN) and (5.1), (5.2), (5.3) are true with Bε replaced by RN ,
then u0 is a global minimizer.

(ii) Assume IDa = ∅ and let there exist a field of extremals satisfying (5.1). If the reversed inequality
“≥” is true in (5.2), and the reversed strict inequality “<” is true in (5.3) for v = u0(b) + tw0,
where t ∈ (0, 1) and w0 ∈ RN

D,b is fixed, then u0 is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.4(ii) be satisfied.
If IDa = ∅ or INa = ∅ or

fpi(a, u, p) for i ∈ IDa does not depend on uj, pj with j /∈ IDa ,

fpiuj = fpjui for i, j ∈ IDa ,

}
(5.5)

then a field of extremals satisfying (5.1), (5.2), (5.3) exists.
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Remark 5.3. The well known Weierstrass necessary condition for minimizers asserts that the
inequality E(x, u0(x), (u0)′(x), q) ≥ 0 for all q ∈ RN or q = q(x) satisfying |q − (u0)′(x)| ≤ η

is necessary for u0 to be a strong or weak minimizer, respectively, hence the nonnegativity
conditions on E in Theorem 5.2 are not far from optimal. Similarly, Theorem 5.2(ii) shows that
the sufficient conditions (5.2)–(5.3) in Theorem 5.2(i) are also necessary in some sense, at least
if IDa = ∅.

The proof of part (iii) of Theorem 5.2 is quite technical and, in addition, we will not
need that part in our examples (since we will prove the existence of the field required by
Theorem 5.2(i)–(ii) by other arguments). Therefore the proof of part (iii) is postponed to the
Appendix.

In what follows we assume that

f ∈ C2, u0 ∈ C2 is an extremal,

P is a field of extremals for u0 with slope ψ, and (5.1) is true.
(5.6)

Given v ∈ C1([a, b], RN) such that graph(v) := {(x, v(x)) : x ∈ [a, b]} ⊂ P , we define the
Hilbert invariant integral

I(v) :=
∫ b

a

[
f
(
x, v(x), ψ

(
x, v(x)

))
+

(
v′(x)− ψ

(
x, v(x)

))
· fp

(
x, v(x), ψ

(
x, v(x)

))]
dx.

The following proposition is well known, but for the reader’s convenience we provide its
proof in the Appendix.

Proposition 5.4. Assume (5.6). Then there exists S ∈ C2(P) such that

I(v) = S(b, v(b))− S(a, v(a)) for any v ∈ C1([a, b], RN) with graph(v) ⊂ P ,

Sv(x, v) = fp(x, v, ψ(x, v)) for any (x, v) ∈ P .
(5.7)

Proof of Theorem 5.2. (i) Let u − u0 ∈ C1
D, graph(u) ⊂ P , and let S be the function from Propo-

sition 5.4. If u is close to u0 in the sup-norm, then the assumptions (5.2)–(5.3) guarantee

S(a, u(a))− S(a, u0(a)) =
∫ 1

0
Sv(a, u0(a) + t(u(a)− u0(a))) · (u(a)− u0(a)) dt ≤ 0,

and similarly S(b, u(b))− S(b, u0(b)) ≥ 0, hence I(u0) ≤ I(u) due to Proposition 5.4. This fact
and assumption (5.4) imply

Φ(u)− Φ(u0) = Φ(u)− I(u0) ≥ Φ(u)− I(u) =
∫ b

a
E(x, u(x), ψ(x, u(x)), u′(x)) dx ≥ 0,

hence u0 is a strong minimizer. The remaining assertions in (i) are obvious.
(ii) Choose tk → 0+ and let αk be such that φ(b, αk) = u0(b) + tkw0. Then uk := φ(·, αk) →

u0 in C1, uk − u0 ∈ C1
D due to IDa = ∅ and w0 ∈ RN

D,b, and, similarly as in (i), we obtain

Φ(uk) = I(uk) = S(b, uk(b))− S(a, uk(a)) < S(b, u0(b))− S(a, u0(a)) = I(u0) = Φ(u0),

hence u0 is not a minimizer.
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6 Scalar examples with variable endpoints

Throughout this section (except for Remark 6.4) we assume N = 1 and IDa = IDb = ∅. Since
we will often use Theorem 5.2, let us first reformulate it in this special case. Notice that the
extremals in the field of extremals satisfy φα(x, α) ̸= 0, hence we can assume φα > 0 without
loss of generality.

Theorem 6.1. Let N = 1, IDa = IDb = ∅, f ∈ C2 and let u0 ∈ C2 be an extremal satisfying (2.2).

(i) Let there exist a field of extremals P = {(x, φ(x, α)) : x ∈ [a, b], α ∈ (−ε, ε)} for u0 satisfying
the conditions φα > 0 and

f α
p (a)α ≤ 0 ≤ f α

p (b)α, α ∈ (−ε, ε), (6.1)

where f α
p (x) := fp(x, φ(x, α), φx(x, α)). Assume also

E(x, v, ψ(x, v), q) ≥ 0 for all ((x, v), q) ∈ P × R. (6.2)

Then u0 is a strong minimizer.

If (6.2) is only true for all (x, v) ∈ P and q = q(x, v) satisfying |q − ψ(x, v)| ≤ η for some
η > 0, then u0 is a weak minimizer.

If P = [a, b]× R, then u0 is a global minimizer.

(ii) Let there exist a field of extremals satisfying φα > 0. If, for α > 0 or α < 0, the reversed
inequalities in (6.1) are true and one of them is strict (for example, if f α

p (a) ≥ 0 > f α
p (b) for

α > 0), then u0 is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.3(ii) be satisfied.
Then a field of extremals satisfying φα > 0 and (6.1) exists.

Remark 6.2. If f 0
up = 0 and we set P := f 0

pp, Q := f 0
uu, then Ψ(h) =

∫ b
a (P(h′)2 + Qh2) dx and

the Jacobi equation has the form − d
dx (Ph′) + Qh = 0. Notice also that if P, Q > 0, then Ψ is

positive definite in W1,2. Consequently, Remark 3.6(iii) implies that the sufficient conditions
for a weak minimizer in Theorem 3.3(ii) are satisfied and Theorem 6.1(iii) implies the existence
of a field of extremals satisfying φα > 0 and (6.1).

In the following examples we will consider Lagrangians f = f (u, p) and we will use the
phase plane analysis for the Du Bois-Reymond equation f 0 − (u0)′ f 0

p = C.

Example 6.3. The study of the deformation of a planar weightless inextensible and unshear-
able rod (satisfying suitable boundary conditions) leads to the minimization of the functional

Φ(u) =
∫ 1

0

(1
2
(u′ − K)2 + M cos u

)
dx, u ∈ C1([0, 1]), (6.3)

where K ∈ R, M > 0, and u denotes the angle between the tangent to the rod and a suitable
vertical, see [10, (97)] and cf. also [1]. Functional Φ possesses multiple critical points, i.e.
extremals satisfying the natural boundary conditions u′(0) = u′(1) = K; see [10] for their
detailed analysis. Their stability was also analyzed in [10], but that analysis based on the
approach from [12] is unnecessarily complicated. Somewhat simpler arguments were used in
[1], but those arguments cannot be used for all critical points. We will show that Theorems 3.3
and 6.1 yield a very simple way to determine the stability of any critical point.
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Proposition 2.3 implies that u0 is a weak minimizer of Φ if and only if it is a strong
minimizer. Therefore we will only speak about minimizers. Notice also that fpp = 1 and
the excess function satisfies E(x, u, p, q) = 1

2 (q − p)2 ≥ 0. Proposition 2.4 guarantees that
any critical point of Φ is C∞ and satisfies the Du Bois-Reymond equation (u′)2 = 2M cos u +

C, where C is a constant. Conversely, any non-constant solution of the Du Bois-Reymond
equation is an extremal.

We consider the phase plane (u, v), where v = u′, and set

ϕC := {(u, v) : v2 = 2M cos u + C}, C ∈ (−2M, ∞)

(see Figure 6.1). The considerations above show that given any non-constant critical point u0,
there exists C0 > −2M such that (u0(x), (u0)′(x)) ∈ ϕC0 for x ∈ [0, 1], (u0)′(0) = (u0)′(1) = K.
On the other hand, if (A0, K), (A1, K) ∈ ΦC0 for some C0 ∈ (2M, ∞), A0 ̸= A1, and u0 ∈ C1 sat-
isfies (u0(x), (u0)′(x)) ∈ ϕC0 for x ∈ [0, 1], (u0(0), (u0)′(0)) = (A0, K) and (u0(b), (u0)′(b)) =
(A1, K) for some b > 0, then u0 is a critical point if and only if b = 1 (the value of b is uniquely
determined in this case since (u0)′ ̸= 0). Similar assertion is true if C0 ∈ (−2M, 2M] (K ̸= 0
if C0 = 2M), but this time one can have (u0(b), (u0)′(b)) = (A1, K) for multiple values of b
(since u0 need not be monotone), and one has to allow A1 = A0.

The phase plane analysis can be used to find critical points of Φ (see [2] for a particular
case), but since those critical points are known (see [10], for example), we will restrict ourselves
to the determination of their stability. More precisely, considering the case K ≥ 0 (the case
K ≤ 0 being symmetric), we will show the following: A critical point of Φ is a minimizer
if and only if either u0(x) ≡ (2k + 1)π for some integer k or u0 is a part of curve ϕC0 with
C0 > 2M and (u0)′′(0) < 0 < (u0)′′(1).

u2ππβ 4π

v = u′

0

Z1X1 •Z0X0

φ(·, α) Y1

X1

Z0

Z1

K1

K2 X0

K3

2
√

M

ϕ2Mϕ2M
ϕC−

ϕC+

u0

u0

• • • • •
u0

X0

Z0••Z1

X1

Figure 6.1: Phase plane and extremals for Example 6.3 and 0 ≤ u ≤ 4π; C− <

2M < C+, Zi = (φ(i, α), φx(i, α)), i = 0, 1, Y1 = (A1 + α, K), Xi = (Ai, K) =

(u0(i), (u0)′(i)), i = 0, 1.

Let us first consider a critical point u0 being a part of curve ϕC0 with C0 > 2M, and let
(Ai, K) be as above. For symmetry reasons we may assume K > 0. Notice that u′′ = −M sin u,
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|(u0)′′(0)| = |(u0)′′(1)|, and that u0(x) can also be defined (as an extremal, hence a part of
ϕC0) for x /∈ [0, 1].

If (u0)′′(0) < 0 < (u0)′′(1) (i.e. u0(0) ∈ (2kπ, (2k + 1)π) and u0(1) ∈ ((2m + 1)π, (2m +

2)π) for some m ≥ k; see the extremal u0 with (u0)′(0) = K1 in Figure 6.1), then φ(x, α) :=
u0(x + α), x ∈ [0, 1], α ∈ (−ε, ε), is a field of extremals for u0 satisfying (6.1), hence The-
orem 6.1(i) guarantees that u0 is a minimizer. If (u0)′′(0) > 0 > (u0)′′(1), then the same
argument and Theorem 6.1(ii) show that u0 is not a minimizer.

Next assume that (u0)′′(0) · (u0)′′(1) ≥ 0. We will show that u0 is not a minimizer.
Assume (u0)′′(0) < 0, or (u0)′′(0) = 0 and (u0)′′′(0) < 0 (the cases (u0)′′(0) > 0, or

(u0)′′(0) = 0 and (u0)′′′(0) > 0 are analogous). We necessarily have A1 = A0 + 2k0π for
some k0 ∈ {1, 2, . . . }. Let φ(·, α) (with |α| being small) be the extremal with initial values
Z0 := (φ(0, α), φx(0, α)) = (A0 + α, K) (see the extremal u0 with (u0)′(0) = K2 in Figure 6.1).
Then φ is a field of extremals for u0, and φ(·, α) is a part of the curve ϕCα , where Cα is close to
C0, Cα > C0 if α > 0.

Let α > 0 be small. If u1 and u2 are extremals in ϕC0 and ϕCα , respectively, and u1(0) =

u2(0) = 0, then u1(b1) = u2(b2) = 2π for some 0 < b1 < b2 (due to (u2)′ > (u1)′ whenever
u2 = u1). This fact and the 2π-periodicity of the problem guarantee that φ(b, α) = A1 + α for
some b < 1, hence φx(1, α) < (u0)′(1), and Theorem 6.1(ii) implies that u0 is not a minimizer.

Next consider the case C0 ∈ (−2M, 2M] and K ≥ 0; K ̸= 0 if C0 = 2M. If K > 0
and (u0)′′(0) > 0 > (u0)′′(1), then the same arguments as above guarantee that u0 is not a
minimizer. If K = 0 or (u0)′′(0) < 0 < (u0)′′(1) (hence A1 < A0) or (u0)′′(0) · (u0)′′(1) ≥ 0
(hence A0 = A1 = 2kπ), then choosing φ(·, α) to be an extremal satisfying initial conditions
(φ(0, α), φx(0, α)) = (A0 + α, K) we see from the phase plane that φ(·, α) and u0 intersect in
(0, 1) for any α ̸= 0 small (if, for example, (u0)′′(0) < 0 < (u0)′′(1) and α > 0 is small,
then there exists y ∈ (0, 1) such that φ(y, α) = min φ(·, α) < min u0, and the inequalities
φ(0, α) > u0(0), φ(y, α) < u0(y) imply that φ(·, α) and u0 intersect in (0, y); see the extremal
u0 with (u0)′(0) = K3 in Figure 6.1). Consequently, h := φx(·, 0) is a solution of the Jacobi
equation satisfying h(0) = 1, h′(0) = 0, h(y) = 0 for some y ∈ (0, 1], and Theorem 3.3
guarantees that u0 is not a minimizer.

Similar considerations as above can be used in the case of constant extremals kπ, but we
will use a different argument: If u0 ≡ (2k + 1)π, then P = 1, Q = −M cos u0 = M, and the
solution h(x) = e

√
Mx + e−

√
Mx of the Jacobi equation satisfies h > 0, h′(0) = 0, h′(1) > 0,

hence u0 is a minimizer. If u0 ≡ 2kπ, then P = 1, Q = −M and the solution h(x) = cos(
√

Mx)
of the Jacobi equation satisfies h(0) > 0, h′(0) = 0 and either h(x) = 0 for some x ∈ (0, 1] or
h′(1) < 0, hence u0 is not a minimizer.

Remark 6.4. The author of [9] considers the functional Φ in (6.3) with K = 0, [a, b] =

[−1/2, 1/2] (instead of [a, b] = [0, 1]), and the Dirichlet boundary conditions u(−1/2) =

u(1/2) = 0, see [9, (6)]. He considers the extremal u0 satisfying u0(0) = β and (u0)′(0) = 0,
i.e. the extremal passing through the point (β, 0) in Figure 6.1, and he provides explicit formu-
las for this extremal, its field of extremals φ and the derivative φα (see [9, (8),(9),(13),(14) and
(16)]; functions u0, φ and φα are denoted by θ, y and ∂y/∂γ, respectively). The nonnegativity
of the excess function then implies that u0 is a strong minimizer. In [9, Introduction], the au-
thor claims that “Based on the Jacobian test, potential energy of Euler elasticas . . . was proved
to hold a weak minimum value. . . ”, but “. . . it is an open problem to find sufficient conditions
for the potential energy for these Euler elasticas to hold a strong minimum.” However, Propo-
sition 2.3 shows that weak and strong minimizers of functional Φ in (6.3) are equivalent. In
addition, Theorem 5.2(iii) implies that the positive definiteness of the second variation ψ in
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W1,2
0 (−1/2, 1/2) (i.e. the sufficient condition for a weak minimizer) guarantees the existence

of the required field φ, hence the technical construction of the field in [9] is not necessary even
if we do not consider Proposition 2.3.

Example 6.5. Consider the functional Φ(u) =
∫ b

a f (u, u′) dx in C1([a, b]), where f (u, p) =

g(p) + u2 and g is a double-well function. More precisely, we will consider the following two
cases (see Figure 6.2):

0−1 1 p

g

(a)

0−1 2 p

g (b)

Figure 6.2: Graphs of g in the symmetric and non-symetric cases.

(a) g(p) = (p2 − 1)2 (hence g′(p) = 4p(p2 − 1), g′′(p) = 4(3p2 − 1)),
(b) g(p) = 1

4 p4 − 1
3 p3 − p2 + 8

3 (hence g′(p) = (p + 1)p(p − 2), g′′(p) = 3p2 − 2p − 2).
Let us consider the symmetric case (a) first. The Du Bois-Reymond equation has the form

u2 = C + h(u′), where h(p) := 3p4 − 2p2,

see Figures 6.3 and 6.4 for the graph of h and the phase plane (u, u′), respectively. All mini-
mizers have to satisfy u′(a), u′(b) ∈ {0,±1}; the only constant extremal is u ≡ 0. Functional
Φ does not possess local maximizers since Φ′′(u0)(1, 1) > 0 for any u0.

0
− 1√

3
1√
3

p

h

Figure 6.3: Graph of h in the symmetric case.

Since fpp(u, p) = 4(3p2 − 1), the extremals in the region |u′| ≤ 1/
√

3 (satisfying (u0)′(a) =
(u0)′(b) = 0) cannot be local minimizers. The extremal u∗ with (u∗)′(a) = 1 and min(u∗)′ =

1/
√

3 (see Figure 6.4) satifies u∗(b∗) = 1 for some b∗ > a. If b ∈ (a, b∗), then there exists a
unique extremal u0 satisfying (u0)′(a) = (u0)′(b) = 1 (and a unique extremal u1 satisfying
(u1)′(a) = (u1)′(b) = −1); in addition (u0)′ > 1/

√
3 (and (u1)′ < −1/

√
3). Since P, Q > 0 and

the excess function E = (q − p)2((q + p)2 + 2(p2 − 1)) considered as a function of q changes
sign if |p| < 1, Remarks 6.2 and 5.3 show that the extremals u0, u1 are weak but not strong
minimizers. (Remark 6.2 also guarantees the existence of a field of extremals, but this fact
is not needed here: The Weierstrass necessary condition for strong minimizers in Remark 5.3
does not require the existence of a field of extremals.) Notice also that inf Φ = 0 is not attained
(neither in C1, nor in W1,4): A minimizing sequence in C1 can be obtained by suitable smooth
approximation of piecewise C1-functions uε satisfying |u′

ε| = 1 a.e. and |uε| ≤ ε.
Next consider the nonsymmetric case (b). The Du Bois-Reymond equation has the form

u2 = C + h(u′), where h(p) :=
3
4

p4 − 2
3

p3 − p2,
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u

1

−1

1√
3

− 1√
3

u′

u∗

•

Figure 6.4: Phase plane in the symmetric case.

see Figures 6.5 and 6.6 for the graph of h and the phase plane (u, u′), respectively. All mini-
mizers have to satisfy u′(a), u′(b) ∈ {0,−1, 2}; the only constant extremal is u ≡ 0.

0
1−

√
7

3
1+

√
7

3

p

h

Figure 6.5: Graph of h in the non-symmetric case.

Since fpp(u, p) = 3p2 − 2p − 2, similarly as in case (a) we see that the extremals in the

region u′ ∈ [ 1−
√

7
3 , 1+

√
7

3 ] are neither local minimizers nor local maximizers. The extremal u∗

with (u∗)′(a) = 2 and min(u∗)′ = 1+
√

7
3 (see Figure 6.6) satifies u∗(b∗) = 2 for some b∗ > a. If

b ∈ (a, b∗), then there exists a a unique extremal u0 satisfying (u0)′(a) = (u0)′(b) = 2 and, as
above, this extremal is a weak local minimizer. However, now E = 1

12 (q − p)2((
√

3(q + p)−
2√
3
)2 + 6p2 − 4p − 13 1

3 ) ≥ 0 for all q if p ≤ p1 or p ≥ p2, where p1 = 1
3 (1 −

√
21) < −1, p2 =

1
3 (1 +

√
21) ∈ ( 1

3 (1 +
√

7), 2), and Remark 6.2 guarantees the existence of a field of extremals
satisfying φα > 0 and (6.1), hence u0 is a strong local minimizer provided min(u0)′ > p2 (and
it is not if min(u0)′ < p2). In fact, if min(u0)′ > p2, then Proposition 6.6 below shows the
existence of a global field of extremals for u0 satisfying the assumptions of Theorem 6.1(i),
with slope ψ > p2, hence u0 is a global minimizer.

An analogous analysis as in the case u′ > 1+
√

7
3 shows that the extremals in the region

u′ < 1−
√

7
3 are weak but not strong local minimizers.

Proposition 6.6. Let Φ and p2 be as in Example 6.5(b), and let u0 be a critical point of Φ satisfying
min(u0)′ > p2. Then there exists a global field of extremals for u0 satisfying the assumptions of
Theorem 6.1(i), with slope ψ > p2.

Proof. Assume first α ≥ 0. Then we choose the extremals uα := φ(·, α) in the global field such
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Figure 6.6: Phase plane in the non-symmetric case.

that φ(·, α) is the solution of the Du Bois-Reymond equation with (φ(a, α), φx(a, α)) = A(α),
where A(α) = (A1(α), A2(α)) : (0, ∞) → R2 is smooth,

A(α) =

{
(u0(a + α), (u0)′(a + α)) if α ≤ b − a − ε,

(u0(b) + α − (b − a), 2) if α ≥ b − a + ε,
(6.4)

A′
1(α) ≥ 1, A′

2(α) > 0 for α ∈ (b − a − ε, b − a + ε), where ε ∈ (0, (b − a)/2), (6.5)

see Figure 6.7. Notice that A′
1(b − a − ε) = (u0)′(b − ε) > p2 > 1, A′

2(b − a − ε) = (u0)′′(b −
ε) > 0, A′

1(b − a + ε) = 1, A′
2(b − a + ε) = 0, A1(b − a + ε) − A1(b − a − ε) > 2ε (since

A1(b − a + ε) = u0(b) + ε, A1(b − a − ε) = u0(b − ε), u0(b)− u0(b − ε) = (u0)′(b − θε)ε > p2ε),
A2(b − a + ε) > A2(b − a − ε), so that (6.5) can be satisfied.

Let us show that φα > 0. Since φ(x, α) = u0(x + α) for α ≤ b − a − ε and (u0)′ > 0,
we may assume α > b − a − ε, hence φ > 0. Set w(x, α) = φα(x, α). Then (6.4)–(6.5) imply
w(a, α) ≥ 1. Let h−1 denote the inverse of the increasing function h|(p2,∞). Since φ(·, α) solves
the Du Bois-Reymond equation, there exists C(α) such that φ(x, α)2 = C(α) + h(φx(x, α)).
Consequently,

wx =
∂

∂x
(φα) =

∂

∂α
(φx) =

∂

∂α
(h−1(φ2 − C(α)) = (h−1)′(φ2 − C(α))︸ ︷︷ ︸

>0

[2φw − C′(α)]. (6.6)

If wx(a, α) > 0 (which is true for α < b − a + ε due to (6.4)–(6.5)), then φx > 0 and (6.6)
guarantee wx(x, α) > 0 for x > a, hence w(x, α) ≥ w(a, α) ≥ 1. If wx(a, α) = 0 (which is true
for α ≥ b − a + ε due to (6.4)), then (2φw)(a, α) = C′(α) and

d
dx

(2φw − C′(α))(a, α) = 2φxw + 2φwx = 2φxw > 2p2 > 0
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2

p2 = 1
3 (1 +

√
21)
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•
A(0)

u0 = φ(·, 0)

•B(0)

•
A(α1)

•
A(α2)

•
A(α3)

•
A(α4)

•
φ(·, α5)

A(α5)

Figure 6.7: Global field of extremals: A(α) = (φ(a, α), φx(a, α)), B(α) =

(φ(b, α), φx(b, α)), (b − a)/2 = α1 < b − a − ε = α2 < α3 < α4 = b − a + ε < α5.

hence wx(x, α) > 0 for x > a close to a, and (6.6) implies wx(x, α) > 0 for all x > a. As before,
this implies w(x, α) ≥ 1.

If α < 0, then the choice of φ(·, α) is symmetric: The extremal φ(·, α) solves the Du Bois-
Reymond equation in [a, b] and (φ(b, α), φx(b, α)) = B(α) := (−A1(−α), A2(−α)).

As an alternative to the technical construction of the global field above, we could also set
(φ(a, α), φx(a, α)) = A(α), where

A(α) =

{
(u0(a + α), (u0)′(a + α)) if 0 ≤ α ≤ b − a,

(u0(b) + α − (b − a), 2) if α > b − a,

and analogously for α < 0. Then the field φ(·, α) is not sufficiently smooth if |α| = b − a,
but a simple generalization of Theorem 6.1 shows that this does not matter. In fact, denote
v± := φ(·,±(b − a)). Let u ∈ C1([a, b]); we want to show Φ(u) ≥ Φ(u0). Approximating
u suitably, we may assume that the set {x ∈ [a, b] : u(x) = v+(x) or u(x) = v−(x)} is fi-
nite. Set ũ := max(v−, min(v+, u)) and approximate ũ by a sequence of C1-functions uk such
that graph(uk) ⊂ P1 := {(x, φ(x, α)) : x ∈ [a, b], |α| ≤ b − a} and uk → ũ in W1,4. Then
Theorem 6.1 shows that Φ(uk) ≥ Φ(u0), hence Φ(ũ) ≥ Φ(u0) due to the continuity of Φ
in W1,4. Let [x1, x2] be any maximal interval where ũ = v+ (i.e. u ≥ v+) or ũ = v−. No-
tice that either x1 = a or u(x1) = v±(x1), and either x2 = b or u(x2) = v±(x2). Denote
Φx2

x1(u) =
∫ x2

x1
f (x, u(x), u′(x)) dx. Then the proof of Theorem 6.1 shows Φx2

x1(u) ≥ Φx2
x1(v

+) (if
u ≥ v+ in [x1, x2]) or Φx2

x1(u) ≥ Φx2
x1(v

−), hence Φ(u) ≥ Φ(ũ) ≥ Φ(u0).

7 Appendix

Proof of Proposition 2.1. We will consider only the special case N = 1, IDa = ∅, INb = ∅, but the
arguments in our proof can also be used in the general case.

If h ∈ C1
D = {φ ∈ C1([a, b]) : φ(b) = 0}, then integration by parts yields

0 = Φ′(u0)h =
∫ b

a
( f 0

p(x)h′(x) + f 0
u(x)h(x)) dx

= gh
∣∣∣b

a
+

∫ b

a
( f 0

p(x)− g(x))h′(x) dx,
(7.1)
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where g(x) :=
∫ x

a f 0
u(ξ) dξ is C1. Considering test functions h with compact support in (a, b),

the Du Bois-Reymond Lemma and (7.1) yield the existence of a constant C such that f 0
p(x) =

g(x) + C, hence f 0
p ∈ C1 and the Euler equation d

dx ( f 0
p) = f 0

u is satisfied. This equation and
the choice of h with h(a) = 1 in (7.1) imply

0 = Φ′(u0)h =
∫ b

a
( f 0

p(x)h′(x) + f 0
u(x)h(x)) dx

= f 0
p h

∣∣∣b

a
+

∫ b

a

(
− d

dx
( f 0

p(x)) + f 0
u(x)

)
h(x) dx = − f 0

p(a),

which concludes the proof of the first part. If fp ∈ C1 and f 0
pp ≥ c0 > 0, then the function

F(x, p) := fp(x, u0(x), p)− g(x)− C is C1, F(x, (u0)′(x)) = 0, Fp(x, (u0)′(x)) > 0, hence the
Implicit Function Theorem implies u0 ∈ C2.

Proof of Proposition 2.3. The proof is based on an idea due to [4].
Let u0 ∈ C1 be a weak minimizer of Φ in u0 + C1

D. Assume first that there exist vk ∈ W1,2
D ,

k = 1, 2, . . . , such that rk := ∥vk∥1,2 → 0 and Φ(u0 + vk) < Φ(u0). Since Φ is weakly lower
semicontinuous in W1,2, there exists a minimizer uk of Φ in the set {u ∈ u0 + W1,2

D : ∥u −
u0∥1,2 ≤ rk}, hence Φ(uk) ≤ Φ(u0 + vk) < Φ(u0). Set Θ(u) := ∥u − u0∥2

1,2. Then there exists a
Lagrange multiplier λk such that Φ′(uk)h = λkΘ′(uk)h for any h ∈ W1,2

D (where the derivatives
are considered in W1,2). Since Φ′(uk)(uk − u0) ≤ 0, we have λk ≤ 0. Standard theory implies
that u0, uk ∈ C2 solve the Euler equation

2(1 − λk)(uk)′′ = g′(uk)− 2λk((u0)′′ + uk − u0),

which shows that the sequence uk is bounded in C2. Since uk → u0 in W1,2, the boundedness in
C2 implies uk → u0 in C1 which contradicts the fact, that u0 is a weak minimizer. Consequently,
u0 is a local minimizer in u0 + W1,2

D .
Next assume that there exist vk ∈ C1

D such that ∥vk∥C → 0 and Φ(u0 + vk) < Φ(u0). Since
Φ′(u0)h =

∫ b
a (2((u

0)′ − K)h′ + g′(u0)h) dx = 0 for h ∈ C1
D, we have

0 < Φ(u0)− Φ(u0 + vk) =
∫ b

a
[((u0)′ − K)2 − ((u0)′ + (vk)′ − K)2] dx + o(1)

= −
∫ b

a
(vk)′[(vk)′ + 2((u0)′ − K)] dx + o(1)

= −∥vk∥2
1,2 +

∫ b

a
g′(u0)vk dx + o(1) = −∥vk∥2

1,2 + o(1),

hence vk → 0 in W1,2, which yields a contradiction. Consequently, u0 is a strong minimizer.

Proof of Proposition 3.1. Assume that Ψ(h) ≥ c∥h∥2
1,2 for some c > 0 and all h ∈ W1,2

D and recall
that Ψ(h) = Φ′′(u0)(h, h) if h ∈ C1. If u1 is close u0 in C1 and Ψ1 denotes the functional Ψ with
u0 replaced by u1, then one can easily check that Ψ1(h) = Φ′′(u1)(h, h) ≥ c

2∥h∥2
1,2 for h ∈ C1

D,
and the Mean Value Theorem implies the existence of θ ∈ (0, 1) such that

Φ(u0 + h)− Φ(u0) =
1
2

Φ′′(u0 + θh)(h, h) ≥ c
4
∥h∥2

1,2

whenever h ∈ C1
D is small enough. Consequently, u0 is a strict weak minimizer in u0 + C1

D.
If Ψ(h) < 0 for some h ∈ W1,2

D , then the density of C1
D in W1,2

D and the continuity of Ψ in
W1,2

D guarantee the existence of h̃ ∈ C1
D such that 0 > Ψ(h̃) = Φ′′(u0)(h̃, h̃), which shows that

u0 is not a weak minimizer u0 + C1
D.
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Proof of Theorem 5.2(iii). First assume that INa = ∅. If INb = ∅, then the assertion is well
known (see [7] or [8], for example), hence we may assume INb ̸= ∅. Our assumptions imply
D ̸= 0 in (a, b] and Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0}. We may also assume that
f is defined and of class C3 in an open neighbourhood of {(x, u0(x), (u0)′(x)) : x ∈ [a, b]}
in R × RN × RN (see [2] for a detailed proof if N = 1). Consequently, there exists ε > 0
small such that u0 can be extended (as an extremal) for x ∈ [a − ε, a], f 0 satisfies (2.3) in
[a − ε, b], and the solutions h(k), k = 1, 2, . . . , N of the Jacobi equation in [a − ε, b] with initial
conditions h(k)(a − ε) = 0, (h(k)i )′(a − ε) = δik, satisfy D > 0 in (a − ε, b] and Bh(b) · h(b) > 0
for any h ∈ HD,b \ {0} due to the continuous dependence of solutions of ODEs on initial
values. Let φ(·, α) be the extremal satifying the initial conditions φ(a − ε, α) = u0(a − ε),
φx(a, α) = (u0)′(a − ε) + α. The arguments in [7, 8] guarantee that such extremals define a
field of extremals for u0 (in [a, b]) satisfying (5.1). Condition (5.2) is empty, hence we only have
to show that (5.3) is true. Thus assume that v − u0(b) ∈ RN

D,b ∩ Bε \ {0}. We have v = φ(b, α)

for some α small. Set hα := ∑k αkh(k). If i ∈ IDb , then 0 = φi(b, α) − u0
i (b) = hα

i (b) + o(α),
hence hα = hα̃ + o(α) for some hα̃ ∈ HD,b \ {0} and α̃ = α+ o(α). Since our assumptions imply
Bhα̃(b) · hα̃(b) = ∑i∈INb

Bihα̃(b)hα̃
i (b) > 0, we also have

fp(b, v, ψ(b, v)) · (v − u0(b)) = ∑
i∈INb

fpi(b, φ(b, α), φx(b, α))(φi(b, α)− u0
i (b))

= ∑
i∈INb

(
Bihα(b) + o(α)

)(
hα

i (b) + o(α)
)

= ∑
i∈INb

(
Bihα̃(b) + o(α̃)

)(
hα̃

i (b) + o(α̃)
)
> 0.

Next assume IDa = ∅. Since our proof in this case uses similar arguments as in the case
INa = ∅ (and a very detailed proof in the case N = 1 can be found in [2]), we will be brief.
Given α ∈ RN small and v = v(α) := u0(a) + α, the Implicit Function Theorem implies the
existence of a unique w = w(α) ∈ RN close to (u0)′(a) such fp(a, v(α), w(α)) = 0. Let φ(·, α)

be the extremal satisfying the initial conditions φ(a, α) = v(α), φx(a, α) = w(α). We claim that
such extremals φ(·, α) define the required field. In fact, the function P in Definition 5.1 is a C1-
diffeomorphism and φx ∈ C1 due to the differentiability of solutions of ODEs on initial values
and the fact that h(k) := ∂φ

∂αk
(·, 0), k = 1, . . . , N, are linearly independent solutions of the Jacobi

equation Ah = 0 satisfying the initial conditions Bh(a) = 0, hence det(h(1), . . . , h(N)) ̸= 0 in
[a, b] due to our assumptions. Properties (5.1) and (5.2) follow from fp(a, v, ψ(a, v)) = 0 and
the proof of (5.3) is the same as in the case INa = ∅.

Finally assume (5.5). Let h(1), . . . , h(N) be solutions of the Jacobi equation Ah = 0 in [a, b]
satisfying the initial conditions

h(k)i (a) = ηδik for k ∈ IDa , i ∈ I,

h(k)i (a) = δik for k ∈ INa , i ∈ I,

(h(k)i )′(a) = δik for k ∈ I, i ∈ IDa ,

Bih(k)(a) = 0 for k ∈ I, i ∈ INa ,

where η ∈ [0, 1]. If ζ ≥ 0 is small, then

h(k)i (a + ζ) = (η + ζ)δik + o(ζ) if k, i ∈ IDa ,

h(k)i (a + ζ) = δik + O(ζ) otherwise,

hence D(x) := det(h(1)(x), . . . , h(N)(x)) > 0 for x ∈ [a, a + ζ] and η ∈ (0, 1]. If η = 0, then
our assumptions imply D(x) > 0 for x ∈ [a + ζ, b] and Bh(b) · h(b) > 0 for any h := ∑k βkh(k)
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satisfying hi(b) = 0 for i ∈ IDb and h ̸≡ 0. Those properties remain true for η > 0 small
and we fix such η > 0. Set vi(α) = u0

i (a) + ηαi if i ∈ IDa , vi(α) = u0
i (a) + αi if i ∈ INa and

wi(α) = (u0
i )

′(a) + αi if i ∈ IDa . The Implicit Function Theorem guarantees that there exist
unique wi(α) for i ∈ INa (close to (u0

i )
′(a)) such that fpi(a, v(α), w(α)) = 0 for i ∈ INa and α

small. Let φ(·, α) be extremals satisfying the initial conditions φ(a, α) = v(α), φx(a, α) = w(α).
Then φαk(a, 0) = h(k)(a) and φxαk(a, 0) = (h(k))′(a), which shows that these extremals define
a field of extremals for α small. The same arguments as above guarantee that properties
(5.2),(5.3) are satisfied. Let us show that (5.1) is true. If i, j ∈ INa , then this follows from
fpi(a, v, ψ(a, v)) = fpj(a, v, ψ(a, v)) = 0. Let i ∈ IDa . If j ∈ INa , then the left-hand side in (5.1)
is zero due to fpiuj = fpi pj = 0. If j ∈ IDa , then that left-hand side equals fpiuj(a, v, ψ(a, v)) +
∑k∈I fpi pk(a, v, ψ(a, v))ψk,vj(a, v). Since fpiuj = fpjui , fpi pk(a, v, ψ(a, v)) = 0 for k ∈ INa and
ψk,vj(a, v) = 1

η δkj if k ∈ IDa , we see that that left-hand side equals to the right-hand side.

Proof of Proposition 5.4. If w = (w1, . . . , wN) depends on θ, then we denote wi,θ := ∂wi
∂θ . By

differentiating the identity φx(x, α) = ψ
(
x, φ(x, α)

)
we obtain

φj,xx = ψj,x + ∑
k

ψj,vk φk,x = ψj,x + ∑
k

ψj,vk ψk.

If we substitute this relation into the Euler equations

∑
j
( fpi pj φj,xx + fpiuj φj,x) + fpix − fui = 0,

(where the arguments of the derivatives of f and φ are
(
x, φ(x, α), φx(x, α)

)
and (x, α), respec-

tively), then we obtain

∑
j
( fpi pj(ψj,x + ∑

k
ψj,vk ψk) + fpiuj ψj) + fpix − fui = 0, (7.2)

where the arguments of the derivatives of f and ψ are
(
x, v, ψ(x, v)

)
and (x, v), respectively.

For (x, v) ∈ P we set

V(x, v) := f
(

x, v, ψ(x, v)
)
− fp

(
x, v, ψ(x, v)

)
· ψ(x, v),

W(x, v) := fp
(
x, v, ψ(x, v)

)
.

(7.3)

We claim that

(Wi,vj − Wj,vi)(x, v) =
∂ fpi(x, v, ψ(x, v))

∂vj
−

∂ fpj(x, v, ψ(x, v))
∂vi

= 0, i, j ∈ I. (7.4)

In fact, if f and φ are of class C3, then setting v = φ(x, α) and ψ(x, v) = φx(x, α) in (7.4),
the Euler equations imply that the d/dx-derivative of the resulting expression vanishes, hence
the conclusion follows from (5.1). Such argument can also be used without the additional
smoothness assumptions on f , φ, see the proof of [8, Proposition 6.1.1.4].

Now (7.4) and (7.2) imply Vv = Wx. This fact and (7.4) guarantee the existence of S ∈
C2(P) such that Sx = V and Sv = W. Finally,

I(v) =
∫ b

a
(V + W · v′) dx =

∫ b

a
(Sx + Sv · v′) dx =

∫ b

a

d
dx

S
(
x, v(x)

)
dx

= S
(
b, v(b)

)
− S

(
a, v(a)

)
.
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Remark 7.1. Necessary and sufficient conditions for weak minimizers in [15, 16] are formu-
lated in terms of (semi-)coupled points and seem to be more complicated than our condi-
tions. In order to compare them, let us consider the scalar case with variable endpoints
(i.e. IDa = IDb = ∅), and let h be the solution of the Jacobi equation satisfying the initial con-
ditions h(a) = 1, Bh(a) = 0. Let us also denote Q := f 0

uu. Then our sufficient condition for a
weak minimizer in Theorem 3.3 is equivalent to

h(y) ̸= 0 for y ∈ (a, b] and Bh(b) > 0, (7.5)

while the sufficient condition for a weak minimizer in [15, 16] is equivalent to

−Bh(y) ̸=
(∫ b

y
Q
)

h(y) for y ∈ (a, b] and
∫ b

a
Q > 0. (7.6)

The proofs of the sufficiency guarantee that (7.5) is equivalent to (7.6). Let us show this
equivalence directly: For simplicity, consider just Lagrangians of the form 2 f (x, u, p) = p2 +

Q(x)u2. Then Bh = h′ and the Jacobi equation has the form h′′ = Qh. Let h be the solution of
this equation with initial conditions h(a) = 1, h′(a) = 0.

First assume that (7.5) is true. Then integration by parts yields

∫ b

a
Q =

∫ b

a

h′′

h
=

h′

h

∣∣∣b

a
+

∫ b

a

(h′)2

h2 > 0. (7.7)

Assume to the contrary that −h′(y) = (
∫ b

y Q)h(y) for some y ∈ (a, b]. Then

−
∫ b

y
Q =

h′(y)
h(y)

=
h′

h

∣∣∣y

a
=

∫ y

a

(h′′

h
− (h′)2

h2

)
=

∫ y

a

(
Q − (h′)2

h2

)
. (7.8)

Now (7.8) and (7.7) imply

∫ b

a
Q =

∫ y

a

(h′)2

h2 <
h′

h

∣∣∣b

a
+

∫ b

a

(h′)2

h2 =
∫ b

a
Q,

which yields a contradiction.
Next assume that (7.5) fails, i.e. either h(y) = 0 for some y ∈ (a, b] or h′(b) ≤ 0, and

assume also to the contrary (7.6) is true. If h(y) = 0 for some y ∈ (a, b] and h > 0 on [a, y],
then h′(y) < 0, hence

−h′(a) = 0 <
(∫ b

a
Q
)

h(a),

−h′(y) > 0 =
(∫ b

y
Q
)

h(y),

so that there exists z ∈ (a, y) such that −h′(z) =
(∫ b

z Q
)
h(z), which yields a contradiction. If

h > 0 and h′(b) ≤ 0, then

−h′(a) = 0 <
(∫ b

a
Q
)

h(a),

−h′(b) ≥ 0 =
(∫ b

b
Q
)

h(b),

so that there exists z ∈ (a, b] such that −h′(z) =
(∫ b

z Q
)
h(z) and we arrive at contradiction

again.
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The proof above shows that if y1 is the first (= smallest) zero of h, then the smallest solution
z1 of the equation −h′(z) =

(∫ b
z Q

)
h(z) satisfies z1 < y1. The inequality z1 ≤ y1 also follows

from the proof of Theorem 3.4 and the corresponding proof in [16]. In fact, those proofs show
that y1 and z1 correspond to the zeroes of the continuous nonincreasing functions λ1(y) =

infSy Ψ and λ̃1(z) = infS̃z
Ψ, respectively, where Sy is the unit sphere in Xy (see (3.3)) and S̃z

is the unit sphere in X̃z = {h ∈ W1,2([a, b]) : h(x) = h(z) for x ≥ z}. Since Xy ⊂ X̃y and the
norm in Xy is equivalent to the norm in W1,2, we have λ̃1 ≤ max{Cλ1, 0}.

The following proposition is motivated by [11] and Section 4. Given u0 ∈ C1([a, b], RN),
we will use the following notation (cf. (1.2)):

M := u0 + C1
D = {u ∈ C1([a, b]) : (ui − u0

i )(x) = 0 for i ∈ IDx and x ∈ {a, b}},

MN := {u ∈ M : u′
i(x) = 0 for i ∈ INx and x ∈ {a, b}}.

Proposition 7.2. Let f ∈ C1 and let u0 be a weak minimizer of Φ in MN . Then u0 is a weak
minimizer in M. Conversely, if u is a weak minimizer in M and u0 ∈ MN , then u0 is a weak
minimizer in MN .

Proof. For simplicity, we will prove the assertion only in the special case N = 1, IDa = ∅,
INb = ∅, but it will be clear from the proof that our arguments can also be used in the general
case.

Hence assume first that u0 is a weak minimizer of Φ in

MN = {u ∈ C1([a, b]) : (u − u0)(b) = 0, u′(a) = 0}.

Then there exists ε > 0 such that u0 is a (global) minimizer of Φ in the set

Mε
N := {u ∈ MN : ∥u − u0∥C1 < ε}.

We will show that u0 is a (global) minimizer in the set Mε/4, where

Mε := {u ∈ M : ∥u − u0∥C1 < ε},

hence u0 is a weak minimizer of Φ in M = {u ∈ C1([a, b]) : (u − u0)(b) = 0}.
Fix u ∈ Mε/4. Since (u0)′(a) = 0, given k ∈ N, there exists δk ∈ (0, 1/k) such that

|(u0)′(x)| < 1/k for x ∈ Jk := [a, a + δk].

Since ∥u − u0∥C1 < ε/4, we also have |u′(x)| < ε/4 + 1/k for x ∈ Jk. Consequently, we can
modify the function u in Jk such that the modified function uk ∈ C1([a, b]) satisfies uk = u
on [a + δk, b], (uk)′(a) = 0 and |(uk)′(x)| < ε/4 + 1/k for x ∈ Jk (for example, we can choose
(uk)′(x) = u′(δk)(x − a)/(δk − a) for x ∈ Jk). Then

|(uk)′ − (u0)′| ≤ |(uk)′|+ |(u0)′| < ε/4 + 2/k on Jk

and the Mean Value Theorem implies

|uk − u0| ≤ |uk − u|+ |u − u0| < max
Jk

|(uk − u)′|δk + ε/4 < (ε/2 + 2/k)/k + ε/4 on Jk,

hence uk ∈ Mε
N for k large, which implies Φ(uk) ≥ Φ(u0). Since Φ(uk) → Φ(u), we have

Φ(u) ≥ Φ(u0).
The converse assertion is trivial.
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Remark 7.3. In [11, Propositions 5 and 6] the authors consider the function u0 and the func-
tional Φ from our Section 4, and they provide conditions guaranteeing that u0 is a weak
minimizer subject to the Neumann boundary conditions for some of its components (see (4.3)
and (4.2) above). Proposition 7.2 shows that the Neumann boundary conditions do not play
any role in such assertions, i.e. u0 remains a weak minimizer if we replace “the Neumann
boundary conditions” with “no boundary conditions”. Consequently (see Proposition 2.1), u0

then has to satisfy the corresponding natural boundary conditions (instead of the Neumann
boundary conditions). The Neumann boundary conditions are different from the natural
boundary conditions in general, but the first two components of the function u0 in Section 4
satisfy both the Neumann and the natural boundary conditions.
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