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order boundary value problem is established by using variational tools. Two of the
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1 Introduction

In this paper, we investigate the existence of at least one or two solutions for the boundary
value problem{

u(2n) + An−1u(2n−2) + · · ·+ A1u′′ + A0u + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(1.1)

where A0, A1, . . . , An−1 are some given real constants, f is a continuous function on Ω × R

and n ≥ 2.
The existence of solutions for fourth-order problems (n = 2), which describe the deflection

of an elastic beam with supported ends, has been extensively studied in the literature (see for
example [2–4, 7, 8, 11, 15, 16] and the literature cited therein).

We mention the paper [12], where (1.1) (case n = 2) was treated under the assumption
A2

1 > 4A0 by variational tools. The authors obtained existence and multiplicity results if the
potential F(x, s) =

∫ s
0 f (x, t)dt satisfies an asymptotic behaviour at zero and for some C > 0

and p > 2

F(x, s) ≥ C|s|p, ∀ x ∈ Ω, s ∈ R. (1.2)
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The case A2
1 = 4A0 was treated in [15].

The existence of solutions to sixth-order equations (n = 3) was investigated in [8] by using
Clark’s theorem provided the coefficients A0, A1, A2 satisfy some relations in the particular
case when f (x, s) = a(x)s3. Here a(x) is a continuous positive and even function.

In [13], using two Brézis–Nirenberg’s linking theorems, the existence of at least two or
three solutions was obtained, where F ≥ 0 has an asymptotic behaviour at zero and satisfies

F(x, s)
s2 → +∞, uniformly with respect to x as |s| → ∞. (1.3)

Note that condition (1.2) implies the weaker super-quadratic condition (1.3). Also in the
new paper [1] infinitely many solutions to equation (1.1) (case n = 3, Ω = (0, 1)) are ob-
tained in the case when the nonlinear term f has an oscillating behaviour and the following
restriction holds

max{A2k, A2k − A1k2, A2k − A1k2 + A0k3} < 1, (1.4)

where k = 1/π2.
For further results on sixth-order equations we refer the reader to [5, 9, 14, 16–18].
The existence results of this paper are obtained for a general 2n− order equation by vari-

ational methods and hold under different assumptions on the coefficients.
We impose here suitable conditions on the coefficients A0, . . . , An−1, allowing to define

several norms equivalent to the usual norm of the working space. One of the condition
we impose (relation (2.5)) represents a generalization to the higher-order case of condition
A2

1 > 4A0 which plays a role in the works [16] and [12].
We see that even we restrict ourselves to the case n = 3 our conditions imposed to the

coefficients are different from the condition (1.4) or from the results obtained in the above
mentioned papers.

Moreover, we note that our first two main results are stated without any asymptotic be-
haviour at infinity. More precisely, we prove by using the Brézis–Nirenberg’s linking theorem
that an existence result holds without any behaviour at infinity if F ≥ 0 (Theorem 3.1). By us-
ing Ekeland’s variational principle we show (Theorem 3.4) that a result holds if F may change
sign and if no asymptotic behaviour at infinity is required. The last existence result uses the
Mountain Pass theorem and is stated when F may change sign and f satisfies an asymptotic
behaviour at both zero and infinity ( f behavies at ±∞ as |s|p, p > 1).

2 Auxiliary results and variational settings

We consider the Hilbert space

H(Ω) = {u ∈ Hn(Ω) | u = u′′ = · · · = u(2n−4) = 0 on ∂Ω}

endowed with the standard inner product

(u, v)Hn(Ω) =
∫

Ω

(
uv + u′v′ + u′′v′′ + · · ·+ u(n)v(n)

)
dx

and standard norm
∥u∥Hn(Ω) = (u, u)

1
2
Hn(Ω)

.

For the sake of simplicity we consider n = 4k, k = 1, 2, 3, . . . , unless otherwise stated.
We recall the meaning of a weak solution to (1.1).
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Definition 2.1. A weak solution of (1.1) is a function u ∈ H(Ω) such that∫
Ω

(
u(n)v(n) − An−1u(n−1)v(n−1) + · · · − A1u′v′ + A0uv + f (x, u)v

)
dx = 0, ∀ v ∈ H(Ω).

A classical solution of (1.1) is a function u ∈ C2n(Ω) that satisfies (1.1).

We note that since f is a continuous function on Ω × R, it follows that a weak solution of
(1.1) belongs to C2n(Ω) (to get the result imitate the proof in [17]).

We also recall that the set of functions{
sin

mπx
L

, m ∈ N, m ≥ 1
}

is a complete orthogonal basis in H(Ω).
The symbol P(ξ) = ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0 of the differential operator

L(u) = u(2n) + An−1u(2n−2) + · · ·+ A2u(4) + A1u′′ + A0u plays an important role in the sequel.
Problem (1.1) has a variational structure and weak solutions in the space H(Ω) can be

found as critical points of the functional

J : H(Ω) → R

J(u) =
1
2

∫
Ω

((
u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

)
dx +

∫
Ω

F(x, u)dx,

which is Fréchet differentiable and its Fréchet derivative is given by

⟨J′(u), v⟩ =
∫

Ω

(
u(n)v(n) − An−1u(n−1)v(n−1) + · · · − A1u′v′ + A0uv + f (x, u)v

)
dx,

for all v ∈ H(Ω).
Throughout the paper C denotes a universal positive constant depending on the indicated

quantities, unless otherwise specified.
The next lemmas are fundamental tools in proving our existence result.
First we point out some Poincaré-type inequalities.

Lemma 2.2 ([10]). The following relations hold true for any u ∈ H(Ω).∫
Ω

(
u(k))2dx ≤

(
L
π

)2 ∫
Ω

(
u(k+1))2dx, k = 0, 1, 2, . . . , n − 1. (2.1)

∫
Ω

u2dx ≤
(

L
π

)2k ∫
Ω

(
u(k))2dx, k = 1, 2, . . . , n. (2.2)

In particular, ∫
Ω

u2dx ≤
(

L
π

)2n ∫
Ω

(
u(n))2dx. (2.3)

An immediate consequence of Lemma 2.2 is the inequality

C(L, n)∥u∥Hn(Ω) ≤
∫

Ω

(
u(n))2dx ≤ ∥u∥Hn(Ω), (2.4)

which shows that the scalar product

(u, v)H(Ω) =
∫

Ω
u(n)v(n)dx

induces a norm equivalent (denoted ∥ · ∥H(Ω)) to the norm ∥ · ∥Hn(Ω) in the space H(Ω).

The next lemma is an extension of Lemma 8, [16] and is proved by different means.
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Lemma 2.3. Let u ∈ H(Ω).

a). Suppose that A0, A2, . . . , An−4 ≥ 0, A1, A3, . . . , An−3 ≤ 0, An−2, An−1 > 0 and

A2
n−1 < 4An−2. (2.5)

Then there exists a constant k such that∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx ≥ k∥u∥2

Hn(Ω). (2.6)

A similar estimate holds for A0 < 0 but under the restriction

A2
n−1 < 4An−2A∗, (2.7)

where A∗ = 1 + A0
( L

π

)2n
> 0.

b). The same estimate (2.6) holds if for some index j = 2, 4, . . . , n − 2

A2
n−j−1

An−j
< 4An−j−2, (2.8)

where

A1, A3, . . . , An−j−3, An−j+1, . . . , An−1 < 0,

A0, A2, . . . , An−j−2, An−j+2 . . . , An−2 ≥ 0, An−j−1, An−j > 0.

c). Similarly, (2.6) holds if for some index j = 1, 3, . . . , n − 1 (2.8) is fulfilled, where

A1, A3, . . . , An−j−3, An−j+1, . . . , An−1 ≤ 0,

A0, A2, . . . , An−j−2, An−j+2 . . . , An−2 ≥ 0, An−j−1 < 0, An−j > 0.

Remark 2.4.

1. Of course if An−1 ≤ 0, An−2 ≥ 0, . . . , A1 ≤ 0, A0 ≥ 0, then Lemma 2.3 is always true, i.e.,
there is nothing to prove.

2. We easily see that if n = 2 (Case a).) then we obtain exactly Lemma 8, [16] for bounded
domains, i.e., our result is a direct extension to the higher-order case.

3. Note that Lemma 2.5 and Lemma 2.6 can also be seen as extensions of Lemma 8, [16]
and hold for bounded domains Ω as well when Ω = R.

Proof. a). We see that for any real α∫
Ω

(
u(n) + αu(n−1)

)2
dx =

∫
Ω

(
(u(n))2 − 2α(u(n−1))2 + α2(u(n−2))2

)
dx.

It follows that for any α the quantity

Qα =
∫

Ω

(
(u(n))2 − 2α(u(n−1))2 + α2(u(n−2))2

)
dx

is positive.
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For arbitrary ε > 0 and by the assumptions∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx

≥
∫

Ω

[
(u(n))2 − An−1(u(n−1))2 + An−2(u(n−2))2

]
dx

=

{
ε
∫

Ω

[
(u(n))2 + (u(n−1))2 + (u(n−2))2

]
dx

+ (1 − ε)
∫

Ω

[
(u(n))2 − An−1 + ε

1 − ε
(u(n−1))2 +

1
4

(
An−1 + ε

1 − ε

)2

(u(n−1))2

]
dx

+

[
An−2 − ε − 1

4

(
An−1 + ε

)2

1 − ε

] ∫
Ω
(u(n−2))2dx

}

≥ ε
∫

Ω
(u(n))2dx + (1 − ε)Q An−1+ε

1−ε

+

[
An−2 − ε − 1

4

(
An−1 + ε

)2

1 − ε

] ∫
Ω
(u(n−2))2dx.

Choosing ε sufficiently small, using that Q An−1+ε

1−ε

≥ 0, (2.5) and the equivalence of norms

∥ · ∥Hn(Ω) and ∥ · ∥H(Ω) we get the result.
b). and c). Follows from case a).

Lemma 2.5. Let u ∈ H(Ω) and A0 > 1.
Suppose that for an index i and j,

A2
i < −4Aj,

A2
i

−4Aj
≤ A0 − 1, (2.9)

where i = 2, 3, . . . , n
2 , Ai ̸= Aj, 1 ≤ j ≤ n − 1, Aj < 0, Ai < 0 if i is even and Ai > 0 if i is odd.

Then there exist the constants ki,j > 0 such that∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx ≥ ki,j∥u∥2

Hn(Ω). (2.10)

Proof. a). For the sake of simplicity we consider j = 1 and i = 2, i.e.,

A1, A2 < 0, A4, . . . , An−2 ≥ 0, A3, . . . , An−1 ≤ 0

and
A2

2
−4A1

≤ A0 − 1, A2
2 < −4A1.

We are going to prove the required inequality for u ∈ Hn(R) by using the Fourier trans-
form.

Taking in particular u ∈ H(Ω) ∩ Hn(R) we get the inequalities for bounded domains Ω.

Let û(ξ) be the Fourier transform of u(x) ∈ Hn(R).
First observe that by Parseval’s identity we get∫

R

((
u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

)
dx

=
∫

R

(
ξ2n − An−1ξ2n−2 + · · · − A1ξ2 + A0

)
∥û(ξ)∥2dξ. (2.11)
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By using elementary inequalities we get for all ξ ∈ R

A2ξ4 ≤ A2
2

−4A1
ξ6 + (−A1)ξ

2 ≤ A2
2

−4A1
ξ2n + (−A1)ξ

2 +
A2

2
−4A1

≤ A2
2

−4A1
ξ2n + (−A1)ξ

2 + A0 − 1

≤ A2
2

−4A1
ξ2n − An−1ξ2n−2 + · · · − A3ξ6 + (−A1)ξ

2 + A0 − 1.

Hence

ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0

≥
(

1 − A2
2

−4A1

)
ξ2n + 1 ≥

(
1 − A2

2
−4A1

)(
ξ2n + 1

)
. (2.12)

It can be easily checked that ∀ ξ ∈ R

ξ2n + 1 ≥ 1
n

(
1 + ξ2 + · · ·+ ξ2n

)
. (2.13)

From (2.12) and (2.13) we get

ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0 ≥ 1
n

(
1 − A2

2
−4A1

)(
1 + ξ2 + · · ·+ ξ2n

)
. (2.14)

Now from (2.11) and (2.14) we obtain∫
R

((
u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

)
dx

≥ 1
n

(
1 − A2

2
−4A1

) ∫
R

(
1 + ξ2 + · · ·+ ξ2n

)
∥û(ξ)∥2dξ

=
1
n

(
1 − A2

2
−4A1

) ∫
R

(
u2 + (u′)2 + · · ·+

(
u(2n))2

)
dx

= k2,1∥u∥2
Hn(R),

which is the desired result.

Lemma 2.6. Let u ∈ H(Ω) and A0 > 1.
Suppose that for an index i = 1, 3, . . . , (n/2) − 1, Ai > 0 and for an index j = 2, 4, . . . , n − 2,

Aj > 0 the following inequality be fulfilled

A2
i < 4Aj,

A2
i

4Aj
+ Aj ≤ A0 − 1, (2.15)

where the rest of coefficients

A1, A3, . . . , Ai−2, Ai+2, . . . , An−1 ≤ 0

and
A2, A4, . . . , Aj−2, Aj+2, . . . , An−2 ≥ 0.

Then there exist the constants ki,j > 0 such that∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx ≥ ki,j∥u∥2

Hn(Ω). (2.16)
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The proof is similar to the proof of Lemma 2.5 and hence is omitted.

Lemma 2.7. Let u ∈ H(Ω).
Suppose that A0, A2, . . . , An−2 ≥ 0, A1, A3, . . . , An−1 ≥ 0, and

1 − An−1

(
L
π

)2

− An−3

(
L
π

)6

− · · · − A1

(
L
π

)2n−2

> 0. (2.17)

Then there exists a constant k1 > 0 such that∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx ≥ k1∥u∥2

Hn(Ω). (2.18)

A similar result holds if A0, A2, . . . , An−2 < 0 and A1, A3, . . . , An−1 ≥ 0 under the assumption

1 − An−1

(
L
π

)2

+ An−2

(
L
π

)4

− · · · − A1

(
L
π

)2n−2

+ A0

(
L
π

)2n

> 0. (2.19)

The next four lemmas gives conditions on parameters Ai, i = 0, 1, . . . , n − 1 when the
functional J is bounded below and satisfies the Palais–Smale condition. We recall here what
means that J satisfies the Palais–Smale condition.

Definition 2.8. Let X be a Banach space and J ∈ C1(X, R). We say that J satisfies a Palais–
Smale condition if any sequence {um} in X for which J(um) is bounded and J′(um) → 0 as
m → ∞, has a convergent subsequence.

Lemma 2.9. Let u ∈ H(Ω) and let α > 0 be a constant. Suppose that F ≥ 0, A0, A2, . . . , An−4 ≥
0, A1, A3, . . . , An−3 ≤ 0, An−2, An−1 > 0 and

α + 1
α

A2
n−1 < 4An−2. (2.20)

Then J is bounded below and satisfies the Palais–Smale condition.
A similar statement holds for A0 < 0 but under the restriction

α + 1
α

A2
n−1 < 4An−2A∗, (2.21)

where A∗ = 1 + α+1
α A0

( L
π

)2n
> 0.

The same conclusion holds if we are under the hypotheses of the case b). or case c). of Lemma 2.3.

Proof. We observe that for any α > 0 we can write J(u) as a sum of

J(u) =
1
2

1
α + 1

∫
Ω

(
u(n))2dx +

α

α + 1
J1(u),

where

J1(u) =
1
2

∫
Ω

[
(u(n))2 − α + 1

α
An−1(u(n−1))2 + · · ·+ α + 1

α
A0u2 + 2

α + 1
α

F
]

dx.

Since (2.20) holds we can use Lemma 2.3 and the positivity of F to get that J1(u) is bounded
below which implies that J(u) is bounded below.

We now show that J(u) satisfies the Palais–Smale condition.
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Suppose that {um} is a Palais–Smale sequence, i.e., there exists a constant C > 0 such that

|J(um)| ≤ C and J′(um) → 0 as m → ∞.

Since J1(u) is bounded below we get that there exists a constant C1 > 0 such that

C >
1
2

1
α + 1

∫
Ω

(
u(n)

m
)2dx − C1,

which implies that {um} is a bounded sequence in H(Ω).
Since

J(u) =
1
2
(u, u)H(Ω) −

1
2

∫
Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx +

∫
Ω

Fdx,

we see that
J′(u) = u + K(u),

where
K : H(Ω) → H(Ω)

is defined by

⟨K(u), v⟩ = −
∫

Ω

[
An−1u(n−1)v(n−1) + · · ·+ A1u′v′ − A0uv − f (x, u)v

]
dx.

Using the fact that the Sobolev imbedding H(Ω) ↪→ Cn−1(Ω) is compact we get that K is a
complete continuous operator. Since J′(um) → 0 as m → ∞ it follows that

um = J′(um)− K(um)

is a convergent sequence and hence J(u) satisfies the Palais–Smale condition.

Using the same techniques we can prove

Lemma 2.10. Let u ∈ H(Ω), A0 > 1 and let α > 0 be a constant.
Suppose that for an index i and j,

α + 1
α

A2
i < −4Aj,

A2
i

−4Aj
≤ A0 −

α

α + 1
, (2.22)

where i = 2, 3, . . . , n
2 , Ai ̸= Aj, 1 ≤ j ≤ n − 1, Aj < 0, Ai < 0 if i is even and Ai > 0 if i is odd.

Then J is bounded below and satisfies the Palais–Smale condition.

Lemma 2.11. Let u ∈ H(Ω), A0 > 1 and let α > 0 be a constant.
Suppose that for an index i = 1, 3, . . . , (n/2) − 1, Ai > 0 and for an index j = 2, 4, . . . ,

n − 2, Aj > 0 the following inequality be fulfilled

α + 1
α

A2
i < 4Aj,

A2
i

4Aj
+ Aj ≤ A0 −

α

α + 1
, (2.23)

where the rest of coefficients

A1, A3, . . . , Ai−2, Ai+2, . . . , An−1 ≤ 0,

and
A2, A4, . . . , Aj−2, Aj+2, . . . , An−2 ≥ 0.

Then J is bounded below and satisfies the Palais–Smale condition.
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Lemma 2.12. Let u ∈ H(Ω) and let α > 0 be a constant.
Suppose that A0, A2, . . . , An−2 ≥ 0, A1, A3, . . . , An−1 ≥ 0, and

1 − α + 1
α

[
An−1

(
L
π

)2

+ An−3

(
L
π

)6

+ · · ·+ A1

(
L
π

)2n−2
]
> 0. (2.24)

Then J is bounded below and satisfies the Palais–Smale condition. A similar result holds if A0, A2,
. . . , An−2 < 0 and A1, A3, . . . , An−1 ≥ 0 under the assumption

1 − α + 1
α

[
An−1

(
L
π

)2

− An−2

(
L
π

)4

− · · · − A1

(
L
π

)2n−2

− A0

(
L
π

)2n
]
> 0. (2.25)

The main tool in our approach is the Brézis–Nirenberg’s linking theorem [6].

Theorem 2.13. Suppose that J ∈ C1(H, R) satisfies the Palais–Smale condition and has a local linking
at 0. Assume that J is bounded below and infH J < 0. Then J has at least two nontrivial critical points.

For the sake of completeness we recall the definition of local linking.
Let the Banach space H has a direct sum decomposition H = X ⊕ Y, where X is finite

dimensional.

Definition 2.14. The functional J is said to have a local linking at 0 if for some ρ > 0,

J(x) ≤ 0, ∀ x ∈ X, ∥x∥ ≤ ρ,

and
J(y) ≥ 0, ∀ y ∈ Y, ∥y∥ ≤ ρ.

3 Main results

Our existence results read.

Theorem 3.1. Let the function F ≥ 0, ∀ x ∈ Ω, s ∈ R satisfy

F(x, s) ≤ K|s|p, p > 2, ∀ x ∈ Ω, s ∈ R, s small, (3.1)

where K > 0 is a constant. Suppose that we are under hypotheses of either Lemma 2.9, Lemma 2.10,
Lemma 2.11 or Lemma 2.12. If in addition there exists a natural number m ̸= 0 such that

P
(

mπ

L

)
< 0, (3.2)

then the boundary value problem (1.1) has at least two nontrivial solutions.

Proof. The proof uses the Brézis–Nirenberg’s linking theorem (Theorem 2.13). Hence we have
to show that J satisfies the condition imposed in Theorem 2.13.

Since we are under the hypotheses of either Lemma 2.9, Lemma 2.10, Lemma 2.11 or
Lemma 2.12 it follows that J is bounded below and satisfies the Palais–Smale condition.

We now follow the proof of Lemma 8, [13] and show that infH(Ω) J < 0.
We see that P

(mπ
L

)
→ ∞ and since (3.2) holds we get that there exists a finite set of natural

numbers {m1, m2, . . . , mk} such that P
(miπ

L

)
< 0, i = 1, 2, . . . , k.



10 C.-P. Danet

Introducing the finite dimensional space

X = span
{

sin
m1πx

L
, . . . , sin

mkπx
L

}
we see that any φ ∈ X can be written

φ(x) = c1 sin
m1πx

L
+ · · ·+ ck sin

mkπx
L

and its norm in L2(Ω) is given by

∥φ∥2
X = c2

1 + · · ·+ c2
k = ρ2,

where c1, . . . , ck are real constants.

By (3.1) and Hölder’s inequality we get for sufficiently small ρ > 0∫
Ω

F(x, φ(x))dx ≤ K
∫

Ω
|φ(x)|pdx

≤ K
∫

Ω

[(
c2

1 + · · ·+ c2
k

) 1
2
(

sin
m1πx

L
+ · · ·+ sin

mkπx
L

) 1
2
]p

≤ C(K, k, p, L)
(

c2
1 + · · ·+ c2

k

) p
2
= C(K, k, p, L)ρp.

Hence

J(φ) ≤ L
4

k

∑
i=1

P
(

miπ

L

)
c2

i + C(K, k, p, L)ρp

≤ L
4

αρ2 + C(K, k, p, L)ρp = ρ2
(

L
4

α + C(K, k, p, L)ρp−2
)
< 0,

where α = max
{

P
(miπ

L

)
, i = 1, 2, . . . , k

}
< 0 by hypothesis.

We now show that J has a local linking at 0.
By the above estimation, we see that for sufficiently small ρ

J(u) ≤ 0, ∀ u ∈ X, ∥u∥ ≤ ρ.

Also since for any u ∈ Y = X⊥ (bear in mind that P
(mk+1π

L

)
≥ 0)

J(u) ≥ 1
2

P
(

mk+1π

L

)
∥u∥2

L2(Ω) +
∫

Ω
F(x, u)dx ≥ 0,

we get that J has a local linking at 0 and the proof follows.

Immediate consequences of Theorem 3.1 are the following.

Corollary 3.2. Suppose that P(0) > 0 and that P takes negative values. The problem (1.1) has at least
two nontrivial solutions in Ω = (0, L) provided the following relation holds true

mπ

ξ2
< L <

mπ

ξ1
for some natural number m ̸= 0. (3.3)

Here 0 < ξ1 < ξ2 are the first (the smallest) two positive roots of P. Note that P may have other
roots.
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Corollary 3.3. Suppose that P(0) < 0 and let ξ1 > 0 be the smallest root of P (P may have other
roots). The problem (1.1) has at least two nontrivial solutions in Ω = (0, L) provided the following
relation holds true

L >
mπ

ξ1
for some natural number m ̸= 0. (3.4)

We note that the uniqueness results presented in [12, 13] as well as our Theorem 3.1 are
stated under the restriction F ≥ 0 and

lim
s→0

F(s)
s2 = 0. (3.5)

The next result is stated when F may change sign and (3.5) is weakened.

Theorem 3.4. Let the function F satisfy

F(x, s) ≥ −K1|s|p − K2, ∀ x ∈ Ω, s ∈ R, (3.6)

where 0 < p < 2, and K1, K2 > 0.
Suppose that An−1 ≤ 0, An−2 ≥ 0, . . . , A1 ≤ 0, A0 ≥ 0 holds or we are under hypotheses of either

Lemma 2.3, Lemma 2.5, Lemma 2.6 or Lemma 2.7. If in addition one of the following relation holds

lim
s→0+

f (x, s)
sα

= q(x) uniformly in Ω, (3.7)

where q(x) ≤ 0, ∥q∥L∞(Ω) > 0, 0 < α < 1

lim
s→0

F(x, s)
s2 = β(x) ∈ L1(Ω), uniformly in Ω, (3.8)

where ∫
Ω

β(x) sin2 πx
L

dx +
L
4

P
(

π

L

)
< 0, (3.9)

then the boundary value problem (1.1) has at least one nontrivial solution.

Proof. We choose ρ > 0 arbitrary but fixed and denote by

Bρ = {u ∈ H(Ω) | ∥u∥H(Ω) < ρ}.

We first note that one of the relations (3.7) or (3.8) assures that

µ = inf
Bρ

J(u) < 0.

Indeed, suppose that (3.7) holds.
We can choose the positive function φ(x) = sin πx

L ∈ H(Ω) such that∫
Ω

q(x)φα+1(x)dx < 0.

Hence

lim
s→0+

J(sφ)

sα+1 =
1
2

lim
s→0+

s1−α
∫

Ω

(
(φ(n))2 − An−1(φ(n−1))2 + · · ·+ A0φ2

)
dx

+ lim
s→0+

∫
Ω

F(x, sφ)

sα+1 dx

=
∫

Ω
lim

s→0+

F(x, sφ)

sα+1 dx =
∫

Ω
lim

s→0+

f (x, sφ)φ

(α + 1)sα
dx

=
1

α + 1

∫
Ω

q(x)φα+1(x)dx < 0.
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Similarly if (3.8) holds we see that

lim
s→0

J(sφ)

s2 =
L
4

P
(

π

L

)
+

∫
Ω

β(x) sin2 πx
L

dx < 0.

By relation (3.6), Cauchy’s inequality with ε and (2.3)∫
Ω

F(x, u)dx ≥ −ε
∫

Ω
u2dx −

∫
Ω

(
C(p, ε)K

2
2−p
1 + K2

)
dx (3.10)

≥ −ε

(
L
π

)2n

∥u∥2
H(Ω) − C(p, ε, K1, K2, L).

Hence if we are under hypotheses of either Lemma 2.3, Lemma 2.5, Lemma 2.6 or Lemma
2.7 we can combine (3.10) with one of relations (2.6), (2.10), (2.16) or (2.18) to get (by choosing
ε sufficiently small) that J(u) is bounded below on Bρ by a negative constant.

According to the Remark, inequalities of type (2.6) are always true if An−1 ≤ 0, An−2 ≥
0, . . . , A1 ≤ 0, A0 ≥ 0 and hence again we obtain that J(u) is bounded below.

From Ekeland’s variational principle it follows that there exists a minimizing sequence
{um} ⊂ Bρ such that

J(um) → µ and J′(um) → 0, as m → ∞.

Since {um} is bounded we can extract (by using the Sobolev imbedding) a subsequence still
denoted {um} such that

um ⇀ u0 weakly in H(Ω),

um → u0 strongly in Cn−1(Ω).

Arguing as in the proof Lemma 2.9 we get that {um} converges strongly to u0 in H(Ω).
As a consequence there exists u0 ∈ H(Ω) such that J′(u0) = 0, J(u0) < 0 i.e., problem (1.1)

has at least a nontrivial solution.

The last existence result shows that if we impose some asymptotic assumptions to f we
can allow p > 2 in (3.6). The proof uses the Mountain Pass theorem and the following two
lemmas.

The first lemma shows when J(u) has a mountain pass structure

Lemma 3.5. Suppose that we are under one of the assumptions of Lemma 2.3, Lemma 2.5 or Lemma
2.6. Let F satisfy

F(x, s) ≤ C|s|t, ∀ (x, s) ∈ Ω × R, (3.11)

where C > 0, t > 2 and relation (3.7) holds.
Then

1. there exist two positive constants ρ and η such that

J(u)|∥u∥=ρ
≥ η, (3.12)

2. there exists e ∈ H(Ω) satisfying ∥u∥ > ρ and J(e) < 0.
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Here

∥u∥2 =
∫

Ω

[
(u(n))2 − An−1(u(n−1))2 + · · · − A1(u′)2 + A0u2

]
dx

is a norm since we work under the assumptions of Lemma 2.3, Lemma 2.5 or Lemma 2.6.
We also note that J(u) becomes

J(u) =
1
2
∥u∥2 +

∫
Ω

F(x, u)dx.

Proof. For a proof see [10].

We can now apply the Mountain Pass theorem in H(Ω) to find a Cerami type sequence,
i.e.,

there exists {um} ⊂ H(Ω) such that J(um) → λ and ∥J′(um)∥H∗(Ω) → 0. (3.13)

The next lemma gives the boundedness of the sequence {um}.

Lemma 3.6. Suppose that we are under the hypotheses of Lemma 3.5. If in addition there exist the
constants θ ∈ (0, 2), K1 ∈ R, K2 > 0 such that

f (x, s)s ≥ K1|s|θ − K2, ∀ x ∈ Ω, |s| > M, (3.14)

for some M > 0, then the sequence {um} defined by (3.13) is bounded in H(Ω).

Proof. We argue by contradiction and suppose that ∥um∥ → ∞. Let wm = um
∥um∥ . Obviously

{wm} is a bounded sequence and we can extract a subsequence, still denoted {wm}, such that

wm → w strongly in Cn−1(Ω).

For each fixed m we define

Ω1
m = {x ∈ Ω | um(x) ≤ M} and Ω2

m = {x ∈ Ω | um(x) > M}.

By the continuity of f there exists a constant C1 > 0 such that∫
Ω1

m

f (x, um)umdx ≥ −C1. (3.15)

Since
⟨J′(um), um⟩ = ∥um∥2 +

∫
Ω

f (x, um)umdx,

we get by combining (3.14) and (3.15) that

⟨J′(um), um⟩ ≥ ∥umq|2 − C1 −
∫

Ω2
m

(
K1|um|θ − K2

)
dx

≥ ∥um∥2 − C1 − |K1|
∫

Ω2
m

|um|θdx − K2 meas(Ω). (3.16)

Using (3.16) and the fact that ⟨J′(um), um⟩ → 0, as m → ∞ it follows that

∞ = lim
m→∞

∥um∥2

∥um∥θ
≤ lim

m→∞

(
⟨J′(um), um⟩

∥um∥θ
+ |K1|

∫
Ω
|wm|θdx +

C1 + K2 meas(Ω)

∥um∥θ

)
= |K1|

∫
Ω
|w|θdx < ∞,

which is a contradiction.
Hence we conclude that the sequence {um} is bounded.
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The last existence result reads

Theorem 3.7. Suppose that we are under one of the assumptions of Lemma 2.3, Lemma 2.5 or Lemma
2.6 and that relation (3.7) holds. Let p, q, r > 1 be such that p ≥ σ = max{q, r} and L1, L2, L3 ∈
L∞(Ω). If in addition

lim
|s|→0

f (x, s)
|s|p = L1(x) (3.17)

and

lim
s→∞

f (x, s)
sq = L2(x) > 0, lim

s→−∞

f (x, s)
|s|r = L3(x) < 0, (3.18)

uniformly in Ω, then the boundary value problem (1.1) has at least a nontrivial solution.

Proof. Combining relations (3.17) and (3.18) we get that there exists a constant C > 0 such that
for sufficiently large M

−s f (x, s) ≤ C|s|σ+1, ∀ x ∈ Ω, |s| > M. (3.19)

Integrating (3.19) one has

−F(x, s) = −
∫ 1

0
f (x, us)sdu ≤ C

σ + 1
|s|σ+1, ∀ x ∈ Ω, |s| > M.

We can now apply Lemma 3.5 to get a sequence {um} that satisfies (3.13).
On the other hand, in view of (3.18) we see that (3.14) is satisfied and hence {um} is

bounded. As a consequence um → u0 in Cn−1(Ω) and the proof follows.

Finally, we give some examples as an application of our results.

Example 1. Let F satisfy (3.1) and suppose that (3.3) holds with m = 1. Then the boundary
value problem {

u(2n) + Au(4) + Bu′′ + Cu + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(3.20)

has at least two nontrivial solutions in H(Ω). Here A < 0, B = 0, C > 0, (2.25) holds and

(
−2A

n

) n(n−2)
4

+ A
(
−2A

n

) n−2
2

+ C < 0. (3.21)

In particular, the result holds if n = 4, A = −2, 0 < C < 1, L = 2.
The proof follows from Corollary 3.2. Since P(ξ) = ξ2n + Aξ4 + C we study the function

φ(t) = t
n
2 + At + C. We can check that φ attains its minimum at t0 = (−2A/n)

n−2
2 . Imposing

φ(t0) < 0, i.e., (3.21) we see that P has (at least) two positive roots.

Consider n = 3. Then P becomes P(ξ) = ξ6 − Aξ4 + Bξ2 − C. If

A > 0, B < 0, 0 > C > γ =
1
27

[
9AB − 2A3 − 2

(
A2 − 3B

) 3
2
]

,

then P has precisely two positive roots 0 < ξ1 < ξ2. As a consequence (3.20) has at least two
nontrivial solutions in H(Ω) if (3.3) holds with m = 1.
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The reader is referred to Appendix A, [13] where the authors give detailed conditions
on parameters A, B, C and L which guarantee the existence of at least one or two positive
solutions of P(ξ) = ξ6 − Aξ4 + Bξ2 − C.

Example 2. Let F satisfy (3.1) and suppose that (3.4) holds (here ξ1 is the unique solution of
P(ξ) = 0). Consider the boundary value problem (3.20), where C < 0. Suppose that one of
the following relations holds true

A, B ≥ 0 and (2.25) (3.22)

A > 0, B < 0 and (2.25) (3.23)

A < 0, B > 0, (3.4) and n
(

−2A
n(n − 1)

) n−1
n−2

+ 2A
(

−2A
n(n − 1)

) 1
n−2

+ B > 0. (3.24)

Then the boundary value problem (3.20) has at least two nontrivial solutions in Ω.
The proof follows from Corollary 3.3 by using the same techniques as in Example 1.

Example 3. In as similar way we can conclude that if F satisfies (3.1) and that (3.4) holds (here
ξ1 is the unique solution of P(ξ) = 0), then the problem{

u(2n) + Au(2n−2) + Bu(2n−4) + Cu + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(3.25)

has at least two nontrivial solutions in Ω. Here A, B > 0, C < 0 and we are under the
assumptions of Lemma 2.9.

Example 4. Arguing as before, if A, B > 0, A2 > 4B, F satisfies (3.1) and if (3.3) holds, it follows
that the problem {

u(6) + Au(4) + Bu′′ + f (x, u) = 0 in Ω = (0, L)

u = u′′ = u(4) = 0 on ∂Ω,
(3.26)

has at least two nontrivial solutions in Ω.

Example 5. The functions F1(s) = ln(1 + ln(1 + · · · + ln(1 + |s|p))), p > 2 and F2(s) =

|s|(arctan |s|p + ln(1 + |s|p)), p > 1 satisfy (3.1). Hence, under the requirements of Theo-
rem 3.1 problem (1.1) (with f replaced by f1 = F′

1 or f2 = F′
2) has at least two nontrivial

solutions in Ω.
It is easy to check that F1, F2 don’t satisfy (1.3) and hence this existence result cannot be

deduced from the corresponding results presented in [12] or [13] even if we restrict ourselves
to the particular cases n = 2 or n = 3.

We can see that F3(s) = sp − Cs2, where p > 2 is even and C > 0 changes sign and does
not fulfill the restriction (3.5) imposed in [12, 13], but fulfills the requirements of Theorem 3.4
with β = −C < 0. Again we conclude that problem (1.1) (with f replaced by f3 = F′

3) has at
least a nontrivial solution if (3.9) is satisfied.

Example 6. Let C > 0, q > 2, α ∈ (0, 1). Then the function f4

f4(s) =

{
−sq − C ln(1 + sα), s > 0

|s|q, s ≤ 0

satisfies the requirements of Theorem 3.7. Hence the boundary value problem (1.1) with f
replaced by f4 has at least one solution.
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