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Abstract. In this paper, we are devoted to establishing that the existence of positive
solutions for a class of generalized quasilinear elliptic equations in RN with Sobolev
critical growth, which have appeared from plasma physics, as well as high-power ul-
trashort laser in matter. To begin, by changing the variable, quasilinear equations are
transformed into semilinear equations. The positive solutions to semilinear equations
are then presented using the Mountain Pass Theorem for locally Lipschitz functionals
and the Concentration-Compactness Principle. Finally, an inverse translation reveals
the presence of positive solutions to the original quasilinear equations.

Keywords: variational methods, Sobolev critical growth, locally Lipschitz functional.

2020 Mathematics Subject Classification: 35J20, 35J62.

1 Introduction

In this paper, we aim at studying the existence of positive solutions for the following general-
ized quasilinear elliptic equations

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), in RN , (1.1)

where N ≥ 3, g ∈ C1(R, R+) is an even function and g′(t) ≥ 0 for all t ≥ 0 and g(0) = 1,
the potential V ∈ C(RN , R), h is a measurable function defined on RN × R. These equations
are closely related to the existence of standing wave solutions for the following quasilinear
Schrödinger equations

i∂tz = −∆z + E(x)z − σ(x, |z|2)z − ∆[l(|z|2)]l′(|z|2)z, (1.2)

where z : RN × R → C, E : RN → R is a potential function and σ : RN × R → R, l : R → R

are suitable functions. Notice that equation (1.2) can be reduced to elliptic equations with the
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following formal structure (see [15]) by setting z(x, t) = exp(−iFt)u(x), where F ∈ R and u is
a real function,

−∆u + V(x)u − ∆[l(u2)]l′(u2)u = h(x, u), in RN . (1.3)

Furthermore, we take g2(u) = 1 + (l′(u2))2

2 , then (1.3) turns into (1.1) (see [16, 28]).
To the best of our knowledge, the quasilinear equation (1.1) have been utilized to simulate

a range of physical phenomena corresponding to various types of g(u) in several fields of
mathematical physics. For instance, the case g2(u) = 1 + 2u2, that is, l(u) = u in (1.3), we get

−∆u + V(x)u − u∆(u2) = h(x, u), in RN , (1.4)

which simulates the time evolution of the condensate wave function in a superfluid film (see
[20]). For equation (1.1), if we take g2(u) = 1 + u2

2(1+u2)
, that is, l(u) =

√
1 + u, we get

−∆u + V(x)u − [∆
√

1 + u2]
u

2
√

1 + u2
u = h(x, u), in RN . (1.5)

Equation (1.5) is often used as a model of the self-channeling of a high-power ultrashort laser
in matter (see [8, 12, 25]). For more physical backgrounds about equation (1.1), readers can
refer to [7, 19, 23, 24] and the references within. So, the study for general quasilinear elliptic
equation (1.1) is meaningful and important.

In [21], the quasilinear equation (1.4) was firstly transformed to a semilinear one by using
a change of variable. Then, they chose an Orlicz space as the working space and obtained
the existence of positive solutions to equation (1.4) by using the Mountain Pass theorem.
Afterwards, the same change of variable was applied in [14,30,31], but the usual Sobolev space
framework was used as the working space. For example, Silva and Vieira in [30] obtained the
existence of positive solutions of equation (1.4) in an asymptotically periodic condition with
critical growth. In [28], Shen and Wang used a new change of variable developed by (1.4)
to show the existence of positive solutions of equation (1.1) when h(x, u) was superlinear
and subcritical. Following that, by applying the same modification in variable as in [28] and
the classical Mountain Pass Theorem, Deng et al. in [16] proved the existence of a positive
solution for equation (1.1) where nonlinearity was critical growth, and Shi and Chen in [29]
proved the existence of positive solutions of equation (1.1) when nonlinearity was periodic or
asymptotically periodic cases with critical growth. On the other hand, Candela et al. in [9]
considered the more general quasilinear ellptic equation:

−div(A(x, u)|∇u|p−2∇u) +
1
p

Au(x, u)|∇u|p + V(x)|u|p−2u = h(x, u), in RN ,

with p > 1 and A : RN × R → R such that Au(x, u) = ∂A
∂u (x, u). When A(x, u) = g2(u) and

p = 2, the above equation turns to (1.1) with N = 3. They employed an entirely new approach
to deal with (1.1) because the arguments of change of variable frequently need g(u) to meet
certain particular assumptions, and the features of g(u) directly affect the hypotheses on the
nonlinear term h(x, u). By using the Mountain Pass Theorem with the weak Cerami Palais
Smale condition, they established the existence of week-bounded solutions under certain ap-
propriate hypotheses on V(x) and h(x, u), which are independent of g(u).

It is worth pointing out that the continuity of nonlinearity is always required in these afore-
mentioned papers. It seems that there are no results concerning equation (1.1) with discon-
tinuous nonlinearities. Actually, many free boundary problems and obstacle problems arising
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from physics can be described with nonlinear partial differential equations with discontinu-
ous nonlinearities. For more problems with discontinuous nonlinearities, readers can refer to
[1,3,6,10,22,26,35] and their references. Hence, our goal is to discuss the existence of positive
solutions for problem (1.1) with discontinuous nonlinearities. In this paper, we consider equa-
tion (1.1) with h(x, t) = κ f (x, t) + g(t)|G(t)|2∗−2G(t), where κ > 0, G(t) =

∫ t
0 g(s)ds, 2∗ = 2N

N−2
and f : RN × R → R is a discontinuous function. We rewrite equation (1.1) as follows:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = κ f (x, u) + g(u)|G(u)|2∗−2G(u), in RN . (1.6)

The hypotheses on the function V and f are the following:

(V1) There exist a function Vp(x) ∈ C(RN , R), ZN-periodic with respect to variable x, satis-
fying

Vp(x) ≥ V0, ∀x ∈ RN ,

and a function W(x) ∈ L
N
2 (RN) ∩ C(RN , R) with W(x) ≥ 0 such that

V(x) = Vp(x)− W(x) ≥ W0, ∀x ∈ RN ,

where V0, W0 are positive constants and the inequality W(x) ≥ 0 is strict on a subset of
positive measure in RN .

( f1) f (x, t) is a measurable function defined on RN × R and the functions

f (x, t) := lim
δ↓0

ess inf{ f (x, s); |t − s| < δ}

and
f (x, t) := lim

δ↓0
ess sup{ f (x, s); |t − s| < δ},

are N-mensurable (see [11]).

( f2) f (x, t) ≡ 0 if t ≤ 0 and lim supt→0+
f (x,t)

t = 0, uniformly in x ∈ RN .

( f3) There are C > 0 and q ∈ (2, 2∗) such that

| f (x, t)| ≤ C(1 + g(t)|G(t)|q−1), ∀(x, t) ∈ RN × [0, ∞).

( f4) There exists θ ∈ (2, 2∗) such that

0 ≤ θg(t)F(x, t) ≤ G(t)min{ f (x, t), ϱ}, ∀ϱ ∈ ∂tF(x, t) and ∀(x, t) ∈ RN × [0, ∞),

where F(x, t) =
∫ t

0 f (x, s)ds and ∂tF(x, t) := [ f (x, t), f (x, t)] denotes the generalized
gradient of F(x, t) with respect to variable t (see [4]).

Here, we provide a nonlinearity f that satisfies the assumptions above as following: fixed
T > 0, let us consider the function

f (x, t) =


0, t ∈ (−∞, 0],

g(t)(G(t))q−2 [G(t)− arctan(G(t))] , t ∈ (0, T],

g(t)(G(t))q−2 [G(t)− µ arctan(G(t))] , t ∈ (T,+∞),

where 0 < µ < 1.
The asymptotic periodicity of f at infinity is given by the following condition:
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( f5) There exists a function fp(x, t) ∈ C(RN × R, R), ZN-periodic with respect to variable x,

such that fp(x, t) ≡ 0 if t ≤ 0 and fp(x,t)
g(t)G(t) is nondecreasing for all t > 0.

( f6) There exists ν ∈ (2, 2∗) such that

0 ≤ νg(t)Fp(x, t) ≤ G(t) fp(x, t), ∀(x, t) ∈ RN × R,

where Fp(x, t) =
∫ t

0 fp(x, s)ds.

( f7) F(x, t) ≥ Fp(x, t) =
∫ t

0 fp(x, s)ds, ∀(x, t) ∈ RN × [0, ∞) and

| f (x, t)− fp(x, t)| ≤ π(x)g(t)|G(t)|q−1, ∀(x, t) ∈ RN × [0, ∞),

|ϱ − fp(x, t)| ≤ π(x)g(t)|G(t)|q−1, ∀(x, t) ∈ RN × [0, ∞), and ϱ ∈ ∂tF(x, t),

where π(x) > 0 for all x ∈ RN , π(x) ∈ L∞(RN), and π(x) → 0 as |x| → ∞.

Next, we provide a suitable example of function f (x, t) that satisfies the assumptions ( f1)–
( f7). Fixed T > 0, let

f (x, t) =


0, t ∈ (−∞, 0],

fp(x, t), t ∈ (0, T],

fp(x, t) + µ exp(−|x|)g(t)(G(t))q−2 arctan(G(t)), t ∈ (T,+∞),

where 0 < µ < 1 and

fp(x, t) =

{
0, t ∈ (−∞, 0],

g(t)(G(t))q−2 [G(t)− arctan(G(t))] , t ∈ (0,+∞).

Since f (x, t) is discontinuous, inspired by [11] and [27], we give the definition of solutions
for (1.6). We say a function u is a solution for the multivalued problem (1.6) if it satisfies

−div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u−g(u)|G(u)|2∗−2G(u)∈κ f̂ (x, u), a.e. in RN , (1.7)

where f̂ is the multivalued function

f̂ (x, t) = [ f (x, t), f (x, t)].

Below, we describe the main results of this paper.

Theorem 1.1 (The non periodic case). Assume that (V1) and ( f1)–( f7) are satisfied. Then, there
exists κ∗ > 0 such that the problem (1.6) possesses a positive solution for all κ ≥ κ∗.

When f is ZN periodic and V = Vp given by (V1), problem (1.6) can turns to the following
periodic problem:

−di v(g2(u)∇u) + g(u)g′(u)|∇u|2 +Vp(x)u = κ f (x, u) + g(u)|G(u)|2∗−2G(u), in RN . (1.8)

For periodic problem (1.8), we may state:

Theorem 1.2 (The periodic case). Assume that ( f1)–( f4) are satisfied and f is ZN periodic. Then,
there exists κ∗ > 0 such that the problem (1.8) possesses a positive solution for all κ ≥ κ∗.
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Remark 1.3. As is known to all, the discontinuity of nonlinearity causes a lack of functional
differentiability. In this paper, as f is discontinuous, the modified energy functional associated
with (1.6) is only locally Lipschitz continuous. The classical variational methods cannot be
directly utilized for nonsmooth functionals. For smooth functionals, it is essential that the
energy functional can be studied on the Nehari manifold and that the mountain pass level
is equal to the minimum of the energy functional on the Nehari manifold. However, these
results are not valid for nonsmooth cases. Hence, the proof of the existence of solutions for
equation (1.6) is more difficult.

Remark 1.4. Similar equations have been considered in [9]. However, our assumptions on
nonliearities are critical growth and discontinuous.

Below we give a sketch of the proofs of our main results:
1) Firstly, we make a change of variable to reduce the quasilinear problem (1.6) to a semilin-

ear problem (2.1) which can be well defined in H1(RN) and satisfies the geometric hypotheses
of the Mountain Pass Theorem. Hence, we get a (PS)c sequence associated with the minimax
level. And by using standard arguments, we show that the weak convergence limit of (PS)c

sequence is a solution of the problem (2.1).
2) Furthermore, for adopting the similar technical scheme due to [30], we assume this

solution is trivial. Thereby, we get a nontrivial critical point of the functional associated with
the periodic case, and use the nontrivial critical point to construct a special path to prove
that the maximum of the functional associated with (2.1) is strictly less than the one of the
functional associated with the periodic case, which is a contradiction.

3) Hence, we obtain the existence of nontrivial solutions of the problem (2.1). Finally, by
Lemma 2.2, Theorem 1.1 is proved.

The outline of the article is as follows: in Section 2, we introduce the variational setting
associated with problem (1.6) and some basic knowledge of the critical point theory of lo-
cally Lipschitz continuous functionals. In Section 3, we prove the geometric structure of the
Mountain Pass Theorem and some preliminary lemmas. In Section 4 and Section 5, we prove
Theorem 1.1 and Theorem 1.2, respectively.

Throughout this paper, we make use of the following notations:

• M, C, Cε denote positive constants, which may vary from line to line.

• Lp(RN) denotes the Lebesgue space with the norm ∥ · ∥p =
( ∫

RN |u|pdx
) 1

p for 1 ≤ p ≤ ∞.

• The dual space of a Banach space X will be denoted by X∗.

• The strong (respectively, weak) convergence is denoted by → (respectively, ⇀).

• on(1) denotes on(1) → 0 as n → ∞.

• Denote the function space D1,2(RN) := {v ∈ L2∗(RN) : |∇v| ∈ L2(RN)}. Here, S is the
best constant that verifies

S
(∫

RN
|u|2∗

) 2
2∗

≤
∫

RN
|∇u|2, for all u ∈ D1,2(RN).

• Denote the function space H1(RN) = {v ∈ L2(RN) : |∇v| ∈ L2(RN)} with the usual
norm

∥v∥2
H1 =

∫
RN

(
|∇v|2 + |v|2

)
.
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2 Variational setting and preliminary knowledge

From the variational point of view, we note that we may not directly apply the variational
method to deal with the problem (1.6), since the functional associated with (1.6) may not
be well defined in general H1(RN). The first difficulty associated with (1.6) is to find an
appropriate function space where the functional responding to (1.6) is well defined. In order
to overcome this difficulty, we we change the variables u = G−1(v), where G is defined as

v = G(u) =
∫ u

0
g(t)dt

by Shen and Wang in [28].
Now, we present some important properties about the functions g, G and G−1, which

proofs can be found in [16].

Lemma 2.1. The functions g(s) and G(s) =
∫ s

0 g(t)dt enjoy the following properties.

(i) G(s) and G−1(t) are odd and strictly increasing.

(ii) For all s ≥ 0, t ≥ 0,

G(s) ≤ g(s)s, G−1(t) ≤ t
g(0)

= t.

(iii) For all t ≥ 0, G−1(t)
t is nonincreasing and

lim
t→0

G−1(t)
t

=
1

g(0)
= 1, lim

t→∞

G−1(t)
t

=


1

g(∞)
, if g is bounded,

o(1), if g is unbounded.

(iv) Denote T(t) = G−1(t)
g(G−1(t)) , then t2T′(t) ≤ T(t)t, ∀t ∈ R.

After the change of variable u = G−1(v), the problem(1.6) can be rewritten as follows:

−∆v + V(x)
G−1(v)

g(G−1(v))
=

f (x, G−1(v))
g(G−1(v))

+ |v|2∗−2v, in RN . (2.1)

As a consequence of Lemma 2.1, the functional associated with (2.1) is well defined in
H1(RN).

Lemma 2.2. From Lemma 2.1, direct calculations demonstrate that u = G−1(v) shall be a solution of
the equation (1.6) when v is a solution of the problem (2.1). That is to say, v ∈ H1(RN) satisfies

−∆v + V(x)
G−1(v)

g(G−1(v))
− |v|2∗−2v ∈ f̂ (x, G−1(v))

g(G−1(v))
a.e. in RN , (2.2)

where
f̂ (x, G−1(v))
g(G−1(v))

=

[
f (x, G−1(v))
g(G−1(v))

,
f (x, G−1(v))
g(G−1(v))

]
.
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From the above commentaries, in order to find solutions to equation (1.6), it suffices to
study the existence of solutions to equation (2.1). The second difficulty associated with (2.1)
is that the classical critical theory for smooth functionals cannot be directly applied to (2.1)
since the function f (x, G−1(t)) is discontinuous. To study nonsmooth problems like (2.1), we
will apply the critical point theory of locally Lipschitz continuous functionals developed by
Clarke [13]. For the convenience of the readers, here we provide some relevant knowledge of
the critical point theory of locally Lipschitz continuous functionals.

Let X be a real Banach space and I : X → R.

Definition 2.3 ([27]). If given v ∈ X there exists an open neighborhood U := Uv ⊂ X and
some constant CU > 0 such that

|I(v1)− I(v2)| ≤ CU∥v1 − v2∥X, vi ∈ U, i = 1, 2.

We call that I is locally Lipschitz continuous (I ∈ Liploc(X, R) for short).

Definition 2.4 ([27]). The generalized directional derivative of I ∈ Liploc(X, R) at v in the
direction of ṽ ∈ X is defined by

I◦(v; ṽ) = lim sup
u→0 t↓0

I(v + u + tṽ)− I(v + u)
t

.

The definition 2.4 implies that I◦(v; .) is continuous, convex and its subdifferential at w ∈ X
is given by

∂I◦(v; w) = {µ ∈ X∗; I◦(v; u) ≥ I◦(v; w) + ⟨µ, u − w⟩, ∀u ∈ X},

where X∗ is the dual of X and ⟨., .⟩ is the duality paring between X∗ and X.

Definition 2.5. ([27]) The general gradient of I ∈ Liploc(X, R) at v is the set

∂I(v) = {µ ∈ X∗; I◦(v; u) ≥ ⟨µ, u⟩, ∀u ∈ X}.

Since I◦(v; 0) = 0, ∂I(v) is the subdifferential of I◦(v; 0). Moreover, ∂I(v) ⊂ X∗ is convex,
nonempty and weak∗ compact. If I is C1 functional, ∂I(v) = {I′(v)}. We denote by λI(u) the
following real number

λI(v) := min{∥µ∥X∗ ; µ ∈ ∂I(v)}.

Definition 2.6 ([27]). An element v ∈ X is a critical point of I if 0 ∈ ∂I(v) or equivalently,
when λI(v) = 0.

Lemma 2.7. If I1 ∈ C1(X, R) and I2 ∈ Liploc(X, R), then

∂(I1 + I2)(v) = {I′1(v)}+ ∂I2(v), ∀v ∈ X.

Lemma 2.8 ([13] and [34]). Let Y be a Banach space and j : Y → X be a continuously differentiable
function. Then I ◦ j is locally Lipschitz and

∂(I ◦ j)(v) ⊂ ∂I(j(v)) ◦ j′(v), ∀v ∈ Y.

Lemma 2.9 ([13]). Let I ∈ Liploc(X, R) with I(0) = 0 and X be a Banach space. Suppose there are
constants α, ρ > 0 and function e ∈ X, such that
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(i) I(v) ≥ α, for all v ∈ X with ∥v∥X = ρ,

(ii) I(e) < 0 and ∥e∥X > r.

Let
c = inf

γ∈ΓI
max
t∈[0,1]

I(γ(t)),

where
ΓI = {γ ∈ C([0, 1], X) : γ(0) = 0, I(γ(1)) < 0}.

Then, c ≥ α and there exists a sequence {vn} ⊂ X satisfying I(vn) → c and λI(vn) → 0. The
sequence {vn} is called a (PS)c sequence for I.

3 Some preliminary lemmas

Hypotheses ( f1)–( f3) imply that, for any ε > 0, there is Cε > 0 such that

| f (x, t)| ≤ ε|t|+ Cεg(t)|G(t)|q−1, ∀t ∈ R, ∀x ∈ RN ,

|F(x, t)| ≤ ε

2
|t|2 + Cε

q
|G(t)|q, ∀t ∈ R, ∀x ∈ RN .

(3.1)

From the second inequality of (3.1) and Lemma 2.1-(ii), we can prove

Ψ(v) =
∫

RN
F(x, G−1(v)) ≤

∫
RN

(
ε

2
|v|2 + Cε

q
|v|q
)
≤ C(∥v∥2 + ∥v∥q), (3.2)

so functional Ψ is well defined in H1(RN). However, in order to apply variational methods
for locally Lipschitz functionals, it is preferable to deal with the functional Ψ in a more ap-
propriate space, that is Ψ : LΦ(RN) → R, for Φ(t) = |t|2 + |t|q, where LΦ(RN) denotes the
Orlicz space associated with the N-function Φ. In this paper, we are working in RN and the
conditions on f yield

|F(x, G−1(t))| ≤ C(|t|2 + |t|q), ∀t ∈ R, (3.3)

then Ψ is not well defined in Lp(RN). The above estimate involving the function F suggests
that the best space to work is the Orlicz space LΦ(RN). In bounded domains, the Orlicz space
LΦ(RN) is not necessary. In this case, (3.2) implies that the functional Ψ is well defined in
Lp(Ω). Since 2 < q < 2∗, we obtain that the embedding H1(RN) ↪→ LΦ(RN) is continuous
and Φ satisfies ∆2 condition which ensures that LΦ(RN) and LΦ̃(RN) are reflexive spaces (Φ̃
is the conjugate function of Φ (see [17])). Hence, given ς ∈ (LΦ(RN))∗, we get

ς(v) =
∫

RN
uςv, ∀v ∈ LΦ(RN),

for some uς ∈ LΦ̃(RN). Essentially, by the definition of Φ and ( f1)–( f3) the conditions below
occur:

|ζ| ≤ ε|t|+ Cε|t|q−1 ≤ CΦ′(|t|), ∀ζ ∈ ∂tF(x, G−1(t)),

|F(x, G−1(t))| ≤ ε

2
|t|2 + Cε

q
|t|q−1 ≤ CΦ(t),

(3.4)

for all t ∈ R and x ∈ RN . Here, ∂tF(x, G−1(t)) denotes the generalized gradient of F(x, G−1(t))
with respect to variable t. The above information involving Ψ and Φ is crucial in the below.

The next two lemmas establish important properties of the functional Ψ given in (3.2).
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Lemma 3.1 ([2, Theorem 4.1] and [5, Theorem 4.2]). Assume (3.4). Then, the functional Ψ :
LΦ(RN) → R given by

Ψ(v) =
∫

RN
F(x, G−1(v)), v ∈ LΦ(RN),

is well defined and Ψ ∈ Liploc(LΦ(RN), R). Furthermore,

∂Ψ(v) ⊂ ∂tF(x, G−1(v)), ∀ v ∈ LΦ(RN),

in the sense that for every ϱ∗ ∈ ∂Ψ(v) ⊂ (LΦ(RN))∗ ∼= LΦ̃(RN) there exists ϱ ∈ LΦ̃(RN) such that

ϱ(x) ∈ ∂tF(x, G−1(v(x))) =

[
f (x, G−1(v(x)))
g(G−1(v(x)))

,
f (x, G−1(v(x)))
g(G−1(v(x)))

]
a.e. in RN

and
⟨ϱ∗, v⟩ =

∫
RN

ϱv, ∀ v ∈ LΦ(RN).

As a similar consequence of Proposition 2.3 in [5], we obtain the following lemma and the
proof will be omitted. More details can be found in [5].

Lemma 3.2. Assume (3.4). If {vn} ⊂ H1(RN) satisfies vn ⇀ v in H1(RN) and ϱn ∈ ∂Ψ(vn)

satisfies ϱn
∗
⇀ ϱ in (H1(RN))∗, then ϱ ∈ ∂Ψ(v).

We consider H1(RN) endowed with the following norm

∥v∥2 =
∫

RN

(
|∇v|2 + V(x)|v|2

)
.

Under the assumption (V1), the norm ∥ · ∥ is equivalent to the standard norm ∥ · ∥H1 .
In order to get the positive solutions, we consider the functional corresponding to (2.1)

given by J(v) = Q(v)− κΨ(v), v ∈ H1(RN), where

Q(v) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
− 1

2∗

∫
RN

(v+)2∗

and
Ψ(v) =

∫
RN

F(x, G−1(v)).

By standard arguments, we get the functional Q ∈ C1(H1(RN), R) and

⟨Q′(v), φ⟩ =
∫

RN

(
∇u∇φ + V(x)

G−1(v)
g(G−1(v))

φ

)
−
∫

RN
(v+)2∗−1φ,

for all v, φ ∈ H1(RN). Then, by Lemma 3.1, J ∈ Liploc(H1(RN), R) and

∂J(v) = {Q′(v)} − κ∂Ψ(v). (3.5)

Lemma 3.3. Assume that (V1) and ( f1)–( f3) are satisfied. Then there exist ρ, α > 0, such that

J(v) ≥ α, ∀v ∈ H1(RN) with ∥v∥ = ρ.
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Proof. Since lim|t|→0
G−1(t)

t = 1, by (3.1), for any ε > 0, there is Cε such that

|F(x, G−1(t))| ≤ ε|t|2 + Cε|t|q, ∀t ∈ R.

From Lemma 2.1, we have

lim
s→+∞

G−1(t)
t

=


1

g(∞)
, if g is bounded,

o(1), if g is unbounded.

If g is bounded, in view of that G−1(t)
t is nonincreasing, we get

J(v) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
− κ

∫
RN

F(x, G−1(v))− 1
2∗

∫
RN

(v+)2∗

≥ 1
2

∫
RN

(
|∇v|2 + W0|G−1(v)|2

)
− κ

∫
RN

(ε|v|2 + Cε|v|q)−
1
2∗

∫
RN

(v+)2∗

≥ 1
2

∫
RN

|∇v|2 +
( W0

2g(∞)
− κε

) ∫
RN

|v|2 − κCε

∫
RN

|v|q − 1
2∗

∫
RN

|v|2∗ .

(3.6)

If g is unbounded, we set Υ(t) := − 1
2W0|G−1(t)|2 + κF(x, G−1(t)), then

lim
t→0

Υ(t)
t2 = −W0

2
< 0, lim

t→+∞

Υ(t)
t2∗ = 0.

Therefore,

J(v) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
− κ

∫
RN

F(x, G−1(v))− 1
2∗

∫
RN

(v+)2∗

≥ 1
2

∫
RN

|∇v|2 −
∫

RN
Υ(v)− 1

2∗

∫
RN

(v+)2∗

≥ 1
2

∫
RN

|∇v|2 +
(

W0

2
− ε

) ∫
RN

|v|2 − Cε

∫
RN

|v|2∗ − 1
2∗

∫
RN

|v|2∗ .

(3.7)

By (3.6), (3.7) and Sobolev’s inequality, we get

J(v) ≥ C∥v∥2 − C∥v∥q − C∥v∥2∗ .

Since 2 < q < 2∗, taking ρ > 0 sufficiently small, we conclude that there exists α > 0 such that

J(v) ≥ α, ∀v ∈ H1(RN) with ∥v∥ = ρ.

This proof is completed.

Lemma 3.4. Suppose that (V1) and ( f4) are satisfied. Then, for all κ > 0, there exists function
e ∈ H1(RN) such that J(e) ≤ 0 and ∥e∥ > ρ.

Proof. Fixing ϕ ∈ H1(RN) with ϕ ≥ 0 and ϕ ̸≡ 0, by Lemma 2.1-(i), (ii), we get

J(tϕ) =
1
2

∫
RN

(
|t∇ϕ|2 + V(x)|G−1(tϕ)|2

)
− κ

∫
RN

F(x, G−1(tϕ))− 1
2∗

∫
RN

(tϕ)2∗

≤ t2

2
∥ϕ∥2 − t2∗

2∗

∫
RN

ϕ2∗ .

Then, we can choose some t0 large enough such that ∥t0ϕ∥ > ρ and J(t0ϕ) < 0. The lemma is
completed when e = t0ϕ.
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Note that J(0) = 0 and by Lemma 3.3 and Lemma 3.4, (i) and (ii) of Lemma 2.9 are
satisfied. Thereby, we may define

cκ = inf
γ∈ΓJ

max
t∈[0,1]

J(γ(t)),

where
ΓJ = {γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, J(γ(1)) < 0}.

By Lemma 2.9, there exists a sequence {vn} ⊂ H1(RN) satisfying J(vn) → cκ and λJ(vn) → 0.
Namely, the sequence {vn} is a (PS)cκ sequence for functional J.

Lemma 3.5. Assume that (V1), ( f1) and ( f4) hold. Then any (PS)cκ sequence for J is bounded in
H1(RN).

Proof. Let {vn} ⊂ H1(RN) be a (PS)cκ sequence for J, that is,

J(vn) → cκ and λJ(vn) → 0, as n → ∞.

Then, there exists wn ∈ ∂J(vn) ⊂ (H1(RN))∗ such that

∥wn∥∗ = λJ(vn) = on(1)

and
wn = Q′(vn)− ϱn,

where ∥wn∥∗ := ∥wn∥(H1(RN))∗ and ϱn ∈ ∂Ψ(vn) ⊂ LΦ̃(RN).
Therefore, we obtain that

c + 1 + ∥vn∥ ≥ J(vn)−
1
θ
⟨wn, vn⟩

=

(
1
2
− 1

θ

) ∫
RN

|∇vn|2 +
∫

RN
V(x)G−1(vn)

(
1
2

G−1(vn)−
1
θ

vn

g(G−1(vn))

)
− κ

∫
RN

(
F(x, G−1(vn))−

1
θ

ϱnvn

)
−
(

1
2∗

− 1
θ

) ∫
RN

|v+n |2
∗
.

From ( f4) and ϱn(x) ∈
[ f (x,G−1(vn(x)))

g(G−1(vn(x))) , f (x,G−1(vn(x)))
g(G−1(vn(x)))

]
a.e. in RN , we have

1
θ

ϱnvn ≥ F(x, G−1(vn) ≥ 0 a.e. in RN .

Hence, by Lemma 2.1-(ii), we get

c + 1 + ∥vn∥ ≥
(

1
2
− 1

θ

) ∫
RN

(
|∇vn|2 + V(x)|G−1(vn)|2

)
. (3.8)

For all t ≥ 1, by ( f4), we can verify that there exists some C > 0 such that CF(x, t) ≥
(G(t))θ ≥ (G(t))2. Then∫

{|G−1(vn)|>1}
V(x)v2

n ≤ κC
∫
{|G−1(vn)|>1}

F(x, G−1(vn))

≤ κC
∫

RN
F(x, G−1(vn)) +

C
2∗

∫
RN

|v+n |2
∗

= C
[

1
2

∫
RN

(
|∇vn|2 + V(x)|G−1(vn)|2

)
− J(vn)

]
= C

[
1
2

∫
RN

(
|∇vn|2 + V(x)|G−1(vn)|2

)
− cκ + on(1)

]
.

(3.9)
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For {|G−1(vn)| ≤ 1}, by Lemma 2.1-(ii) and g′(t) ≥ 0 for all t ≥ 0, we have

1
g2(1)

∫
{|G−1(vn)|≤1}

V(x)v2
n ≤

∫
{|G−1(vn)|≤1}

V(x)|G−1(vn)|2

≤
∫

RN
V(x)|G−1(vn)|2.

(3.10)

By (3.8)–(3.10), we deduce that

∥vn∥2 =
∫

RN

(
|∇vn|2 + V(x)|vn|2

)
≤ C

∫
RN

(
|∇vn|2 + V(x)|G−1(vn)|2

)
+ C

≤ C∥vn∥+ C,

which implies that the sequence {vn} is bounded in H1(RN).

Next, the following lemma shows the behavior of cκ associated with the parameter κ.

Lemma 3.6. Suppose that (V1) and ( f4) are satisfied, then limκ→+∞ cκ = 0.

Proof. Since J(v) is nonsmooth functional, unlike the method used to prove Lemma 3.1 in [29],
we will not use the Nehari manifold. For ϕ given by Lemma 3.4, it follows that there is tκ > 0
satisfying

J(tκϕ) = max
t≥0

J(tϕ) ≥ α > 0.

Then, we have

t2
κ

2

∫
RN

|∇ϕ|2 + 1
2

∫
RN

V(x)|G−1(tκϕ)|2 ≥ κ
∫

RN
F(x, G−1(tκϕ)) +

t2∗
κ

2∗

∫
RN

ϕ2∗ .

By ( f4), we get
t2
κ

2

( ∫
RN

|∇ϕ|2 +
∫

RN
V(x)|ϕ|2

)
≥ t2∗

κ

2∗

∫
RN

ϕ2∗ ,

which implies that tκ is bounded.
Next, we will prove that tκ → 0 as κ → +∞. Suppose, by contradiction, that there exists a

sequence κn → +∞ and a constant t̄ > 0 such that tκn → t̄ as n → ∞. The boundedness of tκn

implies that there is M > 0 such that

t2
κn

2

∫
RN

|∇ϕ|2 +
∫

RN
V(x)|G−1(tκn ϕ)|2 ≤ M.

Hence,

κn

∫
RN

F(x, G−1(tκn ϕ)) +
t2∗
κn

2∗

∫
RN

ϕ2∗ ≤ M.

If t̄ > 0, we have that

lim
n→∞

[
κn

∫
RN

F(x, G−1(tκn ϕ)) +
t2∗
κn

2∗

∫
RN

ϕ2∗
]
= +∞

which is absurd. Thus, we have tκ → 0 as κ → +∞.
Observe that

J(tκϕ) ≤ t2
κ

2

∫
RN

|∇ϕ|2 + 1
2

∫
RN

V(x)|G−1(tκϕ)|2 ≤ t2
κ

2
∥ϕ∥2.

Due to tκ → 0 as κ → +∞, we get cκ ≤ J(tκϕ) → 0 as κ → +∞, which finishes the proof.
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Lemma 3.7. Suppose that (V1) and ( f1)–( f3) are satisfied. Let {vn} ⊂ H1(RN) be a (PS)cκ sequence
for J with vn ⇀ 0 in H1(RN). Then there is κ∗ > 0. When κ > κ∗, there exists a sequence {yn} ⊂ RN

and δ > 0 such that
lim sup

n→∞

∫
B1(yn)

|vn|2 ≥ δ > 0.

Proof. By Lemma 3.5, there exists a constant κ∗ > 0 satisfying

cκ <
1
N

S
N
2 ,

for all κ > κ∗. Suppose, by contradiction, that {vn} is vanishing. Then, from Lions compact-
ness lemma [33], we deduce that vn → 0 in Lr(RN) for all 2 < r < 2∗. From |G−1(vn)| ≤ |vn|,
we get G−1(vn) → 0 in Lr(RN) for all 2 < r < 2∗. Since {vn} is a (PS)cκ sequence for J, there
exists wn ∈ ∂J(vn) with ∥wn∥∗ = λJ(vn) = on(1) and wn = Q′(vn)− ϱn, where ϱn ∈ ∂Ψ(vn).
By (3.1) and Lemma 3.1, we have∫

RN
F(x, G−1(vn)) → 0 and

∫
RN

ϱnvn → 0, as n → ∞. (3.11)

Therefore, by (3.11), we have

cκ + on(1) = J(vn)−
1
2
⟨wn, vn⟩

=
1
2

∫
RN

V(x)
[
|G−1(vn)|2 −

G−1(vn)

g(G−1(vn))
vn

]
+

1
N

∫
RN

|v+n |2
∗
.

(3.12)

We claim that

lim
n→∞

∫
RN

V(x)
[
|G−1(vn)|2 −

G−1(vn)

g(G−1(vn))
vn

]
= 0. (3.13)

For proving (3.13), we only verify that

lim
n→∞

∫
RN

V(x)
[
|G−1(vn)|2 − |vn|2

]
= 0,

lim
n→∞

∫
RN

V(x)
[
|vn|2 −

G−1(vn)

g(G−1(vn))
vn

]
= 0.

(3.14)

For δ > 0 to be chosen later, we have∫
RN

V(x)
[
|G−1(vn)|2 − |vn|2

]
=
∫
{|vn|>δ}

V(x)
[
|G−1(vn)|2 − |vn|2

]
+
∫
{|vn|≤δ}

V(x)
[
|G−1(vn)|2 − |vn|2

]
.

By Lemma 2.1-(ii) and (V1), we get∫
{|vn|>δ}

V(x)
[
|G−1(vn)|2 − |vn|2

]
≤ 2∥V∥∞

∫
{|vn|>δ}

|vn|2

≤ 2∥V∥∞

δr−2

∫
RN

|vn|r = on(1),
(3.15)

where 2 < r < 2∗.
On the other hand, given ε > 0, by Lemma 2.1-(iii), we choose δ > 0 so that∣∣∣∣∣

(
G−1(s)

s

)2

− 1

∣∣∣∣∣ < ε, if |s| ≤ δ.
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Then, we have

lim sup
n→∞

∫
{0<|vn|≤δ}

V(x)|vn|2
∣∣∣∣∣
(

G−1(vn)

vn

)2

− 1

∣∣∣∣∣
≤ ∥V∥∞ lim sup

n→∞

∫
{0<|vn|≤δ}

|vn|2
∣∣∣∣∣
(

G−1(vn)

vn

)2

− 1

∣∣∣∣∣
≤ ε lim sup

n→∞

∫
RN

|vn|2.

Hence
lim sup

n→∞

∫
RN

V(x)
[
|G−1(vn)|2 − |vn|2

]
≤ lim sup

n→∞

∫
{|vn|>δ}

V(x)
[
|G−1(vn)|2 − |vn|2

]
+ ε lim sup

n→∞

∫
RN

|vn|2.

As ε > 0 is arbitrary and {vn} ⊂ H1(RN) is bounded, using (3.15), we have the first limit in
(3.14).

By Lemma 2.1-(ii), (iii) and the fact that

(G−1)′(s) =
1

g(G−1(s))
→ 1 as s → 0,

the verification of the second limit in (3.14) is similar to the first one. Therefore, our claim
(3.13) is true.

Then, by (3.12) and (3.13), we obtain

lim
n→∞

∫
RN

|v+n |2
∗
= Ncκ. (3.16)

From the fact ⟨wn, vn⟩ = on(1) and the second limit in (3.11), we get

∫
RN

|∇vn|2 +
∫

RN
V(x)

G−1(vn)

g(G−1(vn))
vn −

∫
RN

|v+n |2
∗
= on(1). (3.17)

From the definition of G−1(s) and (V1), the second integral in (3.17) is nonnegative. Then, we
have ∫

RN
|∇vn|2 ≤

∫
RN

|v+n |2
∗
+ on(1). (3.18)

By the definition of S, (3.16) and (3.18), it follows that

∫
RN

|v+n |2
∗ ≤

∫
RN

|vn|2
∗ ≤ S− 2∗

2

( ∫
RN

|∇vn|2
) 2∗

2

≤ S− 2∗
2

(∫
RN

|v+n |2
∗
+ on(1)

) 2∗
2

.

Taking n → ∞ in the above inequality, in view of (3.16), we get

Ncκ ≤ S− 2∗
2 (Ncκ)

2∗
2 ,

that is,

cκ ≥ 1
N

S
N
2 ,

which is a contradiction. Hence {vn} is non-vanishing. This concludes the proof.
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4 Proof of Theorem 1.1

In the following, we will prove that there exists v ∈ H1(RN) is a positive solution of problem
(1.6). With this aim in mind, we need to show that there is v ∈ H1(RN) and v > 0 such that

−∆v + V(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[
f (x, G−1(v))
g(G−1(v))

,
f (x, G−1(v))
g(G−1(v))

]
a.e. in RN .

By Lemma 3.3 and Lemma 3.4, the functional J satisfies all hypotheses of Lemma 2.9. Then,
by Lemma 2.9 and Lemma 3.5 , there exists a bounded sequence {vn} ⊂ H1(RN) satisfying

J(vn) → cκ ≥ α > 0 and λJ(vn) → 0, as n → ∞,

where
cκ = inf

γ∈ΓJ
max
t∈[0,1]

J(γ(t)),

and
ΓJ = {γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, J(γ(1)) < 0}.

Therefore, there exists wn ∈ ∂J(vn) such that ∥wn∥∗ = λJ(vn), wn = Q′(vn) − ϱn where
ϱn ∈ ∂Ψ(vn). For all ψ ∈ H1(RN),

⟨wn, ψ⟩ = ⟨Q′(vn), ψ⟩ − ⟨ϱn, ψ⟩, ∀n ∈ N.

Since H1(RN) is reflexive, taking a subsequence if necessary, there exists v ∈ H1(RN) such
that vn ⇀ v in H1(RN). Thus, we obtain

⟨ϱn, ψ⟩ = ⟨Q′(vn), ψ⟩ − ⟨wn, ψ⟩ → ⟨Q′(v), ψ⟩, as n → ∞,

that is, ϱn
∗
⇀ Q′(v) in (H1(RN))∗. By Lemma 3.2, we get Q′(v) ∈ ∂Ψ(v). Then, there exits

ϱ ∈ ∂Ψ(v) such that Q′(v) = ϱ and∫
RN

(
∇v∇ψ + V(x)

G−1(v)
g(G−1(v))

ψ

)
−
∫

RN
(v+)2∗−1ψ =

∫
RN

ϱψ, ∀ψ ∈ H1(RN),

where

ϱ(x) ∈
[

f (x, G−1(v(x)))
g(G−1(v(x)))

,
f (x, G−1(v(x)))
g(G−1(v(x)))

]
a.e. in RN .

Taking ψ = v− := min{v, 0}, we obtain∫
RN

(
|∇v−|2 + V(x)

G−1(v−)
g(G−1(v−))

v−
)
≤ 0,

which implies v− ≡ 0. Thus, we get v = v+ ≥ 0 satisfying−∆v + V(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 in RN ,

v ∈ H1(RN).

Furthermore, since ϱ ∈ LΨ̃(RN) ⊂ L
q

q−1

loc (R
N), the elliptic regularity theory gives that v ∈

W
2, 2∗

2∗−1
loc (RN) and v satisfies

−∆v + V(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 a.e. in RN ,
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that is,

−∆v + V(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[
f (x, G−1(v))
g(G−1(v))

,
f (x, G−1(v))
g(G−1(v))

]
a.e. in RN .

Finally, in order to prove Theorem 1.1, it suffices to verify that v is nontrivial. Suppose, by
contradiction, that v is trivial. Then, we claim that in this case {vn} is also a (PS)cκ sequence
for Jp defined by

Jp(v) =
1
2

∫
RN

(
|∇v|2 + Vp(x)|G−1(v)|2

)
− 1

2∗

∫
RN

(v+)2∗ −
∫

RN
Fp(x, G−1(v)),

for v ∈ H1(RN) and Jp possesses a nontrivial critical point. It is well known that Jp ∈
C1(H1(RN), R), with

⟨J′p(v), φ⟩ =
∫

RN

(
∇u∇φ + Vp(x)

G−1(v)
g(G−1(v))

φ

)
−
∫

RN
(v+)2∗−1φ −

∫
RN

fp(x, G−1(v))
g(G−1(v))

φ,

for all φ ∈ H1(RN).

Lemma 4.1. If {vn} is given by the above, then

ϱn − Ψ′
p(vn) → 0 and Ψ(vn)− Ψp(vn) → 0,

where
Ψ(v) =

∫
RN

F(x, G−1(v)) and Ψp(v) =
∫

RN
Fp(x, G−1(v)).

Proof. For any φ ∈ H1(RN) with ∥φ∥ ≤ 1, by ( f7), we obtain

∣∣∣⟨ϱn − Ψ′
p(vn), φ⟩

∣∣∣ ≤ ∫
RN

∣∣∣∣∣ϱn −
fp(x, G−1(vn))

g(G−1(vn))

∣∣∣∣∣ |φ|
≤
∫

RN
π(x)|vn|q−1|φ|

≤
(∫

RN
|π(x)|

q
q−1 |vn|q

) q−1
q

∥φ∥q

≤ C
(∫

RN
|π(x)|

q
q−1 |vn|q

) q−1
q

.

Since {vn} is bounded in H1(RN), there is M > 0 with ∥vn∥q ≤ M for all n ∈ N. Using the
fact that π(x) → 0 as |x| → +∞, given ε > 0 there is Rε > 0 such that |π(x)| ≤ ε for |x| > Rε.
Since H1(BRε(0)) ↪→ Lq(BRε(0)) is compact, we have vn → 0 in Lq(BRε(0)). Thus, there is
n0 ∈ N satisfying ∥vn∥Lq(BRε (0)) ≤ ε, for all n ≥ n0, and so,∫

RN
|π(x)|

q
q−1 |vn|q =

∫
BRε (0)

|π(x)|
q

q−1 |vn|q +
∫

Bc
Rε
(0)

|π(x)|
q

q−1 |vn|q

≤ ∥π(x)∥
q

q−1
∞

∫
BRε (0)

|vn|q + ε
q

q−1

∫
RN

|vn|q

≤ εq∥π(x)∥
q

q−1
∞ + ε

q
q−1 Mq.
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As ε is arbitrary,
ϱn − Ψ′

p(vn) → 0 in (H1(RN))∗.

A similar argument guarantees that

Ψ(vn)− Ψp(vn) → 0 in R.

Since W(x) ∈ L
N
2 (RN) and vn ⇀ 0 in H1(RN), we can conclude∫

RN
W(x)|G−1(vn)|2 ≤

∫
RN

W(x)|vn|2 → 0. (4.1)

From Lemma 4.1 and (4.1), we deduce

∣∣J(vn)− Jp(vn)
∣∣ = ∣∣∣∣12

∫
RN

W(x)|G−1(vn)|2 + κ
∫

RN
F(x, G−1(vn))− Fp(x, G−1(vn))

∣∣∣∣
≤ 1

2

∫
RN

W(x)|G−1(vn)|2 + κ

∣∣∣∣∫
RN

F(x, G−1(vn))− Fp(x, G−1(vn)

∣∣∣∣
≤ 1

2

∫
RN

W(x)|vn|2 + κ
∣∣Ψ(vn)− Ψp(vn)

∣∣
= on(1),

(4.2)

which shows that Jp(vn) → cκ as n → ∞.
On the other hand, note that wn = Q′(vn) − ϱn and ∥wn∥∗ = λJ(vn) = on(1), where

ϱn ∈ ∂Ψ(vn). From Lemma 4.1 and (4.1), for φ ∈ H1(RN) with ∥φ∥ ≤ 1, we obtain∣∣∣⟨wn, φ⟩ − ⟨J′p(vn), φ⟩
∣∣∣

=

∣∣∣∣∣
∫

RN
W(x)

G−1(vn)

g(G−1(vn))
φ + κ

∫
RN

(
ϱn φ −

fp(x, G−1(vn))

g(G−1(vn))
φ

)∣∣∣∣∣
≤
∫

RN
W(x)

∣∣∣∣ G−1(vn)

g(G−1(vn))

∣∣∣∣ |φ|+ κ

∣∣∣∣∣
∫

RN

(
ϱn φ −

fp(x, G−1(vn))

g(G−1(vn))
φ

)∣∣∣∣∣
≤
(∫

RN
W(x)|vn|2

) 1
2

∥w∥ N
2
∥φ∥

1
2
2∗ + κ

∣∣∣⟨ϱn − Ψ′
p(vn), φ⟩

∣∣∣
= on(1),

(4.3)

which shows that J′p(vn) → 0, as n → ∞. Thus, by (4.2) and (4.3), {vn} is a (PS)cκ sequence
for Jp.

As we suppose that v is trivial, by Lemma 3.7, there exists a sequence {yn} ⊂ RN and
δ > 0 such that

lim sup
n→∞

∫
B1(yn)

|vn|2 ≥ δ > 0.

So, we can find a sequence {zn} ⊂ ZN such that |zn − yn| <
√

N for all n ∈ N and

lim sup
n→∞

∫
B1+

√
N(zn)

|vn|2 ≥ lim sup
n→∞

∫
B1(yn)

|vn|2 ≥ δ > 0. (4.4)

Since vn → v in Ls
loc(R

N) for all s ∈ [1, 2∗) and v = 0, we may suppose that |zn| → ∞ up
to a subsequence. Denote v̂n(x) = vn(x + zn). Since {vn} is a (PS)cκ sequence for Jp, in view
of the periodicities of Vp and fp, {v̂n} is also a (PS)cκ sequence for Jp. As {vn} is bounded in
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H1(RN), it follows that {v̂n} is also bounded in H1(RN). Without loss of generality, we may
suppose that 

v̂n ⇀ v̂ in H1(RN),

v̂n → v̂ in Lr
loc(R

N), ∀ r ∈ [1, 2∗),

v̂n → v̂ a.e. in RN ,

then J′p(v̂) = 0. By (4.4), going to a subsequence if necessary, there exists n1 ∈ N such that

∫
B1+

√
N(zn)

|vn|2 ≥ δ

2
> 0, ∀ n ≥ n1.

Since v̂n(x) = vn(x + zn) and v̂n → v̂ in L2
loc(R

N), we get

∫
B1+

√
N(0)

|v̂|2 = lim
n→∞

∫
B1+

√
N(0)

|v̂n|2 = lim
n→∞

∫
B1+

√
N(zn)

|vn|2 ≥ δ

2
> 0,

which shows v̂ ̸≡ 0. Besides,

0 = ⟨J′p(v̂), v̂−⟩ =
∫

RN

(
|∇v̂−|2 + V(x)

G−1(v̂−)
g(G−1(v̂−))

v̂−
)

,

which implies v̂ = v̂+ ≥ 0. Thus, by Fatou’s Lemma and ( f6), we have

cκ = lim sup
n→∞

[
Jp(v̂n)−

1
2
⟨J′p(v̂n), v̂n⟩

]
=

1
2

lim sup
n→∞

∫
RN

Vp(x)
[
|G−1(v̂n)|2 −

G−1(v̂n)

g(G−1(v̂n))
v̂n

]
+

1
N

lim sup
n→∞

∫
RN

|v̂+n |2
∗

− κ lim sup
n→∞

∫
RN

[
Fp(x, G−1(v̂n))−

1
2

fp(x, G−1(v̂n))

g(G−1(v̂n))
v̂n

]
≥ 1

2

∫
RN

Vp(x)
[
|G−1(v̂)|2 − G−1(v̂)

g(G−1(v̂))
v̂
]
+

1
N

∫
RN

|v̂+|2∗

− κ
∫

RN

[
Fp(x, G−1(v̂))− 1

2
fp(x, G−1(v̂))

g(G−1(v̂))
v̂
]

= Jp(v̂)−
1
2
⟨J′p(v̂), v̂⟩ = Jp(v̂).

Thus, v̂ is a nontrivial critical point of Jp and Jp(v̂) ≤ cκ.

Claim 4.2. v̂ > 0 in RN .

For proving the result, we adapt the same ideas used in [30]. Since v̂ is a critical point of
Jp (namely J′p(v̂) = 0), v̂ is a weak solution of the following equation

−∆v̂ = ζ, a.e. in RN , (4.5)

where

ζ(x, v̂) = v̂2∗−1 + κ
fp(x, G−1(v̂))

g(G−1(v̂))
− Vp(x)

G−1(v̂)
g(G−1(v̂))

.
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From the conditions (V), ( f7), (3.1) and the Lemma 2.1-(ii), we get∣∣∣∣∣v̂2∗−1 + κ
fp(x, G−1(v̂))

g(G−1(v̂))
− Vp(x)

G−1(v̂)
g(G−1(v̂))

∣∣∣∣∣
≤ |v̂|2∗−1 + κ

(
ε|v̂|+ Cε|v̂|q−1 + π(x)|v̂|q−1

)
+ Vp(x)|v̂|

≤ C
(
|v̂|2∗−1 + |v̂|q−1 + |v̂|

)
≤ C

(
|v̂|2∗−1 + 1

)
.

(4.6)

Using a result concluded by Brézis–Kato (see [32]), it yields that ζ(x, v̂) ∈ Lr(BR(0)) for
every r ∈ [1,+∞), with R > 0 arbitrary. By standard elliptic regularity theory, we get that
v̂ ∈ W2,r(BR(0)). So, there exits some σ ∈ (0, 1) such that v̂ ∈ C1,σ

loc (R
N).

Arguing by contradiction, we assume that there exits x0 ∈ RN such that v̂(x0) = 0. Mean-
while, we have

−∆v̂(x) + b(x)v̂(x) = Vp(x)
(

v̂(x)
g(G−1(v̂(x)))

− G−1(v̂(x))
g(G−1(v̂(x)))

)
+ v̂2∗−1(x) + κ

fp(x, G−1(v̂(x)))
g(G−1(v̂(x)))

,
(4.7)

where b(x) := Vp(x)
g(G−1(v̂(x))) ≥ 0, for x ∈ RN . Combining Lemma 2.1-(i) and (ii), we get

v̂(x)
g(G−1(v̂(x))) −

G−1(v̂(x))
g(G−1(v̂(x))) ≥ 0. By the hypotheses of Vp(x), we know −∆v̂(x) + b(x)v̂(x) ≥ 0. In

view of (V1), b(x) is continuous in RN . Thus, applying the Maximum Principle for the weak
solution (see [18]) on an arbitrary ball centered in x0, we get that v̂ ≡ 0. This is a contradiction.

Claim 4.3. There exists a curve γ(t) : [0, 1] → H1(RN) such that
γ(0) = 0, Jp(γ(1)) < 0, v̂ ∈ γ([0, 1]),

γ(t)(x) > 0, ∀x ∈ RN , t ∈ (0, 1],

maxt∈[0,1] Jp(γ(t)) = Jp(v̂).

(4.8)

Defining the function γ̃(t)(x) = tv̂(x) for t ≥ 0, we have

Jp(γ̃(t)) = Jp(tv̂) =
1
2

∫
RN

(
|t∇v̂|2 + Vp(x)|G−1(tv̂)|2

)
− κ

∫
RN

Fp(x, G−1(tv̂))− 1
2∗

∫
RN

|tv̂|2∗

≤ t2

2

∫
RN

(
|∇v̂|2 + Vp(x)|v̂|2

)
− t2∗

2∗

∫
RN

|v̂|2∗ .

Therefore, we may choose a sufficiently large constant L > 1 such that Jp(γ̃(L)) < 0 with
γ̃(t)(x) > 0, for all (x, t) ∈ RN × (0, L]. Furthermore, since v̂ is a critical point of Jp, set
ς(t) = Jp(tv̂) and we may write

ς′(t) = t
∫

RN
|∇v̂|2 +

∫
RN

Vp(x)
G−1(tv̂)

g(G−1(tv̂))
v̂ − κ

∫
RN

fp(x, G−1(tv̂))
g(G−1(tv̂))

v̂ − t2∗−1
∫

RN
|v̂|2∗

= t

{ ∫
RN

|∇v̂|2 +
∫

RN

[
Vp(x)

G−1(tv̂)
g(G−1(tv̂))tv̂

− κ
fp(x, G−1(tv̂))
g(G−1(tv̂))tv̂

− (tv̂)2∗−2
]

v̂2

}
.
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As a direct consequence of Lemma 2.1-(iv) and ( f5), fixed x ∈ RN , the function η :
(0,+∞) → R defined by

η(t) = Vp(x)
G−1(t)

g(G−1(t))t
− κ

fp(x, G−1(t))
g(G−1(t))t

− t2∗−2

is decreasing.
Since v̂ is a critical point of Jp, we have ς′(1) = 0. Moreover, ς(t) > 0 for 0 < t < 1 and

ς(t) < 0 for t > 1. Hence,

Jp(v̂) = ς(1) = max
t≥0

ς(t) = max
t≥0

Jp(tv̂) = max
t∈[0,L]

Jp(tv̂) = max
t∈[0,L]

Jp(γ̃(t)).

Let γ(t) = γ̃(tL). We can check the curve γ(t) satisfies (4.8). From J(ϕ) ≤ Jp(ϕ) for all
ϕ ∈ H1(RN), we get γ ∈ ΓJ .

Due to the fact that γ ∈ ΓJ satisfies (4.8) and the inequality W(x) ≥ 0 is strict on a subset
of positive measure in RN , we deduce that

cλ ≤ max
t∈[0,1]

J(γ(t)) := J(γ(t)) < Jp(γ(t)) ≤ max
t∈[0,1]

Jp(γ(t)) = Jp(v̂) ≤ cλ,

which is absurd.
Thus, we conclude that v is a nontrivial solution to problem (2.1). An argument similar

to Claim 4.2 shows v > 0 in RN . By Lemma 2.2, problem (1.6) possesses a positive solution
u = G−1(v).

5 Proof of Theorem 1.2

The following section gives the proof of Theorem 1.2. First, note that the lemmas in Section 3
are not dependent on the periodicity of function f , but only on its growth, meaning all of them
are also valid here. As f satisfies ( f1)–( f4), by Lemmas 3.3, 3.4 and 3.5, there is a bounded
(PS)cκ sequence for J, denoted by {vn} ⊂ H1(RN), that is,

J(vn) → cκ ≥ α > 0 and λJ(vn) → 0, as n → ∞.

Consider wn ∈ ∂J(vn) such that ∥wn∥∗ = λJ(vn) = on(1) and wn = Q′(vn) − ϱn, where
ϱn ∈ ∂Ψ(vn). Without loss of generality, we may suppose that vn ⇀ v in H1(RN). If v is
nontrivial, then Theorem 1.2 is proved. Indeed, repeating the analogous arguments as in the
initial steps of the proof of Theorem 1.1, we can instantly obtain that v = v+ ≥ 0 and satisfies

−∆v + Vp(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 a.e. RN ,

that is,

−∆v + Vp(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[
f (x, G−1(v))
g(G−1(v))

,
f (x, G−1(v))
g(G−1(v))

]
a.e. in RN .

By the argument similar to the one used in Claim 4.2, we can show v > 0. Then, u = G−1(v)
will be a positive solution of problem (1.8).

Hence, in order to prove Theorem 1.2, it suffices to assume that v = 0.
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In view of Lemma 3.6, it follows that there exists κ∗ such that cκ < 1
N S

N
2 for all κ > κ∗.

Furthermore, by Lemma (3.8), there exists a sequence {yn} ⊂ RN and δ > 0 such that

lim sup
n→∞

∫
B1(yn)

|vn|2 ≥ δ > 0, for all n ∈ N. (5.1)

Since vn → v in L2
loc(R

N) and v = 0, we may suppose that |yn| → ∞ up to a subsequence.
As in the proof of Theorem 1.1, without loss of generality, we can suppose that {yn} ⊂ ZN .
Defining ṽn(x) = vn(x + yn), we get ∥ṽn∥ = ∥vn∥. Then, taking a subsequence if necessary,
there exists ṽ ∈ H1(RN) such that

ṽn ⇀ ṽ in H1(RN),

ṽn → ṽ in Lr
loc(R

N), ∀ r ∈ [1, 2∗),

ṽn → ṽ a.e. in RN .

The fact that ∫
B1(0)

|ṽ|2 = lim
n→∞

∫
B1(0)

|ṽn|2 = lim
n→∞

∫
B1(yn)

|vn|2,

and (5.1) imply that ṽ ̸= 0.
Now, we claim ṽ is a nontrivial solution of periodic problem.
First, we note that ϱn ∈ ∂Ψ(vn). By the definition of ∂Ψ(vn),

Ψ◦(vn, ψ) ≥ ⟨ϱn, ψ⟩, ∀ψ ∈ LΦ(RN).

Since H1(RN) ↪→ LΦ(RN) is continuous, a simple change variable implies

Ψ◦(vn; ψ(· − yn)) ≥ ⟨ϱn, ψ(· − yn)⟩

=
∫

RN
ϱnψ(· − yn)

=
∫

RN
ϱn(·+ yn)ψ

= ⟨ϱ̃n, ψ⟩,

(5.2)

where ϱ̃n = ϱn(·+ yn). Meanwhile, we can easily verify

Ψ(vn + h + tψ(· − yn)) = Ψ(ṽn + h(·+ yn) + tψ) and Ψ(vn + h) = Ψ(ṽn + h(·+ yn)),

where h ∈ H1(RN) and t ∈ R. Thus, directly calculations demonstrate

Ψ◦(vn + ψ(· − yn)) = Ψ◦(ṽn + ψ). (5.3)

By (5.2) and (5.3), we get

Ψ◦(ṽn + ψ) ≥ ⟨ϱ̃n, ψ⟩, ∀ψ ∈ H1(RN),

which shows ϱ̃n ∈ ∂Ψ(ṽn). Furthermore, for all ψ ∈ H1(RN), we have

⟨wn, ψ(· − yn)⟩ = ⟨Q′(vn), ψ(· − yn)⟩ − ⟨ϱn, ψ(· − yn)⟩
= ⟨Q′(ṽn), ψ⟩ − ⟨ϱ̃n, ψ⟩.

Setting ⟨wn, ψ(· − yn)⟩ = ⟨w̃n, ψ⟩, we assert

w̃n = Q′(ṽn)− ϱ̃n. (5.4)
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Claim 5.1. w̃n ∈ ∂J(ṽn).

Similarly, by change of variables, we get

J◦(vn; ψ(· − yn)) = J◦(ṽn; ψ). (5.5)

And as wn ∈ ∂J(vn), then

J◦(vn; ψ(· − yn)) ≥ ⟨wn, ψ(· − yn)⟩ = ⟨w̃n, ψ⟩, ∀ψ ∈ H1(RN). (5.6)

Combining (5.5) and (5.6), we have

J◦(ṽn; ψ) ≥ ⟨w̃n, ψ⟩, ∀ψ ∈ H1(RN),

which shows w̃n ∈ ∂J(ṽn).
Moreover, by definition of w̃n, we get

∥w̃n∥∗ = sup
ψ∈H1(RN)

|⟨w̃n, ψ⟩|
∥ψ∥ ≤ ∥wn∥∗, ∀n ∈ N.

Therefore,
0 ≤ ∥w̃n∥∗ ≤ ∥wn∥∗ = λJ(vn) = on(1). (5.7)

By (5.4), we get
⟨w̃n, ψ⟩ = ⟨Q′(ṽn), ψ⟩ − ⟨ϱ̃n, ψ⟩, ∀ψ ∈ H1(RN). (5.8)

From (5.7) and (5.8), we obtain

⟨ϱ̃n, ψ⟩ = ⟨Q′(ṽn), ψ⟩ − ⟨w̃n, ψ⟩ → ⟨Q′(ṽ), ψ⟩, as n → ∞,

that is, ϱ̃n
∗
⇀ Q′(ṽ) in (H1(RN))∗.

This limit together with Lemma 3.2 shows that Q′(ṽ) ∈ ∂Ψ(v). Thereby, Q′(ṽ) = ϱ̃ ∈
∂Ψ(ṽ), and so,∫

RN

(
∇ṽ∇ψ + Vp(x)

G−1(ṽ)
g(G−1(ṽ))

ψ

)
−
∫

RN
(ṽ+)2∗−1ψ =

∫
RN

ϱ̃ψ, ∀ ψ ∈ H1(RN),

where

ϱ̃(x) ∈
[

f (x, G−1(ṽ(x)))
g(G−1(ṽ(x)))

,
f (x, G−1(ṽ(x)))
g(G−1(ṽ(x)))

]
a.e. in RN .

Repeating the analogous steps of the proof of Theorem 1.1, ṽ = ṽ+ ≥ 0 and satisfies

−∆ṽ + Vp(x)
G−1(ṽ)

g(G−1(ṽ))
= ϱ̃ + ṽ2∗−1 a.e. RN ,

that is,

−∆ṽ + Vp(x)
G−1(ṽ)

g(G−1(ṽ))
− ṽ2∗−1 ∈

[
f (x, G−1(ṽ))
g(G−1(ṽ))

,
f (x, G−1(ṽ))
g(G−1(ṽ))

]
a.e. in RN .

Similarly, we also have ṽ > 0 in RN by the analogous argument used in Claim 4.2. Since (1.8)
is only the periodic case for (1.6), Lemma 2.2 is also valid. Hence, we can see that u = G−1(ṽ)
will be a positive solution of problem (1.8).
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