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1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
on an arbitrary order that can be noninteger. This subject, as old as the problem
of ordinary differential calculus, can go back to the times when Leibniz and Newton
invented differential calculus. As is known to all, the problem for fractional derivative
was originally raised by Leibniz in a letter, dated September 30, 1695.

In recent years, the fractional differential equations have received more and more
attention. The fractional derivative has been occurring in many physical applications
such as a non-Markovian diffusion process with memory [1], charge transport in amor-
phous semiconductors [2], propagations of mechanical waves in viscoelastic media [3],
etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry and
material science are also described by differential equations of fractional order (see
[4-9]).
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Recently boundary value problems (BVPs for short) for fractional differential equa-
tions at nonresonance have been studied in many papers (see [10-16]). Moreover, Kos-
matov studied the BVPs for fractional differential equations at resonance (see [17]).
Motivated by the work above, in this paper, we consider the following BVP of frac-
tional equation at resonance

{

Dα
0+x(t) = f(t, x(t), x′(t), x′′(t)), t ∈ [0, 1],

x(0) = x′(0) = 0, x′′(0) = x′′(1),
(1.1)

where Dα
0+ denotes the Caputo fractional differential operator of order α, 2 < α ≤ 3.

f : [0, 1] × R
3 → ×R is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary
notations, definitions and lemmas. In Section 3, we establish a theorem on existence
of solutions for BVP (1.1) under nonlinear growth restriction of f , basing on the co-
incidence degree theory due to Mawhin (see [18]). Finally, in Section 4, an example is
given to illustrate the main result.

2 Preliminaries

In this section, we will introduce notations, definitions and preliminary facts which
are used throughout this paper.

Let X and Y be real Banach spaces and let L : domL ⊂ X → Y be a Fredholm
operator with index zero, and P : X → X, Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL,

X = KerL ⊕ KerP, Y = ImL ⊕ ImQ.

It follows that

L|domL∩KerP
: domL ∩ KerP → ImL

is invertible. We denote the inverse by KP .
If Ω is an open bounded subset of X, and domL ∩ Ω 6= ∅, the map N : X → Y

will be called L−compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is
compact, where I is identity operator.

Lemma 2.1. ([18]) If Ω is an open bounded set, let L : domL ⊂ X → Y be a Fredholm
operator of index zero and N : X → Y L−compact on Ω. Assume that the following
conditions are satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL)] ∩ ∂Ω × (0, 1);
(2) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω;
(3) deg(QN |KerL

, KerL ∩ Ω, 0) 6= 0, where Q : Y → Y is a projection such that
ImL = KerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.
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Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of
a function x is given by

Iα
0+x(t) =

1

Γ(α)

∫ t

0

(t − s)α−1x(s)ds,

provided that the right side integral is pointwise defined on (0, +∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function x with
x(n−1) absolutely continuous on [0, 1] is given by

Dα
0+x(t) = In−α

0+

dnx(t)

dtn
=

1

Γ(n − α)

∫ t

0

(t − s)n−α−1x(n)(s)ds,

where n = −[−α].

Lemma 2.2. ([19]) Let α > 0 and n = −[−α]. If x(n−1) ∈ AC[0, 1], then

Iα
0+Dα

0+x(t) = x(t) −
n−1
∑

k=0

x(k)(0)

k!
tk.

In this paper, we denote X = C2[0, 1] with the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞}
and Y = C[0, 1] with the norm ‖y‖Y = ‖y‖∞, where ‖x‖∞ = maxt∈[0,1] |x(t)|. Obvi-
ously, both X and Y are Banach spaces.

Define the operator L : domL ⊂ X → Y by

Lx = Dα
0+x, (2.1)

where

domL = {x ∈ X|Dα
0+x(t) ∈ Y, x(0) = x′(0) = 0, x′′(0) = x′′(1)}.

Let N : X → Y be the Nemytski operator

Nx(t) = f(t, x(t), x′(t), x′′(t)), ∀t ∈ [0, 1].

Then BVP (1.1) is equivalent to the operator equation

Lx = Nx, x ∈ domL.
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3 Main result

In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1. Let f : [0, 1] × R
3 → R be continuous. Assume that

(H1) there exist nonnegative functions p, q, r, s ∈ C[0, 1] with Γ(α− 1)− 2(q1 + r1 +
s1) > 0 such that

|f(t, u, v, w)| ≤ p(t) + q(t)|u| + r(t)|v| + s(t)|w|, ∀ t ∈ [0, 1], (u, v, w) ∈ R
3,

where p1 = ‖p‖∞, q1 = ‖q‖∞, r1 = ‖r‖∞, s1 = ‖s‖∞.
(H2) there exists a constant B > 0 such that for all w ∈ R with |w| > B either

wf(t, u, v, w) > 0, ∀ t ∈ [0, 1], (u, v) ∈ R
2

or
wf(t, u, v, w) < 0, ∀ t ∈ [0, 1], (u, v) ∈ R

2.

Then BVP (1.1) has at leat one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1. Let L be defined by (2.1), then

KerL = {x ∈ X|x(t) =
x′′(0)

2
t2, ∀t ∈ [0, 1]}, (3.1)

ImL = {y ∈ Y |

∫ 1

0

(1 − s)α−3y(s)ds = 0}. (3.2)

Proof. By Lemma 2.2, Dα
0+x(t) = 0 has solution

x(t) = x(0) + x′(0)t +
x′′(0)

2
t2.

Combining with the boundary value condition of BVP (1.1), one has (3.1) hold.
For y ∈ ImL, there exists x ∈ domL such that y = Lx ∈ Y . By Lemma 2.2, we

have

x(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds + x(0) + x′(0)t +
x′′(0)

2
t2.

Then, we have

x′(t) =
1

Γ(α − 1)

∫ t

0

(t − s)α−2y(s)ds + x′(0) + x′′(0)t
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and

x′′(t) =
1

Γ(α − 2)

∫ t

0

(t − s)α−3y(s)ds + x′′(0).

By conditions of BVP (1.1), we can get that y satisfies

∫ 1

0

(1 − s)α−3y(s)ds = 0.

Thus we get (3.2). On the other hand, suppose y ∈ Y and satisfies
∫ 1

0
(1 − s)α−3y(s)ds =

0. Let x(t) = Iα
0+y(t), then x ∈ domL and Dα

0+x(t) = y(t). So that, y ∈ ImL. The
proof is complete.

Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero,
and the linear continuous projector operators P : X → X and Q : Y → Y can be
defined as

Px(t) =
x′′(0)

2
t2, ∀t ∈ [0, 1],

Qy(t) = (α − 2)

∫ 1

0

(1 − s)α−3y(s)ds, ∀t ∈ [0, 1].

Furthermore, the operator KP : ImL → domL ∩ KerP can be written by

KPy(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds, ∀t ∈ [0, 1].

Proof. Obviously, ImP = KerL and P 2x = Px. It follows from x = (x − Px) + Px
that X = KerP + KerL. By simple calculation, we can get that KerL ∩ KerP = {0}.
Then we get

X = KerL ⊕ KerP.

For y ∈ Y , we have

Q2y = Q(Qy) = Qy · (α − 2)

∫ 1

0

(1 − s)α−3ds = Qy.

Let y = (y − Qy) + Qy, where y − Qy ∈ KerQ = ImL, Qy ∈ ImQ. It follows from
KerQ = ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we have

Y = ImL ⊕ ImQ.

Thus

dimKerL = dim ImQ = codim ImL = 1.

EJQTDE, 2011 No. 66, p. 5



This means that L is a Fredholm operator of index zero.
From the definitions of P, KP , it is easy to see that the generalized inverse of L is

KP . In fact, for y ∈ ImL, we have

LKP y = Dα
0+Iα

0+y = y. (3.3)

Moreover, for x ∈ domL ∩ KerP , we get x(0) = x′(0) = x′′(0) = 0. By Lemma 2.2, we
obtain that

Iα
0+Lx(t) = Iα

0+Dα
0+x(t) = x(t) + x(0) + x′(0)t +

x′′(0)

2
t2,

which together with x(0) = x′(0) = x′′(0) = 0 yields that

KP Lx = x. (3.4)

Combining (3.3) with (3.4), we know that KP = (L|domL∩KerP
)−1. The proof is

complete.

Lemma 3.3. Assume Ω ⊂ X is an open bounded subset such that domL ∩ Ω 6= ∅,
then N is L-compact on Ω.

Proof. By the continuity of f , we can get that QN(Ω) and KP (I − Q)N(Ω) are
bounded. So, in view of the Arzelà-Ascoli theorem, we need only prove that KP (I −
Q)N(Ω) ⊂ X is equicontinuous.

From the continuity of f , there exists constant A > 0 such that |(I − Q)Nx| ≤ A,
∀x ∈ Ω, t ∈ [0, 1]. Furthermore, denote KP,Q = KP (I − Q)N and for 0 ≤ t1 < t2 ≤ 1,
x ∈ Ω, we have

|(KP,Qx)(t2) − (KP,Qx)(t1)|

≤
1

Γ(α)

∣

∣

∣

∣

∫ t2

0

(t2 − s)α−1(I − Q)Nx(s)ds −

∫ t1

0

(t1 − s)α−1(I − Q)Nx(s)ds

∣

∣

∣

∣

≤
A

Γ(α)

[
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1ds +

∫ t2

t1

(t2 − s)α−1ds

]

=
A

Γ(α + 1)
(tα2 − tα1 ),

|(KP,Qx)′(t2) − (KP,Qx)′(t1)|

=
α − 1

Γ(α)

∣

∣

∣

∣

∫ t2

0

(t2 − s)α−2(I − Q)Nx(s)ds −

∫ t1

0

(t1 − s)α−2(I − Q)Nx(s)ds

∣

∣

∣

∣

≤
A

Γ(α − 1)

[
∫ t1

0

(t2 − s)α−2 − (t1 − s)α−2ds +

∫ t2

t1

(t2 − s)α−2ds

]

≤
A

Γ(α)
(tα−1

2 − tα−1
1 )
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and

|(KP,Qx)′′(t2) − (KP,Qx)′′(t1)|

=
(α − 2)(α − 1)

Γ(α)

∣

∣

∣

∣

∫ t2

0

(t2 − s)α−3(I − Q)Nx(s)ds −

∫ t1

0

(t1 − s)α−3(I − Q)Nx(s)ds

∣

∣

∣

∣

≤
A

Γ(α − 2)

[
∫ t1

0

(t1 − s)α−3 − (t2 − s)α−3ds +

∫ t2

t1

(t2 − s)α−3ds

]

≤
A

Γ(α − 1)
[tα−2

1 − tα−2
2 + 2(t2 − t1)

α−2].

Since tα, tα−1 and tα−2 are uniformly continuous on [0, 1], we can get that KP,Q(Ω) ⊂
C[0, 1] , (KP,Q)′(Ω) ⊂ C[0, 1] and (KP,Q)′′(Ω) ⊂ C[0, 1] are equicontinuous. Thus, we
get that KP,Q : Ω → X is compact. The proof is completed.

Lemma 3.4. Suppose (H1), (H2) hold, then the set

Ω1 = {x ∈ domL \ KerL | Lx = λNx, λ ∈ (0, 1)}

is bounded.

Proof. Take x ∈ Ω1, then Nx ∈ ImL. By (3.2), we have

∫ 1

0

(1 − s)α−3f(s, x(s), x′(s), x′′(s))ds = 0.

Then, by the integral mean value theorem, there exists a constant ξ ∈ (0, 1) such that
f(ξ, x(ξ), x′(ξ), x′′(ξ)) = 0. Then from (H2), we have |x′′(ξ)| ≤ B.

From x ∈ domL, we get x(0) = 0 and x′(0) = 0. Therefore

|x′(t)| =

∣

∣

∣

∣

x′(0) +

∫ t

0

x′′(s)ds

∣

∣

∣

∣

≤ ‖x′′‖∞.

and

|x(t)| =

∣

∣

∣

∣

x(0) +

∫ t

0

x′(s)ds

∣

∣

∣

∣

≤ ‖x′‖∞.

That is

‖x‖∞ ≤ ‖x′‖∞ ≤ ‖x′′‖∞. (3.5)

By Lx = λNx and x ∈ domL, we have

x(t) =
λ

Γ(α)

∫ t

0

(t − s)α−1f(s, x(s), x′(s), x′′(s))ds +
1

2
x′′(0)t2.
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Then we get

x′(t) =
λ

Γ(α − 1)

∫ t

0

(t − s)α−2f(s, x(s), x′(s), x′′(s))ds + x′′(0)t

and

x′′(t) =
λ

Γ(α − 2)

∫ t

0

(t − s)α−3f(s, x(s), x′(s), x′′(s))ds + x′′(0).

Take t = ξ, we get

x′′(ξ) =
λ

Γ(α − 2)

∫ ξ

0

(ξ − s)α−3f(s, x(s), x′(s), x′′(s))ds + x′′(0).

Together with |x′′(ξ)| ≤ B , (H1) and (3.5), we have

|x′′(0)| ≤ |x′′(ξ)| +
λ

Γ(α − 2)

∫ ξ

0

(ξ − s)α−3|f(s, x(s), x′(s), x′′(s))|ds

≤ B +
1

Γ(α − 2)

∫ ξ

0

(ξ − s)α−3[p(s) + q(s)|x(s)| + r(s)|x′(s)| + s(s)|x′′(s)|]ds

≤ B +
1

Γ(α − 2)

∫ ξ

0

(ξ − s)α−3(p1 + q1‖x‖∞ + r1‖x
′‖∞ + s1‖x

′′‖∞)ds

≤ B +
1

Γ(α − 2)

∫ ξ

0

(ξ − s)α−3[p1 + (q1 + r1 + s1)‖x
′′‖∞]ds

≤ B +
1

Γ(α − 1)
[p1 + (q1 + r1 + s1)‖x

′′‖∞].

Then we have

‖x′′‖∞ ≤
1

Γ(α − 2)

∫ t

0

(t − s)α−3|f(s, x(s), x′(s), x′′(s))|ds + |x′′(0)|

≤
1

Γ(α − 2)

∫ t

0

(t − s)α−3[p(s) + q(s)|x(s)| + r(s)|x′(s)| + s(s)|x′′(s)|]ds + x′′(0)

≤
1

Γ(α − 2)

∫ t

0

(t − s)α−3(p1 + q1‖x‖∞ + r1‖x
′‖∞ + s1‖x

′′‖∞)ds + |x′′(0)|

≤
1

Γ(α − 2)

∫ t

0

(t − s)α−3[p1 + (q1 + r1 + s1)‖x
′′‖∞]ds + |x′′(0)|

≤
1

Γ(α − 1)
[p1 + (q1 + r1 + s1)‖x

′′‖∞] + |x′′(0)|

≤ B +
2

Γ(α − 1)
[p1 + (q1 + r1 + s1)‖x

′′‖∞].
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Thus, from Γ(α − 1) − 2(q1 + r1 + s1) > 0, we obtain that

‖x′′‖∞ ≤
2p1 + Γ(α − 1)B

Γ(α − 1) − 2(q1 + r1 + s1)
:= M1.

Thus, together with (3.5), we get

‖x‖∞ ≤ ‖x′‖∞ ≤ ‖x′′‖∞ ≤ M1.

Therefore,
‖x‖X ≤ M1.

So Ω1 is bounded. The proof is complete.

Lemma 3.5. Suppose (H2) holds, then the set

Ω2 = {x|x ∈ KerL, Nx ∈ ImL}

is bounded.

Proof. For x ∈ Ω2, we have x(t) = x′′(0)
2

t2 and Nx ∈ ImL. Then we get

∫ 1

0

(1 − s)α−3f(s,
x′′(0)

2
s2, x′′(0)s, x′′(0))ds = 0,

which together with (H2) implies |x′′(0)| ≤ B. Thus, we have

‖x‖X ≤ B.

Hence, Ω2 is bounded. The proof is complete.

Lemma 3.6. Suppose the first part of (H2) holds, then the set

Ω3 = {x|x ∈ KerL, λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}

is bounded.

Proof. For x ∈ Ω3, we have x(t) = x′′(0)
2

t2 and

λ
x′′(0)

2
t2 + (1 − λ)(α − 2)

∫ 1

0

(1 − s)α−3f(s,
x′′(0)

2
s2, x′′(0)s, x′′(0))ds = 0. (3.6)

If λ = 0, then |x′′(0)| ≤ B because of the first part of (H2). If λ ∈ (0, 1], we can also
obtain |x′′(0)| ≤ B. Otherwise, if |x′′(0)| > B, in view of the first part of (H2), one has

λ[x′′(0)]2t2 + (1 − λ)α

∫ 1

0

(1 − s)α−1x′′(0)f(s,
x′′(0)

2
s2, x′′(0)s, x′′(0))ds > 0,
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which contradicts to (3.6).
Therefore, Ω3 is bounded. The proof is complete.

Remark 3.1. Suppose the second part of (H2) hold, then the set

Ω′
3 = {x|x ∈ KerL, −λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}

is bounded.

The proof of Theorem 3.1. Set Ω = {x ∈ X|‖x‖X < max{M1, B} + 1}. It follows
from Lemma 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-
compact on Ω. By Lemma 3.4 and 3.5, we get that the following two conditions are
satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1);
(2) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω.

Take
H(x, λ) = ±λx + (1 − λ)QNx.

According to Lemma 3.6 (or Remark 3.1), we know that H(x, λ) 6= 0 for x ∈ KerL∩∂Ω.
Therefore

deg(QN |KerL
, Ω ∩ KerL, 0) = deg(H(·, 0), Ω ∩ KerL, 0)

= deg(H(·, 1), Ω ∩ KerL, 0)

= deg(±I, Ω ∩ KerL, 0) 6= 0.

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that
Lx = Nx has at least one solution in domL∩Ω. Therefore, BVP (1.1) has at least one
solution. The proof is complete.

4 An example

Example 4.1. Consider the following BVP
{

D
5

2

0+x(t) = 1
16

(x′′ − 10) + t2

16
e−|x′| + t3

16
sin(x2), t ∈ [0, 1]

x(0) = x′(0) = 0, x′′(0) = x′′(1).
(4.1)

Where

f(t, u, v, w) =
1

16
(w − 10) +

t2

16
e−|v| +

t3

16
sin(u2).

Choose p(t) = 10+2
16

, q(t) = 0, r(t) = 0, s(t) = 1
16

, B = 10. We can get that
q1 = 0, r1 = 0, s1 = 1

16
and

Γ(
5

2
− 1) − 2(q1 + r1 + s1) > 0.

Then, all conditions of Theorem 3.1 hold, so BVP (4.1) has at least one solution.
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