

Oscillation criteria for perturbed half-linear differential equations

Manabu Naito

Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan

Received 11 December 2023, appeared 31 July 2024 Communicated by Zuzana Došlá

Abstract. Oscillatory properties of perturbed half-linear differential equations are investigated. We make use of the modified Riccati technique. A certain linear differential equation associated with the modified Riccati equation plays an important part. Improved oscillation criteria for a perturbed half-linear Riemann–Weber differential equation can be obtained.

Keywords: half-linear differential equation, oscillation criteria, Riemann–Weber differential equation, principal solution.

2020 Mathematics Subject Classification: 34C10.

1 Introduction

In this paper we consider the second order half-linear ordinary differential equation

$$
(p(t)\Phi_{\alpha}(x'))' + q(t)\Phi_{\alpha}(x) = 0, \quad t \ge t_0,
$$
\n(1.1)

where $\Phi_{\alpha}(x) = |x|^{\alpha} \text{sgn } x$ with $\alpha > 0$, $p(t)$ and $q(t)$ are real-valued continuous functions on $[t_0, \infty)$, and $p(t) > 0$ for $t \geq t_0$. If $\alpha = 1$, then [\(1.1\)](#page-0-1) reduces to the linear equation

$$
(p(t)x')' + q(t)x = 0, \quad t \ge t_0.
$$
 (1.2)

The half-linear equation [\(1.1\)](#page-0-1) can be seen as a natural generalization of the linear equation $(1.2).$ $(1.2).$

For a solution $x(t)$ of [\(1.1\)](#page-0-1), the vector function

 $(x(t), y(t)) = (x(t), p(t)\Phi_{\alpha}(x'(t)))$

is a solution of the two-dimensional nonlinear system

$$
x' = p(t)^{-1/\alpha} \Phi_{1/\alpha}(y), \quad y' = -q(t) \Phi_{\alpha}(x). \tag{1.3}
$$

Conversely, for a solution $(x(t), y(t))$ of [\(1.3\)](#page-0-3), the first component $x(t)$ is a solution of [\(1.1\)](#page-0-1). The system of the type [\(1.3\)](#page-0-3) was considered by Mirzov [\[11\]](#page-17-0). Using the result of Mirzov

 $B \cong$ Email: naito.manabu078@nifty.com

[\[11,](#page-17-0) Lemma 2.1], we see that all local solutions of [\(1.1\)](#page-0-1) can be continued to t_0 and ∞ , and so all solutions of [\(1.1\)](#page-0-1) exist on the entire interval $[t_0, \infty)$. Analogues of Sturm's comparison theorem and Sturm's separation theorem remain valid for [\(1.1\)](#page-0-1) (Mirzov [\[11,](#page-17-0) Theorem 1.1]). Hence, if the equation [\(1.1\)](#page-0-1) has a nonoscillatory solution, then any other nontrivial solution is also nonoscillatory. If the equation [\(1.1\)](#page-0-1) has an oscillatory solution, then any other nontrivial solution is also oscillatory. Clearly, if $x(t)$ is a solution of [\(1.1\)](#page-0-1), then so is $-x(t)$. Therefore we can suppose without loss of generality that a nonoscillatory solution of [\(1.1\)](#page-0-1) is eventually positive.

In the last three decades, many results have been obtained in the theory of oscillatory and asymptotic behavior of solutions of half-linear differential equations. It is known that basic results for the second order linear equations can be generalized to the second order half-linear equations. The important works are summarized in the book of Došlý and Řehák [[8\]](#page-16-0). For the recent results to half-linear equations we refer the reader to, for example, [\[1](#page-16-1)[–7,](#page-16-2)[9](#page-16-3)[,10,](#page-16-4)[12–](#page-17-1)[16\]](#page-17-2). The present paper is strongly motivated by oscillatory and nonoscilaltory results in [\[2](#page-16-5)[–4,](#page-16-6) [6,](#page-16-7) [7,](#page-16-2) [9\]](#page-16-3).

For the equation (1.1) , it is sometimes assumed that

$$
\int_{t_0}^{\infty} p(s)^{-1/\alpha} ds = \lim_{t \to \infty} \int_{t_0}^{t} p(s)^{-1/\alpha} ds = \infty
$$
 (1.4)

and

$$
\begin{cases}\n\int_{t_0}^{\infty} q(s)ds = \lim_{t \to \infty} \int_{t_0}^{t} q(s)ds & \text{is convergent, and} \\
\int_{t}^{\infty} q(s)ds \ge 0, \neq 0 & \text{on} \quad [t_0^+, \infty) \quad \text{for any} \quad t_0^+ \ge t_0.\n\end{cases}
$$
\n(1.5)

We point out that for any nonoscillatory solution $x(t)$ of [\(1.1\)](#page-0-1) with [\(1.4\)](#page-1-0) and [\(1.5\)](#page-1-1) the derivative *x* ′ (*t*) does not vanish eventually. More precisely,

Proposition 1.1. *Consider the equation* [\(1.1\)](#page-0-1) *under the conditions* [\(1.4\)](#page-1-0) *and* [\(1.5\)](#page-1-1)*. Let x*(*t*) *be a nonoscillatory solution of* [\(1.1\)](#page-0-1) *such that* $x(t) > 0$ *for* $t \geq T \ (\geq t_0)$ *. Then,* $x'(t) > 0$ *for* $t \geq T$ *.*

The above fact is easily deduced from the generalized Riccati integral equation associated with [\(1.1\)](#page-0-1). See Lemma [2.3](#page-5-0) in the next section.

Together with the equation [\(1.1\)](#page-0-1), we consider the equation of the same type

$$
(p(t)\Phi_{\alpha}(x'))' + q_0(t)\Phi_{\alpha}(x) = 0, \quad t \ge t_0,
$$
\n(1.6)

where $q_0(t)$ is a real-valued continuous function on $[t_0, \infty)$. The equation [\(1.1\)](#page-0-1) is regarded as a perturbation of the equation (1.6) . In this paper it will be assumed that (1.6) has a nonoscillatory solution $x = x_0(t)$ such that

$$
x_0(t) > 0, \quad x'_0(t) > 0 \quad \text{for } t \ge T \tag{1.7}
$$

and

$$
\int_{T}^{\infty} \frac{1}{p(t)x_0(t)^2 x_0'(t)^{\alpha - 1}} dt = \infty.
$$
 (1.8)

The condition [\(1.8\)](#page-1-3) is closely related to an integral characterization of the principal solution of [\(1.6\)](#page-1-2). For the concept of the principal solution, see Došlý and Řehák $[8,$ $[8,$ Section 4.2]. The following result is known.

Theorem 1.2 (Došlý and Elbert [\[5\]](#page-16-8) and Došlá and Došlý [\[1,](#page-16-1) Proposition 2]). *Suppose that* $x =$ $x_0(t)$ *is a nonoscillatory solution of* [\(1.6\)](#page-1-2) *satisfying* [\(1.7\)](#page-1-4)*.*

- (i) Let $0 < \alpha \leq 1$. If [\(1.8\)](#page-1-3) is satisfied, then $x_0(t)$ is the principal solution of [\(1.6\)](#page-1-2).
- (ii) Let $\alpha \geq 1$ *. If* $x_0(t)$ *is the principal solution of* [\(1.6\)](#page-1-2)*, then* [\(1.8\)](#page-1-3) *holds.*
- (iii) Let $\alpha > 1$, and suppose that the conditions [\(1.4\)](#page-1-0) and

$$
\int_{t_0}^{\infty} q_0(s)ds \quad exists \text{ and } \int_t^{\infty} q_0(s)ds \ge 0, \neq 0 \quad eventually \tag{1.9}
$$

are satisfied. Then, $x_0(t)$ *is the principal solution of* [\(1.6\)](#page-1-2) *if and only if* [\(1.8\)](#page-1-3) *holds.*

Note that the part (iii) of Theorem [1.2](#page-2-0) is stated in [\[5,](#page-16-8) Theorem 3.3] and [\[8,](#page-16-0) Theorem 4.2.8] without the condition $\alpha \geq 1$. The part (iii) of Theorem [1.2](#page-2-0) may fail to hold for $0 < \alpha < 1$ (see [\[1,](#page-16-1) Example 1]).

As an important oscillatory result the following theorem is known.

Theorem 1.3 (Došlý and Lomtatidze [\[7,](#page-16-2) Theorem 1])**.** *Suppose that the equation* [\(1.6\)](#page-1-2) *is nonoscillatory and let* $x = x_0(t)$ *be the principal solution of* [\(1.6\)](#page-1-2) *satisfying* $x_0(t) > 0$ *for* $t \geq T$. If

$$
\int_T^{\infty} x_0(t)^{\alpha+1} \left[q(t) - q_0(t) \right] dt = \infty,
$$

then the equation [\(1.1\)](#page-0-1) *is oscillatory.*

Now let us consider the case where the equation (1.6) has a nonoscillatory solution $x =$ $x₀(t)$ satisfying [\(1.7\)](#page-1-4), [\(1.8\)](#page-1-3) and

$$
\int_{T}^{\infty} x_0(t)^{\alpha+1} \left[q(t) - q_0(t) \right] dt \quad \text{is convergent.} \tag{1.10}
$$

It is not assumed that $x = x_0(t)$ is principal. Then we set

$$
P(t) = p(t)x_0(t)^2 x'_0(t)^{\alpha - 1} \quad \text{and} \quad Q(t) = x_0(t)^{\alpha + 1} [q(t) - q_0(t)]. \tag{1.11}
$$

Note that [\(1.7\)](#page-1-4) implies $P(t) > 0$ ($t \geq T$).

The condition

$$
\liminf_{t \to \infty} p(t)x_0(t)x'_0(t)^{\alpha} > 0 \tag{1.12}
$$

also plays an important part. The following nonoscillatory result has been showed by Došlý and Fišnarová.

Theorem 1.4 (Došlý and Fišnarová [\[6,](#page-16-7) Theorem 3])**.** *Suppose that the equation* [\(1.6\)](#page-1-2) *has a nonoscillatory solution* $x = x_0(t)$ *satisfying* [\(1.7\)](#page-1-4), [\(1.8\)](#page-1-3) *and* [\(1.12\)](#page-2-1)*. Suppose moreover that* [\(1.10\)](#page-2-2) *holds. If there exists ε* > 0 *such that the linear equation*

$$
(P(t)x')' + (1+\varepsilon)\frac{\alpha+1}{2\alpha}Q(t)x = 0
$$
\n(1.13)

is nonoscillatory, then the equation [\(1.1\)](#page-0-1) *is nonoscillatory.*

The following corollary is obtained by applying the classical Hille–Nehari nonoscillation criterion to the linear equation [\(1.13\)](#page-2-3).

Corollary 1.5 (Došlý and Fišnarová [\[6,](#page-16-7) Corollary 1 (i)])**.** *Suppose that* [\(1.6\)](#page-1-2) *has a nonoscillatory solution* $x = x_0(t)$ *satisfying* [\(1.7\)](#page-1-4), [\(1.8\)](#page-1-3) *and* [\(1.12\)](#page-2-1)*. Suppose moreover that* [\(1.10\)](#page-2-2) *holds.* If

$$
-\frac{3\alpha}{2(\alpha+1)} < \liminf_{t \to \infty} \left(\int_T^t \frac{1}{P(s)} ds \right) \left(\int_t^\infty Q(s) ds \right) \\
\leq \limsup_{t \to \infty} \left(\int_T^t \frac{1}{P(s)} ds \right) \left(\int_t^\infty Q(s) ds \right) < \frac{\alpha}{2(\alpha+1)},
$$

then the equation [\(1.1\)](#page-0-1) *is nonoscillatory.*

In this paper the following theorem will be proved.

Theorem 1.6. *Suppose that p*(*t*) *and q*(*t*) *satisfy* [\(1.4\)](#page-1-0) *and* [\(1.5\)](#page-1-1)*, respectively. Suppose that the equation* [\(1.6\)](#page-1-2) *has a nonoscillatory solution* $x = x_0(t)$ *satisfying* [\(1.7\)](#page-1-4), [\(1.8\)](#page-1-3) *and* [\(1.12\)](#page-2-1)*. Suppose moreover that* [\(1.10\)](#page-2-2) *holds. If there exists a number ε with* 0 < *ε* < 1 *such that the linear equation*

$$
(P(t)x')' + (1 - \varepsilon) \frac{\alpha + 1}{2\alpha} Q(t)x = 0
$$
\n(1.14)

is oscillatory, then the equation [\(1.1\)](#page-0-1) *is oscillatory.*

Theorem [1.6](#page-3-0) was proved in [\[3,](#page-16-9) Theorem 1] under the restricted condition that

 $\lim_{t\to\infty} p(t)x_0(t)x'_0(t)^{\alpha}$ exists and is a positive finite value.

Theorem [1.6](#page-3-0) gives a partial extension of Theorem 4 in [\[6\]](#page-16-7). Applying the classical Hille–Nehari oscillation criterion to the linear equation [\(1.14\)](#page-3-1), we have the following corollary.

Corollary 1.7. *Suppose that p*(*t*) *and q*(*t*) *satisfy* [\(1.4\)](#page-1-0) *and* [\(1.5\)](#page-1-1)*, respectively. Suppose that* [\(1.6\)](#page-1-2) *has a* nonoscillatory solution $x = x_0(t)$ satisfying [\(1.7\)](#page-1-4), [\(1.8\)](#page-1-3) and [\(1.12\)](#page-2-1). Suppose moreover that [\(1.10\)](#page-2-2) *holds. If*

$$
\liminf_{t \to \infty} \left(\int_T^t \frac{1}{P(s)} ds \right) \left(\int_t^\infty Q(s) ds \right) > \frac{\alpha}{2(\alpha + 1)},\tag{1.15}
$$

then the equation [\(1.1\)](#page-0-1) *is oscillatory.*

Corollary [1.7](#page-3-2) is a new result, while it is similar to Corollary 1 (ii) in [\[6\]](#page-16-7). Now, let

$$
E(\alpha) = \frac{1}{\alpha + 1} \left(\frac{\alpha}{\alpha + 1} \right)^{\alpha}, \quad \mu(\alpha) = \frac{1}{2} \left(\frac{\alpha}{\alpha + 1} \right)^{\alpha}, \tag{1.16}
$$

and

$$
\log_0 t = t, \quad \log_k t = \log(\log_{k-1} t), \quad \log_k t = \prod_{j=1}^k \log_j t \quad (k = 1, 2, 3, \dots).
$$

Then, consider the half-linear equation

$$
(\Phi_{\alpha}(x'))' + \left(\frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^{n} \frac{1}{(\log_j t)^2} + c(t)\right) \Phi_{\alpha}(x) = 0, \tag{1.17}
$$

where $c(t)$ is a continuous function on an interval $[t_0, \infty)$ with sufficiently large t_0 . The equation [\(1.17\)](#page-3-3) is regarded as a perturbation of the half-linear Riemann–Weber (sometimes also called Euler–Weber) differential equation

$$
\left(\Phi_{\alpha}(x')\right)' + \left(\frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^{n} \frac{1}{(\log_j t)^2}\right) \Phi_{\alpha}(x) = 0. \tag{1.18}
$$

It is known that [\(1.18\)](#page-3-4) is nonoscillatory. Moreover, the asymptotic forms of (nonoscillatory) solutions of [\(1.18\)](#page-3-4) are investigated by Elbert and Schneider [\[9,](#page-16-3) Corollary 1]. In this paper we pay attention to the fact that [\(1.18\)](#page-3-4) has a nonoscillatory solution $x(t)$ such that

$$
x(t) \sim t^{\alpha/(\alpha+1)} (\log_n t)^{1/(\alpha+1)} \quad (t \to \infty). \tag{1.19}
$$

We can prove the following theorem.

Theorem 1.8. *If*

$$
\int_{t_0}^{\infty} t^{\alpha} (\log_n t) c(t) dt = \infty,
$$
\n(1.20)

then [\(1.17\)](#page-3-3) *is oscillatory.*

The case *n* = 1 in Theorem [1.8](#page-4-0) was obtained by Došlý [\[2,](#page-16-5) Corollary 1]. Theorem C in Elbert and Schneider [\[9\]](#page-16-3) can be regarded as the case $n = 0$ in Theorem [1.8.](#page-4-0)

Next, consider the case where

$$
\int_{t_0}^{\infty} t^{\alpha} (\log_n t) c(t) dt \quad \text{is convergent.} \tag{1.21}
$$

The following theorem is known.

Theorem 1.9 (Došlý [\[4,](#page-16-6) Theorem 3.3 (i)])**.** *Consider the equation* [\(1.17\)](#page-3-3) *under the condition* [\(1.21\)](#page-4-1)*. If*

$$
-3\mu(\alpha) < \liminf_{t \to \infty} (\log_{n+1} t) \int_t^{\infty} s^{\alpha} (\log_n s) c(s) ds
$$

$$
\leq \limsup_{t \to \infty} (\log_{n+1} t) \int_t^{\infty} s^{\alpha} (\log_n s) c(s) ds < \mu(\alpha),
$$

then [\(1.17\)](#page-3-3) *is nonoscillatory.*

In the present paper the following theorem will be proved.

Theorem 1.10. *Consider the equation* [\(1.17\)](#page-3-3) *under the condition* [\(1.21\)](#page-4-1)*. If*

$$
\liminf_{t \to \infty} (\log_{n+1} t) \int_t^{\infty} s^{\alpha} (\log_n s) c(s) ds > \mu(\alpha), \tag{1.22}
$$

then [\(1.17\)](#page-3-3) *is oscillatory.*

Theorem [1.10](#page-4-2) gives an improvement of Theorem 3.3 (ii) in [\[4\]](#page-16-6).

Theorem 5 in [\[9\]](#page-16-3) can be regarded as the case $n = 0$ in Theorems [1.9](#page-4-3) and [1.10.](#page-4-2) Note that Theorem 5 in [\[9\]](#page-16-3) is restricted to the case $n = 0$ and

$$
\int_t^\infty s^{\alpha}c(s)ds \ge 0 \quad \text{for all large } t.
$$

In the next section we state several basic (non)oscillatory results for the half-linear differential equation (1.1) . The proofs are contained in the book of Došlý and Řehák [[8\]](#page-16-0). For the proof of Theorem [1.6](#page-3-0) we need some estimates for the function $F(u, v)$ which appears in the modified Riccati equation associated with [\(1.1\)](#page-0-1). In Section 3 we state and prove the estimates for $F(u, v)$. The proof of Theorem [1.6](#page-3-0) is given in Section 4. The proofs of Theorems [1.8](#page-4-0) and [1.10](#page-4-2) are presented in Section 5.

2 Basic results

For the convenience of the reader we summarize basic (non)oscillatory results for the halflinear differential equation [\(1.1\)](#page-0-1). As usual, we use the asterisk notation

$$
\xi^{\alpha*} = \Phi_{\alpha}(\xi) = |\xi|^{\alpha} \text{sgn}\,\xi, \quad \xi \in \mathbb{R}, \quad \alpha > 0.
$$

Then it is easy to see that, for ξ , $\eta \in \mathbb{R}$ and α , α_1 , $\alpha_2 > 0$,

- $(\xi \eta)^{\alpha*} = \xi^{\alpha*} \eta^{\alpha*}, \quad (-\xi)^{\alpha*} = -\xi^{\alpha*};$
- \bullet $(\xi^{\alpha_1*})^{\alpha_2*} = \xi^{(\alpha_1\alpha_2)*}, \quad (\xi^{\alpha*})^{(1/\alpha)*} = \xi, \quad (\xi^{(1/\alpha)*})^{\alpha*} = \xi;$
- $\zeta^{\alpha*}$ ≤ $\eta^{\alpha*}$ if and only if $\zeta \leq \eta$; $\zeta^{\alpha*} < \eta^{\alpha*}$ if and only if $\zeta < \eta$; $\zeta^{\alpha*} = \eta^{\alpha*}$ if and only if $\zeta = \eta$.

With this asterisk notation, the equation [\(1.1\)](#page-0-1) is rewritten as

$$
(p(t)(x')^{\alpha*})' + q(t)x^{\alpha*} = 0, \quad t \ge t_0.
$$

Lemma 2.1. *The equation* [\(1.1\)](#page-0-1) *is nonoscillatory if and only if there is a continuously differentiable function y*(*t*) *which satisfies the generalized Riccati differential inequality*

$$
y' + q(t) + \alpha p(t)^{-1/\alpha} |y|^{(\alpha+1)/\alpha} \leq 0
$$

on an interval $[T, \infty)$ *,* $T \ge t_0$ *.*

In what follows we consider the equation [\(1.1\)](#page-0-1) under the condition [\(1.4\)](#page-1-0). The next theorem is a half-linear extension of the classical Wintner oscillation criterion for [\(1.2\)](#page-0-2).

Lemma 2.2. *Suppose that* [\(1.4\)](#page-1-0) *holds. If*

$$
\int_{t_0}^{\infty} q(t)dt = \infty,
$$

then [\(1.1\)](#page-0-1) *is oscillatory.*

As a next step we consider the case where [\(1.4\)](#page-1-0) holds and

$$
\int_{t_0}^{\infty} q(t)dt \quad \text{is convergent.} \tag{2.1}
$$

Lemma 2.3. *Consider the equation* [\(1.1\)](#page-0-1) *under the conditions* [\(1.4\)](#page-1-0) *and* [\(2.1\)](#page-5-1)*.* Let $x(t)$ be a nonoscil*latory solution of* [\(1.1\)](#page-0-1) *such that* $x(t) > 0$ *for* $t \geq T$ ($\geq t_0$)*. Then*

$$
p(t)\left(\frac{x'(t)}{x(t)}\right)^{\alpha*}=\int_t^{\infty}q(s)ds+\alpha\int_t^{\infty}p(s)\left|\frac{x'(s)}{x(s)}\right|^{\alpha+1}ds,\quad t\geq T.
$$

If the additional condition

$$
\int_t^{\infty} q(s)ds \ge 0, \neq 0 \quad on \quad [T^+, \infty) \quad \text{for any} \quad T^+ \ge T
$$

is satisfied, then $x'(t) > 0$ *for* $t \geq T$ *.*

The following lemma is the Hille–Nehari type (non)oscillation criteria for the equation [\(1.1\)](#page-0-1).

Lemma 2.4. *Consider the equation* [\(1.1\)](#page-0-1) *under the conditions* [\(1.4\)](#page-1-0) *and* [\(2.1\)](#page-5-1)*. Let E*(*α*) *be the constant defined by the former part of* [\(1.16\)](#page-3-5)*.*

(i) *The equation* [\(1.1\)](#page-0-1) *is nonoscillatory provided*

$$
-(2\alpha+1)E(\alpha) < \liminf_{t\to\infty} \left(\int_{t_0}^t p(s)^{-1/\alpha} ds\right)^\alpha \left(\int_t^\infty q(s)ds\right)
$$

$$
\leq \limsup_{t\to\infty} \left(\int_{t_0}^t p(s)^{-1/\alpha} ds\right)^\alpha \left(\int_t^\infty q(s)ds\right) < E(\alpha).
$$

(ii) *The equation* [\(1.1\)](#page-0-1) *is oscillatory provided*

$$
\liminf_{t\to\infty}\left(\int_{t_0}^t p(s)^{-1/\alpha}ds\right)^{\alpha}\left(\int_t^{\infty} q(s)ds\right) > E(\alpha).
$$

The results mentioned here are half-linear extensions of the classical results for the linear equation [\(1.2\)](#page-0-2). For the proofs, see [\[8\]](#page-16-0).

3 Lemmas

It is known that the function

$$
F(u,v) = |u + v|^{(\alpha+1)/\alpha} - |v|^{(\alpha+1)/\alpha} - \frac{\alpha+1}{\alpha}v^{(1/\alpha)*}u, \quad u, v \in \mathbb{R},
$$
\n(3.1)

plays a crucial role in the study of the oscillation and nonoscillation of (1.1) .

Lemma 3.1 (see, e.g., Došlý and Fišnarová [\[6,](#page-16-7) Lemma 4]). Let $x = x(t)$ and $x = x_0(t)$ be *nonoscillatory solutions of* [\(1.1\)](#page-0-1) *and* [\(1.6\)](#page-1-2)*, respectively. Suppose that* $x(t) > 0$ *and* $x_0(t) > 0$ *for* $t \geq T \; (\geq t_0)$ *. Then the function*

$$
u(t) = p(t)x_0(t)^{\alpha+1} \left[\left(\frac{x'(t)}{x(t)} \right)^{\alpha*} - \left(\frac{x'_0(t)}{x_0(t)} \right)^{\alpha*} \right], \quad t \ge T,
$$
 (3.2)

is a solution of the modified Riccati differential equation

$$
u'(t) + x_0(t)^{\alpha+1} [q(t) - q_0(t)]
$$

+ $\alpha p(t)^{-1/\alpha} x_0(t)^{-(\alpha+1)/\alpha} F(u(t), p(t) x_0(t) x_0'(t)^{\alpha*}) = 0, \quad t \ge T,$ (3.3)

where $F(u, v)$ *is defined by* [\(3.1\)](#page-6-0).

Lemma 3.2. Let $F(u, v)$ be the function which is defined by [\(3.1\)](#page-6-0).

- (i) $F(u, v) \ge 0$ *for all* $u, v \in \mathbb{R}$ *;* $F(u, v) = 0$ *if and only if* $u = 0$ *.*
- (ii) Let $k > 0$ be a constant. Then there are constants $L_1(k) > 0$ and $L_2(k) > 0$ such that

$$
L_1(k)|v|^{(1/\alpha)-1}u^2 \le F(u,v) \le L_2(k)|v|^{(1/\alpha)-1}u^2 \tag{3.4}
$$

for $v > 0$ *and* $-v < u \le kv$.

(iii) Let k_1 and k_2 be constants satisfying $0 < k_1 < k_2$. Then there is a constant $L(k_1, k_2) > 0$ such *that F*(*u*, *v*) *can be expressed in the following form*

$$
F(u,v) = \frac{\alpha+1}{2\alpha^2} |v|^{(1/\alpha)-1} u^2 (1 + R(u,v))
$$

with

$$
|R(u,v)| \leq \frac{|\alpha-1|}{3\alpha}L(k_1,k_2)|u|
$$

for $v > 0$ *and* $|u| \leq k_1 < k_2 \leq v$.

Proof. It is obvious that $F(0, v) = 0$. Differentiating the function $F(u, v)$ with respect to *u*, we obtain

$$
F_u(u,v) = \frac{\alpha + 1}{\alpha} (u+v)^{(1/\alpha)*} - \frac{\alpha + 1}{\alpha} v^{(1/\alpha)*}, \quad u, v \in \mathbb{R},
$$

\n
$$
F_{uu}(u,v) = \frac{\alpha + 1}{\alpha^2} |u+v|^{(1/\alpha)-1}, \quad u > -v,
$$

\n
$$
F_{uuu}(u,v) = \frac{(\alpha + 1)(-\alpha + 1)}{\alpha^3} (u+v)^{[(1/\alpha)-2]*}, \quad u > -v.
$$

Then, $F_u(0, v) = 0$ ($v \in \mathbb{R}$) and $F_{uu}(0, v) = [(\alpha + 1)/\alpha^2] |v|^{(1/\alpha)-1}$ ($v > 0$).

(i) Let $v \in \mathbb{R}$ be fixed. It is seen that $F_u(u, v) < 0$ for $u < 0$, $F_u(u, v) > 0$ for $u > 0$ and $F_u(0, v) = 0$. This means that $F(u, v)$ is strictly decreasing on $(-\infty, 0)$ and $F(u, v)$ is strictly increasing on $(0, \infty)$. Then, since $F(0, v) = 0$, it is clear that $F(u, v) \ge 0$ for $u \in \mathbb{R}$ and $F(u, v) = 0$ if and only if $u = 0$.

(ii) Let $v > 0$ and $-v < u \le kv$. By Taylor's theorem with integral remainder we have

$$
F(u,v) = F(0,v) + F_u(0,v)u + \int_0^u (u-s)F_{uu}(s,v)ds.
$$

Hence

$$
F(u,v) = \frac{\alpha+1}{\alpha^2} \int_0^u (u-s)|s+v|^{(1/\alpha)-1} ds
$$

= $\frac{\alpha+1}{\alpha^2} \int_0^1 (u-u\sigma)|u\sigma+v|^{(1/\alpha)-1} u d\sigma$
= $\frac{\alpha+1}{\alpha^2} |v|^{(1/\alpha)-1} u^2 \int_0^1 (1-\sigma) \left| \frac{u}{v} \sigma + 1 \right|^{(1/\alpha)-1} d\sigma.$

Then, noting

$$
0 \leq -\sigma + 1 \leq \frac{u}{v}\sigma + 1 \leq k\sigma + 1 \quad (0 \leq \sigma \leq 1),
$$

we find that, for the case $0 < \alpha \leq 1$,

$$
\frac{\alpha}{\alpha+1} = \int_0^1 (1-\sigma)^{1/\alpha} d\sigma \le \int_0^1 (1-\sigma) \left| \frac{u}{\sigma} \sigma + 1 \right|^{(1/\alpha)-1} d\sigma
$$

$$
\le \int_0^1 (1-\sigma)(k\sigma + 1)^{(1/\alpha)-1} d\sigma;
$$

and, for the case $\alpha > 1$,

$$
\int_0^1 (1-\sigma)(k\sigma+1)^{(1/\alpha)-1}d\sigma \le \int_0^1 (1-\sigma)\left|\frac{u}{v}\sigma+1\right|^{(1/\alpha)-1}d\sigma
$$

$$
\le \int_0^1 (1-\sigma)^{1/\alpha}d\sigma = \frac{\alpha}{\alpha+1}.
$$

This shows that [\(3.4\)](#page-6-1) holds with positive constants $L_1(k)$ and $L_2(k)$ such that, for the case $0 < \alpha \leq 1$,

$$
L_1(k) = \frac{1}{\alpha}
$$
 and $L_2(k) = \frac{\alpha + 1}{\alpha^2} \int_0^1 (1 - \sigma)(k\sigma + 1)^{(1/\alpha)-1} d\sigma;$

and, for the case $\alpha > 1$,

$$
L_1(k) = \frac{\alpha + 1}{\alpha^2} \int_0^1 (1 - \sigma)(k\sigma + 1)^{(1/\alpha) - 1} d\sigma \text{ and } L_2(k) = \frac{1}{\alpha}
$$

(iii) Let $v > 0$ and $|u| \leq k_1 < k_2 \leq v$. By Taylor's theorem there is θ such that $0 < \theta < 1$ and Γ ^{*u*} $(0, \nu)$ $F(\theta, \theta)$

$$
F(u,v) = F(0,v) + F_u(0,v)u + \frac{F_{uu}(0,v)}{2!}u^2 + \frac{F_{uuu}(\theta u,v)}{3!}u^3.
$$

Hence

$$
F(u,v) = \frac{\alpha+1}{2\alpha^2}|v|^{(1/\alpha)-1}u^2 + \frac{(\alpha+1)(-\alpha+1)}{6\alpha^3}(\theta u + v)^{[(1/\alpha)-2]*}u^3
$$

=
$$
\frac{\alpha+1}{2\alpha^2}|v|^{(1/\alpha)-1}u^2\left[1+\frac{-\alpha+1}{3\alpha}|v|^{-(1/\alpha)+1}(\theta u + v)^{[(1/\alpha)-2]*}u\right].
$$

Notice here that

$$
\theta u + v \ge -|u| + v \ge -k_1 + k_2 > 0 \quad (0 < \theta < 1)
$$

and

$$
0 < -\frac{k_1}{k_2} + 1 \le \frac{u}{v}\theta + 1 = \frac{\theta u + v}{v} \le \frac{k_1}{k_2} + 1 \quad (0 < \theta < 1).
$$

Put

$$
R(u,v) = \frac{-\alpha+1}{3\alpha} |v|^{-(1/\alpha)+1} (\theta u + v)^{[(1/\alpha)-2]*} u.
$$

Then it is easy to see that

$$
|R(u,v)| \leq \frac{|\alpha-1|}{3\alpha} \left| \frac{\theta u + v}{v} \right|^{(1/\alpha)-1} |\theta u + v|^{-1} |u| \leq \frac{|\alpha-1|}{3\alpha} L(k_1,k_2) |u|,
$$

where $L(k_1, k_2)$ is given by

$$
L(k_1, k_2) = \begin{cases} \left(1 + \frac{k_1}{k_2}\right)^{(1/\alpha)-1} (k_2 - k_1)^{-1} & (0 < \alpha \le 1), \\ \left(1 - \frac{k_1}{k_2}\right)^{(1/\alpha)-1} (k_2 - k_1)^{-1} & (\alpha > 1). \end{cases}
$$

This proves the part (iii) of Lemma [3.2.](#page-6-2)

4 Proofs of the results

Proof of Theorem [1.6](#page-3-0)*.* Suppose that there is $\varepsilon \in (0,1)$ such that [\(1.14\)](#page-3-1) is oscillatory. Assume, by contradiction, that the equation [\(1.1\)](#page-0-1) has a nonoscillatory solution $x(t)$. We may suppose that $x(t) > 0$ for $t \geq T$. Then, we define the function $u(t)$ by [\(3.2\)](#page-6-3). By Lemma [3.1,](#page-6-4) $u(t)$ satisfies [\(3.3\)](#page-6-5). Integrating [\(3.3\)](#page-6-5) from *T* to *t*, we obtain

$$
u(t) - u(T) + \int_{T}^{t} x_0(s)^{\alpha+1} [q(s) - q_0(s)] ds
$$

+ $\alpha \int_{T}^{t} p(s)^{-1/\alpha} x_0(s)^{-(\alpha+1)/\alpha} F(u(s), p(s) x_0(s) x_0'(s)^{\alpha}) ds = 0$ (4.1)

 \Box

.

for $t \geq T$. Since the integrand of the last integral in the left-hand side of [\(4.1\)](#page-8-0) is nonnegative for $t \geq T$ (see Lemma [3.2](#page-6-2) (i)), we have either

$$
\int_{T}^{\infty} p(s)^{-1/\alpha} x_0(s)^{-(\alpha+1)/\alpha} F(u(s), p(s) x_0(s) x_0'(s)^{\alpha}) ds = \infty
$$
 (4.2)

or

$$
\int_{T}^{\infty} p(s)^{-1/\alpha} x_0(s)^{-(\alpha+1)/\alpha} F(u(s), p(s) x_0(s) x_0'(s)^{\alpha}) ds < \infty.
$$
 (4.3)

Suppose first that [\(4.2\)](#page-9-0) holds. Since [\(1.10\)](#page-2-2) is assumed to hold, it follows from [\(4.1\)](#page-8-0) that *u*(*t*) → −∞ as *t* → ∞. We may suppose that *u*(*t*) < 0 for *t* ≥ *T*. By Lemma [2.3](#page-5-0) we have $x'(t) > 0$ for $t \geq T$. Hence, by [\(3.2\)](#page-6-3), we get

$$
-p(t)x_0(t)x'_0(t)^{\alpha} = -p(t)x_0(t)^{\alpha+1} \left(\frac{x'_0(t)}{x_0(t)}\right)^{\alpha*} < u(t) \leq p(t)x_0(t)x'_0(t)^{\alpha}, \quad t \geq T.
$$

Applying Lemma [3.2](#page-6-2) (ii) to the case $k = 1$, $u = u(t)$ and $v = p(t)x_0(t)x'_0(t)^{\alpha}$, we find that there are constants $L_1 = L_1(1) > 0$ and $L_2 = L_2(1) > 0$ such that

$$
L_1 p(t)^{-1} x_0(t)^{-2} x'_0(t)^{-\alpha+1} u(t)^2
$$

\n
$$
\leq p(t)^{-1/\alpha} x_0(t)^{-(\alpha+1)/\alpha} F(u(t), p(t) x_0(t) x'_0(t)^{\alpha})
$$

\n
$$
\leq L_2 p(t)^{-1} x_0(t)^{-2} x'_0(t)^{-\alpha+1} u(t)^2, \quad t \geq T.
$$

Therefore, [\(3.3\)](#page-6-5) yields

$$
u'(t) + x_0(t)^{\alpha+1} [q(t) - q_0(t)] + \alpha L_1 p(t)^{-1} x_0(t)^{-2} x'_0(t)^{-\alpha+1} u(t)^2 \le 0
$$

for $t \geq T$, and [\(4.2\)](#page-9-0) gives

$$
\int_T^{\infty} p(t)^{-1} x_0(t)^{-2} x'_0(t)^{-\alpha+1} u(t)^2 dt = \infty.
$$

Thus we obtain

$$
u'(t) + Q(t) + \alpha L_1 P(t)^{-1} u(t)^2 \le 0, \quad t \ge T,
$$
\n(4.4)

and

$$
\int_{T}^{\infty} P(t)^{-1} u(t)^2 dt = \infty.
$$
\n(4.5)

Here the functions $P(t)$ and $Q(t)$ are given by [\(1.11\)](#page-2-4).

Put

$$
\varphi(t) = \int_{T}^{t} P(s)^{-1} ds, \quad t \ge T.
$$
\n(4.6)

It follows from [\(4.4\)](#page-9-1) that

$$
\int_{T}^{t} (\varphi(t) - \varphi(s))^{2} u'(s) ds + \int_{T}^{t} (\varphi(t) - \varphi(s))^{2} Q(s) ds
$$

+ $\alpha L_{1} \int_{T}^{t} (\varphi(t) - \varphi(s))^{2} P(s)^{-1} u(s)^{2} ds \le 0, \quad t \ge T.$ (4.7)

Denote by $I(t)$ the first term of the left-hand side of (4.7) . Then, it is seen that

$$
I(t) = -u(T)\varphi(t)^{2} + 2\int_{T}^{t} (\varphi(t) - \varphi(s))P(s)^{-1}u(s)ds, \quad t \geq T,
$$

and so, by the Cauchy–Schwarz inequality, we find that

$$
|I(t)| \le |u(T)|\varphi(t)|^2 + 2\left(\int_T^t P(s)^{-1}ds\right)^{1/2} \left(\int_T^t (\varphi(t) - \varphi(s))^2 P(s)^{-1}u(s)^2ds\right)^{1/2}
$$

for $t \geq T$. Therefore, [\(4.6\)](#page-9-3) and [\(4.7\)](#page-9-2) yield

$$
\frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 Q(s) ds \le |u(T)| \n+ \frac{2}{\varphi(t)^{1/2}} \left(\frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 P(s)^{-1} u(s)^2 ds \right)^{1/2} \n- \alpha L_1 \left(\frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 P(s)^{-1} u(s)^2 ds \right), \quad t > T.
$$
\n(4.8)

It follows from [\(1.8\)](#page-1-3) and [\(4.6\)](#page-9-3) that

$$
\lim_{t \to \infty} \varphi(t) = \int_T^{\infty} P(s)^{-1} ds = \int_T^{\infty} p(s)^{-1} x_0(s)^{-2} x'_0(s)^{-\alpha+1} ds = \infty,
$$

and, by L'Hospital's rule and [\(4.5\)](#page-9-4), we get

$$
\lim_{t \to \infty} \frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 P(s)^{-1} u(s)^2 ds = \int_T^{\infty} P(s)^{-1} u(s)^2 ds = \infty.
$$

Let *β* be a constant such that $0 < β < αL_1$. Then it is easy to check that [\(4.8\)](#page-10-0) yields

$$
\frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 Q(s) ds \le -\frac{\beta}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 P(s)^{-1} u(s)^2 ds
$$

for all large *t*, and consequently,

$$
\lim_{t \to \infty} \frac{1}{\varphi(t)^2} \int_T^t (\varphi(t) - \varphi(s))^2 Q(s) ds = -\infty.
$$

On the other hand, the condition [\(1.10\)](#page-2-2), i.e., the condition

$$
\lim_{t \to \infty} \int_T^t Q(s)ds = \int_T^{\infty} Q(s)ds \text{ is convergent}
$$

implies

$$
\lim_{t\to\infty}\frac{1}{\varphi(t)^2}\int_T^t(\varphi(t)-\varphi(s))^2Q(s)ds=\int_T^\infty Q(s)ds\in\mathbb{R}.
$$

This is a contradiction. Therefore, [\(4.2\)](#page-9-0) does not occur.

Next suppose that [\(4.3\)](#page-9-5) holds. Using [\(1.10\)](#page-2-2), [\(4.1\)](#page-8-0) and (4.3), we see that $\lim_{t\to\infty} u(t)$ exists and is finite. Put $\lim_{t\to\infty} u(t) = \ell \in \mathbb{R}$. Integrating the equality [\(3.3\)](#page-6-5) from *t* to τ ($T \le t \le \tau$) and letting $\tau \to \infty$, we obtain

$$
u(t) = \ell + \int_{t}^{\infty} x_0(s)^{\alpha+1} [q(s) - q_0(s)] ds
$$

+ $\alpha \int_{t}^{\infty} p(s)^{-1/\alpha} x_0(s)^{-(\alpha+1)/\alpha} F(u(s), p(s) x_0(s) x_0'(s)^{\alpha}) ds$

for $t \geq T$. By Lemma [2.3](#page-5-0) we have $x'(t) > 0$ for $t \geq T$. Hence, by [\(1.7\)](#page-1-4), [\(3.2\)](#page-6-3) and [\(1.12\)](#page-2-1), there is a positive constant *k* such that

$$
-p(t)x_0(t)x'_0(t)^{\alpha} < u(t) \leq k p(t)x_0(t)x'_0(t)^{\alpha} \tag{4.9}
$$

for all large *t*. We may suppose that [\(4.9\)](#page-10-1) is valid for $t \geq T$. Applying Lemma [3.2](#page-6-2) (ii) to the case $u = u(t)$ and $v = p(t)x_0(t)x'_0(t)^{\alpha}$, we find that there is a constant $L_1(k) > 0$ such that

$$
L_1(k)p(t)^{-1}x_0(t)^{-2}x'_0(t)^{-\alpha+1}u(t)^2
$$

\$\leq p(t)^{-1/\alpha}x_0(t)^{-(\alpha+1)/\alpha}F(u(t),p(t)x_0(t)x'_0(t)^{\alpha}), \quad t \geq T\$.

Hence, [\(4.3\)](#page-9-5) gives

$$
\int_T^{\infty} p(t)^{-1}x_0(t)^{-2}x'_0(t)^{-\alpha+1}u(t)^2dt < \infty.
$$

If $\lim_{t\to\infty} u(t) = \ell \neq 0$, then the above fact contradicts the condition [\(1.8\)](#page-1-3). Therefore we see that $\ell = 0$.

Since

$$
\lim_{t \to \infty} u(t) = \ell = 0,\tag{4.10}
$$

we find from [\(1.12\)](#page-2-1) that there are positive constants k_1 and k_2 such that

$$
|u(t)| \le k_1 < k_2 \le p(t)x_0(t)x_0'(t)^\alpha \tag{4.11}
$$

for all large *t*. We may suppose that [\(4.11\)](#page-11-0) holds for $t \geq T$. Then, applying Lemma [3.2](#page-6-2) (iii) to the case $u = u(t)$ and $v = p(t)x_0(t)x'_0(t)^{\alpha}$, we deduce that $F(u(t), p(t)x_0(t)x'_0(t)^{\alpha})$ is expressed as

$$
F(u(t), p(t)x_0(t)x'_0(t)^{\alpha}) = \frac{\alpha+1}{2\alpha^2} |p(t)x_0(t)x'_0(t)^{\alpha}|^{(1/\alpha)-1} u(t)^2 (1+R(t)) \tag{4.12}
$$

with

$$
|R(t)| \le \frac{|\alpha - 1|}{3\alpha} L(k_1, k_2) |u(t)| \tag{4.13}
$$

for $t \geq T$. Here, $L(k_1, k_2)$ is the constant appearing in Lemma [3.2](#page-6-2) (iii). Then, [\(4.12\)](#page-11-1) gives

$$
p(t)^{-1/\alpha} x_0(t)^{-(\alpha+1)/\alpha} F(u(t), p(t) x_0(t) x_0'(t)^{\alpha})
$$

=
$$
\frac{\alpha+1}{2\alpha^2} p(t)^{-1} x_0(t)^{-2} x_0'(t)^{-\alpha+1} u(t)^2 (1 + R(t)), \quad t \ge T.
$$
 (4.14)

By [\(4.10\)](#page-11-2) and [\(4.13\)](#page-11-3), we have $\lim_{t\to\infty} R(t) = 0$, and so

$$
R(t) \ge -\varepsilon \quad \text{for all large } t,\tag{4.15}
$$

where $\varepsilon \in (0,1)$ is the number in the statement of Theorem [1.6.](#page-3-0) Then, by [\(3.3\)](#page-6-5), [\(4.14\)](#page-11-4) and [\(4.15\)](#page-11-5), we find that

$$
u'(t) + Q(t) + (1 - \varepsilon) \frac{\alpha + 1}{2\alpha} P(t)^{-1} u(t)^2 \le 0 \quad \text{for all large } t.
$$

Therefore the function

$$
y(t) = (1 - \varepsilon) \frac{\alpha + 1}{2\alpha} u(t) \quad \text{with } 0 < \varepsilon < 1
$$

satisfies

$$
y'(t) + (1 - \varepsilon) \frac{\alpha + 1}{2\alpha} Q(t) + P(t)^{-1} y(t)^2 \le 0 \quad \text{for all large } t.
$$

Hence, Lemma [2.1](#page-5-2) of the case $\alpha = 1$ implies that the linear equation [\(1.14\)](#page-3-1) is nonoscillatory. This is a contradiction to the assumption that [\(1.14\)](#page-3-1) is oscillatory. Therefore, [\(4.3\)](#page-9-5) also does not occur. Consequently the equation [\(1.1\)](#page-0-1) is oscillatory. The proof of Theorem [1.6](#page-3-0) is complete. \Box

Proof of Corollary [1.7](#page-3-2)*.* Corollary [1.7](#page-3-2) is a simple combination of Theorem [1.6](#page-3-0) and Lemma [2.4](#page-6-6) (ii) with $\alpha = 1$. \Box

5 Proofs of the results (continued)

In this section we prove Theorem [1.8](#page-4-0) and Theorem [1.10.](#page-4-2) It is known that the half-linear Riemann–Weber differential equation [\(1.18\)](#page-3-4) has a nonoscillatory solution *x*(*t*) satisfying [\(1.19\)](#page-4-4) (see Elbert and Schneider [\[9,](#page-16-3) Corollary 1]). Put

$$
x_0(t) = t^{\alpha/(\alpha+1)} (\log_n t)^{1/(\alpha+1)}, \quad t \ge T,
$$
\n(5.1)

where *T* is taken sufficiently large such that *t* and Log_{*j*} *t* (*j* = 1, 2, . . . , *n*) are positive for *t* \geq *T*. It is trivial that $x = x_0(t)$ is a positive solution of the equation

$$
(\Phi_{\alpha}(x'))' - \frac{(\Phi_{\alpha}(x'_0(t)))'}{\Phi_{\alpha}(x_0(t))} \Phi_{\alpha}(x) = 0
$$

on $[T, \infty)$. We define the function $c_0(t)$ by

$$
c_0(t) = -\frac{\left(\Phi_\alpha(x_0'(t))\right)'}{\Phi_\alpha(x_0(t))} - \left(\frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^n \frac{1}{(\log_j t)^2}\right).
$$
 (5.2)

Then the function $x_0(t)$ is a positive solution of

$$
(\Phi_{\alpha}(x'))' + \left(\frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^{n} \frac{1}{(\log_j t)^2} + c_0(t)\right) \Phi_{\alpha}(x) = 0.
$$
 (5.3)

In the equations [\(1.1\)](#page-0-1) and [\(1.6\)](#page-1-2), let $p(t) \equiv 1$ and

$$
q(t) = \frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^{n} \frac{1}{(\log_j t)^2} + c(t)
$$
\n(5.4)

and

$$
q_0(t) = \frac{\alpha E(\alpha)}{t^{\alpha+1}} + \frac{\mu(\alpha)}{t^{\alpha+1}} \sum_{j=1}^n \frac{1}{(\log_j t)^2} + c_0(t). \tag{5.5}
$$

Then, the equations [\(1.1\)](#page-0-1) and [\(1.6\)](#page-1-2) become [\(1.17\)](#page-3-3) and [\(5.3\)](#page-12-0), respectively. The key idea of the proofs of Theorems [1.8](#page-4-0) and [1.10](#page-4-2) is to use the equation [\(5.3\)](#page-12-0), not the equation [\(1.18\)](#page-3-4).

From the calculation in [\[4\]](#page-16-6) we see that

$$
x'_{0}(t) = \frac{\alpha}{\alpha+1} t^{-1/(\alpha+1)} (\log_{n} t)^{1/(\alpha+1)} \left(1 + \frac{1}{\alpha} \sum_{j=1}^{n} \frac{1}{\log_{j} t}\right),
$$
 (5.6)

and

$$
(\Phi_{\alpha}(x'_{0}(t)))' = -t^{-(2\alpha+1)/(\alpha+1)} (\log_{n} t)^{\alpha/(\alpha+1)} \times \left(\alpha E(\alpha) + \mu(\alpha) \sum_{j=1}^{n} \frac{1}{(\log_{j} t)^{2}} + O\left(\frac{1}{(\log t)^{3}}\right) \right)
$$

as *t* $\rightarrow \infty$. Therefore, the function *c*₀(*t*) defined by [\(5.2\)](#page-12-1) satisfies

$$
c_0(t) = O\left(\frac{1}{t^{\alpha+1}(\log t)^3}\right) \quad (t \to \infty). \tag{5.7}
$$

By [\(5.7\)](#page-12-2) it is clear that

$$
\int_T^{\infty} c_0(s)ds
$$
 is convergent

and

$$
\lim_{t\to\infty}t^{\alpha}\int_t^{\infty}c_0(s)ds=0.
$$

Therefore, in the present case, we find that

$$
\int_T^{\infty} q_0(s)ds
$$
 is convergent

and

$$
\int_t^{\infty} q_0(s)ds = \frac{E(\alpha)}{t^{\alpha}} + \mu(\alpha) \sum_{j=1}^n \int_t^{\infty} \frac{1}{s^{\alpha+1}(\log_j s)^2} ds + \int_t^{\infty} c_0(s)ds.
$$

Then it is easy to see that

$$
\lim_{t\to\infty}t^{\alpha}\int_t^{\infty}q_0(s)ds=E(\alpha)>0.
$$

Consequently, the condition [\(1.9\)](#page-2-5) is satisfied.

By [\(5.1\)](#page-12-3) and [\(5.6\)](#page-12-4), the condition [\(1.7\)](#page-1-4) is satisfied. Furthermore it is easily checked that

$$
x_0(t)^{-2}x_0'(t)^{-\alpha+1} \sim \left(\frac{\alpha}{\alpha+1}\right)^{-\alpha+1}\frac{1}{t\log_nt} \quad (t\to\infty).
$$

Note here that

$$
\frac{d}{dt}\log_{n+1}t=\frac{1}{t\log_nt'}
$$

and so

$$
\int_T^t \frac{1}{s \log_n s} ds = \log_{n+1} t - \log_{n+1} T.
$$

This implies

$$
\int_{T}^{t} x_0(s)^{-2} x_0'(s)^{-\alpha+1} ds \sim \left(\frac{\alpha}{\alpha+1}\right)^{-\alpha+1} \log_{n+1} t \quad (t \to \infty),
$$
\n(5.8)

which yields [\(1.8\)](#page-1-3) with $p(t) \equiv 1$.

We have

$$
\int_T^t x_0(s)^{\alpha+1} [q(s) - q_0(s)] ds = \int_T^t s^{\alpha} (\log_n s) [c(s) - c_0(s)] ds.
$$

Došlý [\[4\]](#page-16-6) showed that

$$
\int_T^{\infty} \frac{\log_n s}{s(\log s)^3} ds < \infty
$$

and

$$
\lim_{t \to \infty} (\log_{n+1} t) \int_t^{\infty} \frac{\log_n s}{s (\log s)^3} ds = 0.
$$

Therefore we deduce from [\(5.7\)](#page-12-2) that

$$
\int_{T}^{\infty} s^{\alpha} (\text{Log}_n s) c_0(s) ds \quad \text{is convergent}
$$
\n(5.9)

and

$$
\lim_{t \to \infty} (\log_{n+1} t) \int_t^{\infty} s^{\alpha} (\log_n s) c_0(s) ds = 0.
$$
 (5.10)

We are now ready to prove Theorems [1.8](#page-4-0) and [1.10.](#page-4-2)

Proof of Theorem [1.8](#page-4-0)*.* We apply Theorem [1.3](#page-2-6) with $p(t) \equiv 1$ to the equations [\(1.17\)](#page-3-3) and [\(5.3\)](#page-12-0). Let *q*(*t*) and *q*₀(*t*) be the functions defined by [\(5.4\)](#page-12-5) and [\(5.5\)](#page-12-6), respectively. Since [\(1.8\)](#page-1-3) ($p(t) \equiv 1$) and [\(1.9\)](#page-2-5) are satisfied, the function $x_0(t)$ which is defined by [\(5.1\)](#page-12-3) is the principal solution of [\(5.3\)](#page-12-0). In fact, this can be derived from a direct application of Theorem [1.2](#page-2-0) with $p(t) \equiv 1$. For the case $0 < \alpha \le 1$, use the part (i), and for the case $\alpha \ge 1$ the part (iii). If [\(1.20\)](#page-4-5) is satisfied, then [\(5.9\)](#page-13-0) gives

$$
\int_T^{\infty} x_0(s)^{\alpha+1} \left[q(s) - q_0(s) \right] ds = \int_T^{\infty} s^{\alpha} (\log_n s) \left[c(s) - c_0(s) \right] ds = \infty.
$$

Therefore it follows from Theorem [1.3](#page-2-6) with $p(t) \equiv 1$ that if [\(1.20\)](#page-4-5) is satisfied, then the equation [\(1.17\)](#page-3-3) is oscillatory. The proof of Theorem [1.8](#page-4-0) is complete. \Box

Proof of Theorem [1.10](#page-4-2)*.* We apply Corollary [1.7](#page-3-2) with $p(t) \equiv 1$ to the equations [\(1.17\)](#page-3-3) and [\(5.3\)](#page-12-0). Let $q(t)$ and $q_0(t)$ be the functions defined by [\(5.4\)](#page-12-5) and [\(5.5\)](#page-12-6), respectively. We first show that if [\(1.21\)](#page-4-1) holds, then [\(1.5\)](#page-1-1) is satisfied. To see this, note that

$$
\frac{d}{dt} \text{Log}_n t = \frac{\text{Log}_n t}{t} \left(\sum_{j=1}^n \frac{1}{\text{Log}_j t} \right)
$$

and

$$
\int_{T}^{t} c(s)ds = \int_{T}^{t} \frac{1}{s^{\alpha} \log_{n} s} s^{\alpha} (\log_{n} s) c(s) ds
$$

\n
$$
= -\frac{1}{t^{\alpha} \log_{n} t} \int_{t}^{\infty} r^{\alpha} (\log_{n} r) c(r) dr + \frac{1}{T^{\alpha} \log_{n} T} \int_{T}^{\infty} r^{\alpha} (\log_{n} r) c(r) dr - \int_{T}^{t} \left[\frac{\alpha}{s^{\alpha+1} \log_{n} s} + \frac{1}{s^{\alpha+1} \log_{n} s} \left(\sum_{j=1}^{n} \frac{1}{\log_{j} s} \right) \right] \left(\int_{s}^{\infty} r^{\alpha} (\log_{n} r) c(r) dr \right) ds.
$$

Therefore we deduce that

$$
\lim_{t \to \infty} \int_T^t c(s) ds
$$
 exists and is finite

and

$$
\int_{t}^{\infty} c(s)ds = \frac{1}{t^{\alpha} \log_{n} t} \int_{t}^{\infty} r^{\alpha} (\log_{n} r) c(r) dr - \int_{t}^{\infty} \left[\frac{\alpha}{s^{\alpha+1} \log_{n} s} + \frac{1}{s^{\alpha+1} \log_{n} s} \left(\sum_{j=1}^{n} \frac{1}{\log_{j} s} \right) \right] \left(\int_{s}^{\infty} r^{\alpha} (\log_{n} r) c(r) dr \right) ds
$$

for $t \geq T$. Then it is easy to find that

$$
\lim_{t \to \infty} t^{\alpha} \int_{t}^{\infty} c(s) ds = 0.
$$

Since

$$
\int_t^{\infty} q(s)ds = \frac{E(\alpha)}{t^{\alpha}} + \mu(\alpha) \sum_{j=1}^n \int_t^{\infty} \frac{1}{s^{\alpha+1} (\log_j s)^2} ds + \int_t^{\infty} c(s)ds,
$$

we obtain

$$
\lim_{t \to \infty} t^{\alpha} \int_{t}^{\infty} q(s) ds = E(\alpha) \quad (>0).
$$

Thus we see that the condition [\(1.5\)](#page-1-1) is satisfied.

As mentioned before, the conditions [\(1.7\)](#page-1-4) and [\(1.8\)](#page-1-3) with $p(t) \equiv 1$ are satisfied. By [\(5.1\)](#page-12-3) and (5.6) , we have

$$
x_0(t)x'_0(t)^{\alpha} = \left(\frac{\alpha}{\alpha+1}\right)^{\alpha} (\log_n t) \left(1 + \frac{1}{\alpha} \sum_{j=1}^n \frac{1}{\log_j t}\right)^{\alpha},
$$

and so $\lim_{t\to\infty} x_0(t)x'_0(t)^{\alpha} = \infty$. Hence the condition [\(1.12\)](#page-2-1) with $p(t) \equiv 1$ is also satisfied. By the definition of $P(t)$ and $Q(t)$ and the properties [\(5.8\)](#page-13-1) and [\(5.10\)](#page-13-2), we have

$$
\left(\int_{T}^{t} \frac{1}{P(s)} ds\right) \left(\int_{t}^{\infty} Q(s) ds\right)
$$

= $\left(\int_{T}^{t} x_{0}(s)^{-2} x'_{0}(s)^{-\alpha+1} ds\right) \left(\int_{t}^{\infty} x_{0}(s)^{\alpha+1} [q(s) - q_{0}(s)] ds\right)$
= $\varepsilon_{1}(t) \left(\frac{\alpha}{\alpha+1}\right)^{-\alpha+1} (\log_{n+1} t) \left(\int_{t}^{\infty} s^{\alpha} (\log_{n} s) [c(s) - c_{0}(s)] ds\right)$
= $\varepsilon_{1}(t) \left(\frac{\alpha}{\alpha+1}\right)^{-\alpha+1} (\log_{n+1} t) \left(\int_{t}^{\infty} s^{\alpha} (\log_{n} s) c(s) ds\right) + \varepsilon_{2}(t),$

where $\varepsilon_1(t)$ and $\varepsilon_2(t)$ are functions such that

$$
\lim_{t \to \infty} \varepsilon_1(t) = 1 \quad \text{and} \quad \lim_{t \to \infty} \varepsilon_2(t) = 0,
$$

respectively. Then it is easy to see that [\(1.22\)](#page-4-6) implies [\(1.15\)](#page-3-6). Thus, by Corollary [1.7,](#page-3-2) we can conclude that if [\(1.22\)](#page-4-6) holds, then the equation [\(1.17\)](#page-3-3) is oscillatory. The proof of Theorem [1.10](#page-4-2) is complete. \Box

Finally we present an equation whose oscillation follows from Theorem [1.10](#page-4-2) and does not follow from Theorem 3.3 (ii) in [\[4\]](#page-16-6).

Example 5.1. Consider the equation [\(1.17\)](#page-3-3) of the case

$$
c(t) = \mu(\alpha) \frac{k + \sin(2k \log_{n+2} t) - 2k \cos(2k \log_{n+2} t)}{t^{\alpha+1} (\log_{n+1} t)^2},
$$
\n(5.11)

where *k* is a constant satisfying $k > 2$. In this case it can be shown without difficulty that the condition [\(1.21\)](#page-4-1) is satisfied and

$$
\int_t^{\infty} s^{\alpha} (\log_n s) c(s) ds = \mu(\alpha) \frac{k + \sin(2k \log_{n+2} t)}{\log_{n+1} t}.
$$

Therefore we have

$$
\liminf_{t\to\infty} (\log_{n+1} t) \int_t^\infty s^{\alpha} (\log_n s) c(s) ds = \mu(\alpha)(k-1) > \mu(\alpha).
$$

Hence, by Theorem [1.10,](#page-4-2) we can conclude that, for any $\alpha > 0$, the equation [\(1.17\)](#page-3-3) with [\(5.11\)](#page-15-0) is oscillatory.

Theorem 3.3 (ii) in [\[4\]](#page-16-6) requires the condition that there is a constant γ satisfying

$$
t^{\alpha+1}(\log t)^3 c(t) \ge \gamma > \frac{2(\alpha+1)(\alpha-1)}{3\alpha^2} \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}
$$

for all large *t*. If $\alpha \geq 1$, this condition leads to $c(t) > 0$ for all large *t*. There exists a sequence ${t_i}_{i=1}^{\infty}$ such that $\lim t_i = \infty$ $(i \to \infty)$ and

$$
k \log_{n+2} t_i = \pi i \quad \text{for all large } i.
$$

Then, for the function $c(t)$ given by [\(5.11\)](#page-15-0),

$$
c(t_i) = \mu(\alpha) \frac{-k}{t_i^{\alpha+1} (\log_{n+1} t_i)^2} < 0 \quad \text{for all large } i.
$$

Therefore, if $\alpha \geq 1$, then we cannot apply Theorem 3.3 (ii) in [\[4\]](#page-16-6) to the present case.

References

- [1] Z. Doš \tilde{L} O. Doš \tilde{L} ['], Principal solution of half-linear differential equation: limit and integral characterization, *Electron. J. Qual. Theory Differ. Equ.* **2008**, No. 7, 1–14. [MR2509168;](https://www.ams.org/mathscinet-getitem?mr=2509168) [Zbl 1211.34043](https://zbmath.org/?q=an:1211.34043)
- [2] O. Došlý, Perturbations of the half-linear Euler–Weber type differential equation, *J. Math. Anal. Appl.* **323**(2006), 426–440. <https://doi.org/10.1016/j.jmaa.2005.10.051>; [MR2262216;](https://www.ams.org/mathscinet-getitem?mr=2262216) [Zbl 1107.34030](https://zbmath.org/?q=an:1107.34030)
- [3] O. Došlý, A remark on the linearization technique in half-linear oscillation theory, *Opuscula Math.* **26**(2006), 305–315. [MR2272298;](https://www.ams.org/mathscinet-getitem?mr=2272298) [Zbl 1135.34314](https://zbmath.org/?q=an:1135.34314)
- [4] O. Došlý, Half-linear Euler differential equation and its perturbations, *Electron. J. Qual. Theory Differ. Equ.* **2016**, No. 10, 1–14. <https://doi.org/10.14232/ejqtde.2016.8.10>; [MR1012.34029;](https://www.ams.org/mathscinet-getitem?mr=1012.34029) [Zbl 1389.34106](https://zbmath.org/?q=an:1389.34106)
- [5] O. Doštý, Á. ELBERT, Integral characterization of the principal solution of half-linear second order differential equations, *Studia Sci. Math. Hungar.* **36**(2000), 455–469. [https:](https://doi.org/10.1556/sscmath.36.2000.3-4.16) [//doi.org/10.1556/sscmath.36.2000.3-4.16](https://doi.org/10.1556/sscmath.36.2000.3-4.16); [MR1798750;](https://www.ams.org/mathscinet-getitem?mr=1798750) [Zbl 1012.34029](https://zbmath.org/?q=an:1012.34029)
- [6] O. Došlý, S. Fišnarová, Half-linear oscillation criteria: Perturbation in term involving derivative, *Nonlinear Anal.* **73**(2010), 3756–3766. [https://doi.org/10.1016/j.na.2010.](https://doi.org/10.1016/j.na.2010.07.049) [07.049](https://doi.org/10.1016/j.na.2010.07.049); [MR2728552;](https://www.ams.org/mathscinet-getitem?mr=2728552) [Zbl 1207.34041](https://zbmath.org/?q=an:1207.34041)
- [7] O. Doštý, A. Lomtatidze, Oscillation and nonoscillation criteria for half-linear second order differential equations, *Hiroshima Math. J.* **36**(2006), 203–219. [MR2259737;](https://www.ams.org/mathscinet-getitem?mr=2259737) [Zbl 1123.34028](https://zbmath.org/?q=an:1123.34028)
- [8] O. Doš_Lý, P. ŘEHÁK, *Half-linear differential equations*, North-Holland Mathematics Studies, Vol. 202, Elsevier, Amsterdam, 2005. [MR2158903;](https://www.ams.org/mathscinet-getitem?mr=2158903) [Zbl 1090.34001](https://zbmath.org/?q=an:1090.34001)
- [9] Á. Elbert, A. Schneider, Perturbations of the half-linear Euler differential equation, *Results Math.* **37**(2000), 56–83. <https://doi.org/10.1007/BF03322512>; [MR1742294;](https://www.ams.org/mathscinet-getitem?mr=1742294) [Zbl 0958.34029](https://zbmath.org/?q=an:0958.34029)
- [10] S. Luey, H. Usami, Asymptotic forms of solutions of half-linear ordinary differential equations with integrable perturbations, *Hiroshima Math. J.* **53**(2023), 171–189. [https://](https://doi.org/10.32917/h2022005) doi.org/10.32917/h2022005; [MR4612154;](https://www.ams.org/mathscinet-getitem?mr=4612154) [Zbl 1528.34044](https://zbmath.org/?q=an:1528.34044)
- [11] J. D. Mirzov, On some analogs of Sturm's and Kneser's theorems for nonlinear systems, *J. Math. Anal. Appl.* **53**(1976), 418–425. [MR0402184;](https://www.ams.org/mathscinet-getitem?mr=0402184) [Zbl 0327.34027](https://zbmath.org/?q=an:0327.34027)
- [12] M. Naito, Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I, *Opuscula Math.* **41**(2021), 71–94. [https://doi.org/10.7494/](https://doi.org/10.7494/OpMath.2021.41.1.71) [OpMath.2021.41.1.71](https://doi.org/10.7494/OpMath.2021.41.1.71); [MR4302442;](https://www.ams.org/mathscinet-getitem?mr=4302442) [Zbl 1478.34064](https://zbmath.org/?q=an:1478.34064)
- [13] M. NAITO, Existence and asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations, *Opuscula Math.* **43**(2023), 221–246. [https://doi.org/10.](https://doi.org/10.7494/OpMath.2023.43.2.221) [7494/OpMath.2023.43.2.221](https://doi.org/10.7494/OpMath.2023.43.2.221); [MR4260839;](https://www.ams.org/mathscinet-getitem?mr=4260839) [Zbl 1523.34057](https://zbmath.org/?q=an:1523.34057)
- [14] M. NAITO, H. USAMI, On the existence and asymptotic behavior of solutions of halflinear ordinary differential equations, *J. Differential Equations* **318**(2022), 359–383. [https:](https://doi.org/10.1016/j.jde.2022.02.025) [//doi.org/10.1016/j.jde.2022.02.025](https://doi.org/10.1016/j.jde.2022.02.025); [MR4387287;](https://www.ams.org/mathscinet-getitem?mr=4387287) [Zbl 1497.34075](https://zbmath.org/?q=an:1497.34075)
- [15] P. ŘEHÁK, Nonlinear Poincaré–Perron theorem, Appl. Math. Lett. **121**(2021), Article ID 107425, 7 pp. <https://doi.org/10.1016/j.aml.2021.107425>; [MR4268643;](https://www.ams.org/mathscinet-getitem?mr=4268643) [Zbl 1487.34106](https://zbmath.org/?q=an:1487.34106)
- [16] P. ŘEHÁK, Half-linear differential equations: Regular variation, principal solutions, and asymptotic classes, *Electron. J. Qual. Theory Differ. Equ.* **2023**, No. 1, 1–28. [https://doi.](https://doi.org/10.14232/ejqtde.2023.1.1) [org/10.14232/ejqtde.2023.1.1](https://doi.org/10.14232/ejqtde.2023.1.1); [MR4541736;](https://www.ams.org/mathscinet-getitem?mr=4541736) [Zbl 7670559](https://zbmath.org/?q=an:7670559)