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Abstract. This paper considers the existence of multiple normalized solutions of the
following (2, q)-Laplacian equation:− ∆u − ∆qu = λu + h(ϵx) f (u), in RN ,∫

RN
|u|2dx = a2,

where 2 < q < N, ϵ > 0, a > 0 and λ ∈ R is a Lagrange multiplier which is unknown,
h is a continuous positive function and f is also continuous satisfying L2-subcritical
growth. When ϵ is small enough, we show that the number of normalized solutions is
at least the number of global maximum points of h by Ekeland’s variational principle.
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1 Introduction

This paper is devoted to the existence of multiple normalized solutions, with X := H1(RN) ∩
D1,q(RN), of the following (2, q)-Laplacian equation:

−∆u − ∆qu = λu + h(ϵx) f (u), in RN (1.1)

under the constraint ∫
RN

|u|2dx = a2, (1.2)

where ϵ, a > 0, ∆qu = div(|∇u|q−2∇u) is the q-Laplacian of u, 2 < q < N and λ ∈ R is
a Lagrange multiplier which is unknown. The continuous function f satisfies the following
conditions:

( f1) f is odd and limt→0
| f (t)|
|t|p−1 = α > 0 for some p ∈

(
2, 2 + 4

N

)
;
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( f2) There exist some constants c1, c2 > 0 and p1 ∈ (q, q+ 2q
N ) such that | f (t)| ≤ c1 + c2|t|p1−1,

∀t ∈ R;

( f3) the mapping t 7→ f (t)
tq−1 is a non-decreasing function when t > 0.

Hereafter, the continuous function h satisfies the following assumptions:

(h1) 0 < h0 = infx∈RN h(x) ≤ maxx∈RN h(x) = hmax;

(h2) h∞ = lim|x|→+∞ h(x) < hmax;

(h3) h−1({hmax}) = {e1, e2, . . . , el} with e1 = 0 and ej ̸= ek when j ̸= k.

In particular, since restriction of (1.2), we are seeking normalized solutions to (1.1), which
corresponds to seek critical points of the following functional

Iϵ(u) =
1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
h(ϵx)F(u)dx

on the sphere

S(a) :=
{

u ∈ X := H1(RN) ∩ D1,q(RN) : |u|22 =
∫

RN
|u|2 dx = a2

}
, (1.3)

where | · |τ denotes the usual norm on Lτ(RN) for τ ∈ [1,+∞) and D1,q(RN) := {u ∈
Lq∗(RN) : ∇u ∈ Lq(RN)} with semi-norm ∥u∥D1,q(RN) = ∥∇u∥q. Moreover, ∥u∥X =

∥u∥H1(RN) + ∥u∥D1,q(RN). It is well known that Iϵ ∈ C1(X, R) and

⟨I′ϵ(u), φ⟩ =
∫

RN
∇u∇φdx +

∫
RN

|∇u|q−2∇u∇φdx −
∫

RN
h(ϵx) f (u)φdx

for all u, φ ∈ X.
The equation (1.1) is related to the general reaction-diffusion system

∂tu − ∆pu − ∆qu = f (x, u). (1.4)

The system has wide range of applications in physics and related sciences, such as bio-
physics, chemical reaction and plasma physics. In such applications, the function u de-
scribes a concentration, the (p, q)-Laplacian term in (1.4) corresponds to the diffusion as
div

[(
|∇u|p−2 + |∇u|q−2)∇u

]
= ∆pu + ∆qu, whereas the term f (x, u) is the reaction and re-

lates to sources and loss processes. Another model related to the (p, q)-Laplacian operator
concerns the Lavrentiev gap phenomenon, which involved variational functions with non-
standard (p, q) growth conditions, e.g., in [9, 30].

The stationary version of equation (1.4)

−∆pu − ∆qu = f (x, u), x ∈ RN

has been extensively studied. Where N ≥ 3, 1 < p < q < N, C. J. He et al. in [11] proved the
existence of solution by mountain pass theorem and the concentration–compactness principle
when f does not satisfy the Ambrosetti–Rabinowitz condition and they derived the regularity
of weak solutions in [12]. Furthermore, when nonlinear function f is discontinuous and
satisfies the Ambrosetti–Rabinowitz condition, the authors in [31] showed the existence of
solution by mountain pass theorem and the concentration-compactness principle. Moreover,
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some researchers had studied the existence results for the nonlinear function f involving the
critical Sobolev exponent in a bounded domain. G. B. Li et al. [21] studied f = |u|p∗−2u +

µ|u|r−2u and obtained infinitely many weak solutions by genus theorem when 1 < r < q <

p < N, µ > 0. Later on, in [28], the authors proved multiplicity of positive solutions by
using the Lusternik–Schnirelman category theorem where p < r < p∗. [13] proved some
nonexistence results where N ≥ 2, 1 < q < p < N and 1 < r < p∗. Finally, we refer the
interested readers works [8,29] for a development of the existence theory for various problems
of the (p, q)-Laplacian.

In literature, the following equation− ∆u + λu = |u|p−2u, in RN ,∫
RN

|u|2dx = a2 (1.5)

has been widely studied by many researchers. In the L2-subcritical problem, namely 2 < p <

2 + 4
N , it is well konwn that the functional

E(u) =
1
2

∫
RN

|∇u|2dx − 1
p

∫
RN

|u|pdx, u ∈ H1(RN)

is bounded from below on the set
{

u ∈ H1(RN) : ∥u∥2
2 =

∫
RN |u|2 dx = a2}, so we can found

a solution as a global minimizer on the sphere, see [24]. While in the L2-supercritical prob-
lem, namely 2 + 4

N < p < 2N
N−2 , E|S(a) is unbounded from below. One of the main difficulties

in dealing with normalized solutions is proving the Palais–Smale condition, as a compact-
ness property. Jeanjean in [14] got one normalized solution by a mountain pass structure
for an auxiliary functional. Furthermore, in [5], the authors obtained infinitely many nor-
malized solutions by using linking geometry for a stretched functional. More results about
L2-supercritical problem can be found in [6, 15]. Regarding the critical case, we cite the arti-
cles [7, 23]. Furthermore, in a recent paper, Yang and Baldelli [27] considered the following
equation − ∆u − ∆qu + λu = |u|p−2u, in RN ,∫

RN
|u|2dx = a2

in all the possible cases, where 2 < p < min{2∗, q∗} and 1 < q < N. They showed a
ground state solution by using Ekeland’s variational principle in L2-subcritical case, while in
L2-critical case, they proved existence and nonexistence results, at last, they get a solution by
using a natural constraint approach in L2-supercritical case.

In addition, the multiplicity of normalized solutions has been wildly researched. For
example, Jeanjean and Lu [18] studied the following problem−∆u = λu + h(u), in RN ,

u > 0,
∫

RN
|u|2dx = a2,

they obtained multiple normalized solutions by the variational methods and genus theory.
More information about multiplicity of normalized solutions by using genus theory and de-
formation arguments, see [2, 16, 17]. Particularly, without use of the genus theory, the authors
[19] studied the following problem−∆u + λu = (Iα ∗ [h(ϵx)|u| N+α

N ])h(ϵx)|u| N+α
N −2u + µ|u|q−2u, x ∈ RN ,∫

RN
|u|2dx = a2.
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They showed multiple normalized solutions by Ekeland’s variational principle when ϵ small
enough, µ, a > 0, 2 < q < 2 + 4

N , λ ∈ R and h is a continuous positive function satisfying
(h1)–(h3).

This paper is devoted to study the problem (1.1)–(1.2), which has not been studied in
our knowledge. In order to get the existence of multiple normalized solutions for (1.1), we
will follow the variational methods in [19]. Moreover, since the workspace is X = H1(RN) ∩
D1,q(RN), it will be more complicated to obtain the strong L2(RN) convergence of the selected
Palais-Smale sequence in X.

The main result of this paper is the following:

Theorem 1.1. Assume that f satisfies ( f1)–( f3) and h satisfies (h1)–(h3). Then, there exists ϵ0 such
that (1.1) has at least l couples weak solutions (uj, λj) ∈ X × R for 0 < ϵ < ϵ0. Moreover, λj < 0
and Iϵ(uj) < 0 for j = 1, 2, . . . , l.

Now, we will give the outline about this paper. In Section 2, we prove a compactness
theorem in the autonomous case. In Section 3, we use the compactness theorem to study the
non-autonomous case. Finally, we give the proof of Theorem 1.1 in Section 4.

2 The autonomous case

Firstly, we consider the existence of normalized solution (u, λ) ∈ X ×R, where X = H1(RN)∩
D1,q(RN), for the problem below− ∆u − ∆qu = λu + µ f (u),∫

RN
|u|2dx = a2,

(2.1)

where a, µ > 0, λ ∈ R and f satisfies ( f1)–( f3). It is well known that the critical point of the
functional

Jµ(u) =
1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
µF(u)dx

is a solution to the problem (2.1), which is restricted to the sphere S(a), where F(t) =∫ t
0 f (s)ds. Next, we will show that problem (2.1) has a normalized solution.

Lemma 2.1 ([20, Lemma 2.7]). Assume that k > 1, Ω is an open set in RN , α, β > 0 and Θ ∈
C(Ω × RN , RN) satisfying

(1) α|ξ|k ≤ Θ(x, ξ)ξ, ∀(x, ξ) ∈ Ω × RN ,

(2) |Θ(x, ξ)| ≤ β|ξ|k−1, ∀(x, ξ) ∈ Ω × RN ,

(3) (Θ(x, ξ)− Θ(x, η))(ξ − η) > 0, ∀(x, ξ) ∈ Ω × RN with ξ ̸= η,

(4) Θ(x, γξ) = γ|γ|k−2Θ(x, ξ), ∀(x, ξ) ∈ Ω × RN and γ ∈ R \ {0}.

Consider (un), u ∈ W1,k(Ω), then ∇un → ∇u in Lk(Ω) if and only if

lim
n→∞

∫
Ω
(Θ(x,∇un(x))− Θ(x,∇u(x))) (∇un(x)−∇u(x))dx = 0.

Lemma 2.2. The functional Jµ restricts to S(a) is bounded from below.
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Proof. From the conditions ( f1)–( f2), we can infer that there exist some constants C1, C2 > 0
such that

|F(t)| ≤ C1|t|p + C2|t|p1 , ∀t ∈ R.

By the Lq-Gagliardo–Nirenberg inequality [1, Theorem 2.1], we get that

|u|l ≤ C|∇u|νl,q
q |u|(1−νl,q)

2 , ∀u ∈ D1,q(RN) ∩ L2(RN) (2.2)

for some positive constant C > 0, where νl,q =
Nq(l−2)

l[Nq−2(N−q)] , l ∈ (2, q∗ = Nq
N−q ). Hence,

Jµ(u) ≥
1
q

∫
RN

|∇u|qdx − CC1a(1−νp,q)p
(∫

RN
|∇u|qdx

) νp,q p
q

− CC2a(1−νp1,q)p1

(∫
RN

|∇u|qdx
) νp1,q p1

q

.

(2.3)

As p ∈ (2, 2 + 4
N ), p1 ∈ (q, q + 2q

N ), clearly νp,q p, νp1,q p1 < q, which ensures the boundedness
of Jµ from below. If Jµ is not bound from below, then there is u such that

1
q

∫
RN

|∇u|qdx − C
(∫

RN
|∇u|qdx

) νp,q p
q

− C
(∫

RN
|∇u|qdx

) νp1,q p1
q

→ −∞,

which is a contradiction since νp,q p, νp1,q p1 < q.

This lemma ensures that mµ(a) := infu∈S(a) Jµ(u) is well defined.

Lemma 2.3. Let µ, a > 0, then mµ(a) < 0.

Proof. By ( f1), we can deduce limt→0
pF(t)

tp = α > 0, which implies that, for some δ > 0,

pF(t)
tp ≥ α

2
(2.4)

for all t ∈ [0, δ]. Let 0 < u0 ∈ S(a) ∩ L∞(RN), we set

H(u0, r)(x) = e
Nr
2 u0(erx), ∀x ∈ RN , ∀r ∈ R.

It is well known that ∫
RN

|H(u0, r)(x)|2dx = a2.

Furthermore, by a direct calculation, we have∫
RN

F(H(u0, r)(x))dx = e−Nr
∫

RN
F(e

Nr
2 u0(x))dx.

Then, for r < 0 and |r| big enough, we have

0 ≤ e
Nr
2 u0(x) ≤ δ, ∀x ∈ RN .

Furthermore, by (2.4), we derive∫
RN

F(H(u0, r)(x))dx ≥ α

2p
e
(p−2)Nr

2

∫
RN

|u0(x)|pdx,
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so,

Jµ(H(u0, r)) ≤ e2r

2

∫
RN

|∇u0|2dx +
e

Nqr
2 +rq−rN

2

∫
RN

|∇u0|qdx − µαe
(p−2)Nr

2

2p

∫
RN

|u0(x)|pdx.

Since q > 2, p ∈
(
2, 2 + 4

N

)
, increasing |r| if necessary, we get that

e2r

2

∫
RN

|∇u0|2dx +
e

Nqr
2 +rq−rN

2

∫
RN

|∇u0|qdx − µαe
(p−2)Nr

2

2p

∫
RN

|u0(x)|pdx = Ar < 0,

then
Jµ(H(u0, r)) ≤ Ar < 0,

showing that mµ(a) < 0.

Lemma 2.4. If µ > 0, a > 0, then

(i) a 7→ mµ(a) is a continuous mapping;

(ii) if a1 ∈ (0, a) and a2 =
√

a2 − a2
1, we have mµ(a) < mµ(a1) + mµ(a2).

Proof. (i) Let a > 0 and (an) ⊂ (0,+∞) such that an → a, we need to prove that mµ(an) →
mµ(a). There exists un ∈ S(an) such that mµ(an) ≤ Jµ(un) < mµ(an) +

1
n for every n ∈ N+.

Firstly, we deduce from Lemma 2.3 that mµ(an) < 0. Then by Lemma 2.2, we can get that
(un) is bounded in X. Now considering vn := a

an
un ∈ S(a), since the boundedness of (un) and

an → a, we have

mµ(a) ≤ Jµ(vn)

= Jµ(un) +
1
2

(
a2

a2
n
− 1

) ∫
RN

|∇un|2dx +
1
q

(
aq

aq
n
− 1

) ∫
RN

|∇un|qdx

+
∫

RN

(
µF(un)dx − µF(

a
an

un)
)

dx

= Jµ(un) + on(1).

Let n → +∞, we can get mµ(a) ≤ limn→+∞ inf mµ(an). In the same manner, let (wn) be a
bounded minimizing sequence of mµ(a) and zn := an

a wn ∈ S(an), then we have

mµ(an) ≤ Jµ(zn) = Jµ(wn) + on(1) =⇒ lim
n→+∞

sup mµ(an) ≤ mµ(a),

so we get mµ(an) → mµ(a).

(ii) For any fix a1 ∈ (0, a), we first claim that

mµ(θa1) < θ2mµ(a1), ∀θ > 1. (2.5)

Let (un) ⊂ S(a1) be a minimizing sequence for mµ(a1), then un(θ−
2
N x) ∈ S(θa1). Since θ > 1

and 2(N−q)
N < 2(N−2)

N < 2, we have

mµ(θa1)− θ2 Jµ(un) ≤ Jµ(un(θ
− 2

N x))− θ2 Jµ(un)

=
θ

2(N−2)
N − θ2

2
|∇un|22 +

θ
2(N−q)

N − θ2

q
|∇un|qq ≤ 0.
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As a consequence mµ(θa1) ≤ θ2mµ(a1). If mµ(θa1) = θ2mµ(a1), we will have |∇un|22 → 0 and
|∇un|qq → 0 as n → +∞, which can indicates that

∫
RN F(un)dx → 0 by inequality (2.2). Then,

0 > mµ(a1)

= lim
n→+∞

Jµ(un) =
1
2

lim
n→+∞

∫
RN

|∇un|2dx +
1
q

lim
n→+∞

∫
RN

|∇un|qdx − lim
n→+∞

∫
RN

µF(un)dx

= 0,

which is a contradiction. So we get mµ(θa1) < θ2mµ(a1). In the same manner, we can get

mµ(θa2) < θ2mµ(a2), ∀θ > 1. (2.6)

Finally, apply (2.5) with θ = a
a1

> 1 and (2.6) with θ = a
a2

> 1 respectively, we get

mµ(a) =
a2

1
a2 mµ

(
a
a1

a1

)
+

a2
2

a2 mµ

(
a
a2

a2

)
< mµ(a1) + mµ(a2).

Next, we will show the compactness theorem on S(a) which is useful for studying the
autonomous and the nonautonomous case.

Proposition 2.5. Assume that (un) ⊂ S(a) is a minimizing sequence of mµ(a). Then, for some
subsequence, either

(i) (un) is strongly convergent,

or

(ii) there exists a sequence vn(·) = u(·+ yn) with |yn| → +∞ and (yn) ⊂ RN , which is strongly
convergent to a function v ∈ S(a) with Jµ(v) = mµ(a).

Proof. It is easy to obtain the boundedness of sequence (un) by Lemma 2.2, then there is a
subsequence un ⇀ u in X, which is still denoted as itself. For the case of u ̸= 0 and |u|2 = b,
by the Brézis–Lieb lemma in [26], we can deduce that b ∈ (0, a) and

|un|22 = |u|22 + |un − u|22 + on(1),

|∇un|22 = |∇u|22 + |∇(un − u)|22 + on(1).

Moreover, according to the assumption of f , we can deduce∫
RN

F(un)dx =
∫

RN
F(u)dx +

∫
RN

F(un − u)dx + on(1).

Now, we will prove ∇un → ∇u a.e. on RN , up to subsequences. Choose ψ ∈ C∞
0 (RN) satis-

fying 0 ≤ ψ ≤ 1 in RN , ψ(x) = 1 for every x ∈ B1(0) and ψ(x) = 0 for every x ∈ RN \ B2(0).
Take R > 1 and define ψR(x) = ψ(x/R). Using the ⟨J′µ(u), ϕ⟩ with u = un and ϕ = (un − u)ψR,
we get ∫

RN

[
∇un −∇u + |∇un|q−2∇un − |∇u|q−2∇u

]
(∇un −∇u)ψRdx

= ⟨J′µ(un), (un − u)ψR⟩ −
∫

RN
∇unun∇ψRdx −

∫
RN

|∇un|q−2∇unun∇ψRdx

+
∫

RN
µ f (un)unψRdx +

∫
RN

∇unu∇ψR +
∫

RN
|∇un|q−2∇unu∇ψRdx

−
∫

RN
µ f (un)uψRdx −

∫
RN

∇un∇uψRdx −
∫

RN
|∇u|q−2∇u∇unψRdx.

+
∫

RN
|∇u|qψRdx +

∫
RN

|∇u|2ψRdx.
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Since, (un) ⊂ S(a) and (Jµ|S(a))
′(un) → 0, we have ⟨J′µ(un), (un − u)ψR⟩ → 0 as n → ∞.

Moreover, combining with the definition of ψR and un ⇀ u in X, we can get, as n → ∞,∫
RN

∇unun∇ψRdx −
∫

RN
∇unu∇ψRdx → 0,

∫
RN

|∇un|q−2∇unun∇ψRdx −
∫

RN
|∇un|q−2∇unu∇ψRdx → 0,∫

RN
µ f (un)unψRdx −

∫
RN

µ f (un)uψRdx → 0,∫
RN

|∇u|q−2∇u∇unψRdx →
∫

RN
|∇u|qψRdx,∫

RN
∇un∇uψRdx →

∫
RN

|∇u|2ψRdx.

So,
lim
n→∞

∫
RN

[
∇un −∇u + |∇un|q−2∇un − |∇u|q−2∇u

]
(∇un −∇u)ψRdx = 0,

which is equivalent to

lim
n→∞

∫
RN

(∇un −∇u)2ψRdx = 0, lim
n→∞

∫
RN

(∇un −∇u)qψRdx = 0.

Then, by Lemma 2.1 for Θ(x, ξ) = |ξ|k−2ξ with k = 2, k = q, we have ∇un → ∇u in L2(B2(0))
and Lq(B2(0)), which ensures that ∇un → ∇u a.e. on RN , up to subsequence. Now, applying
Brézis–Lieb lemma in [26] again, we obtain

|∇un|qq = |∇u|qq + |∇(un − u)|qq + on(1).

Let vn = un − u and |vn|2 = dn → d, we can get that a2 = b2 + d2 and dn ∈ (0, a) for n big
enough. So,

mµ(a) + on(1) = Jµ(un) = Jµ(u) + Jµ(vn) + on(1) ≥ mµ(dn) + mµ(b) + on(1).

By the continuity of a 7→ mµ(a) (see Lemma 2.4(i)), we have

mµ(a) ≥ mµ(d) + mµ(b),

which is contradicted to the conclusion of Lemma 2.4(ii), where a2 = b2 + d2. This asserts that
|u|2 = a.

Combining with |un|2 = |u|2 = a, un ⇀ u in L2(RN) and L2(RN) is reflexive, we can get

un → u in L2(RN). (2.7)

Combining with the inequality (2.2) and ( f1)− ( f2), we get∫
RN

F(un)dx →
∫

RN
F(u)dx. (2.8)

So

mµ(a) = Jµ(un) + on(1) = Jµ (u) + Jµ (vn) + on(1) ≥
1
2
|∇vn|22 +

1
q
|∇vn|qq + mµ(a) + on(1),

which indicates |∇vn|22, |∇vn|qq ≤ on(1). So we have vn → 0 in X, which means un → u in X.
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Let us assume u = 0, i.e., un ⇀ 0 in X. Then, for some ς, r > 0 and {yn} ⊂ RN , we have∫
Br(yn)

|un|2dx ≥ ς, ∀yn ∈ RN . (2.9)

Otherwise we must have un → 0 in Lk(RN), ∀k ∈ (2, 2∗), which implies F(un) → 0 in L1(RN).
But it contradicts to the fact that

0 > mµ(a) + on(1) = Jµ(un) ≥ −
∫

RN
F(un)dx.

Then (2.9) holds. Since u = 0, combining with the inequality (2.9) and the Sobolev embedding,
we can infer that (yn) is unbounded. Then we consider vn(x) = u(x + yn), which is easy to
check that (vn) is also a minimizing sequence of mµ(a) and (vn) ⊂ S(a). So, there holds
vn ⇀ v in X, where v ∈ X \ {0}. According to the proof of the first part, we deduce that
vn → v in X.

Lemma 2.6. Assume ( f1)–( f3) hold, µ > 0. Then, problem (2.1) has a positive radial solution u and
λ < 0.

Proof. We can assume that there is a bounded minimizing sequence (un) ⊂ S(a) of mµ(a) by
Lemma 2.2. Then, applying Proposition 2.5, we can deduce mµ(a) = Jµ(u), where u ∈ S(a).
Thus, we can get that there exists a constant λa ∈ R such that

J′µ(u) = λaΨ′(u) in X′, (2.10)

where Ψ(u) :=
∫

RN |u|2dx. Then, according to (2.10),

−∆u − ∆qu = λau + µ f (u), x ∈ RN ,

and ∫
RN

|∇u|2dx +
∫

RN
|∇u|qdx −

∫
RN

λau2dx −
∫

RN
µ f (u)udx = 0.

By ( f3), it is easy to obtain qF(t) ≤ f (t)t when t ≥ 0, furthermore, since mµ(a) = Jµ(u) < 0,
we get

0 > Jµ(u)−
1
q

( ∫
RN

|∇u|2dx +
∫

RN
|∇u|qdx −

∫
RN

λau2dx −
∫

RN
µ f (u)udx

)
= (

1
2
− 1

q
)
∫

RN
|∇u|2dx +

1
q

∫
RN

λau2dx +
1
q

∫
RN

µ f (u)udx −
∫

RN
µF(u)dx

≥ 1
q

∫
RN

λau2dx,

which implies that λa < 0.
Next, we will show that u is positive. From the definition of Jµ(u), we have Jµ(|u|) = Jµ(u).

Moreover we can get |u| ∈ S(a). Then, we deduce

mµ(a) = Jµ(u) = Jµ(|u|) ≥ mµ(a).

Then we have Jµ(|u|) = mµ(a). Therefore, we replace u by |u|. If u∗ is the Schwarz’s Sym-
metrization of u [22, Section 3.3], we have∫

RN
|∇u|2dx ≥

∫
RN

|∇u∗|2dx,
∫

RN
|∇u|qdx ≥

∫
RN

|∇u∗|qdx
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and ∫
RN

F(u)dx =
∫

RN
F(u∗)dx.

It is easy to check that u∗ ∈ S(a) and Jµ(u∗) = mµ(a). Thus, we replace u by u∗.
Next, we prove u(x) is positive for all x ∈ RN . Firstly, we assume that the conclusion is

false, then there is x0 ∈ RN satisfying u(x0) = 0. Furthermore, we can assume that there is
x1 ∈ RN satisfying u(x1) > 0 by u ̸= 0. Thus, we can find a ball with a sufficiently large radius
R > 0 such that x0, x1 ∈ BR(0). Then, combining with the Harnack Inequality ([10, Theorem
8.20]), we can infer there is a constant C > 0 such that

sup
y∈BR(0)

u(y) ≤ C inf
y∈BR(0)

u(y),

which contradicts to the fact that

sup
y∈BR(0)

u(y) ≥ u(x1) > 0 and inf
y∈BR(0)

u(y) = u(x0) = 0.

The next corollary is obtained by Lemma 2.6.

Corollary 2.7. Fix a > 0 and let 0 ≤ µ1 < µ2. Then, mµ2(a) < mµ1(a) < 0.

Proof. Let uµ1 ∈ S(a) satisfy Jµ1(uµ1) = mµ1(a), then

mµ2(a) ≤ Jµ2(uµ1) < Jµ1(uµ1) = mµ1(a).

3 The nonautonomous case

Next, we will show some properties of Iϵ : X → R,

Iϵ(u) =
1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
h(ϵx)F(u)dx,

which is restricted to S(a).
Firstly, we define Imax, I∞ : X → R as

Imax(u) =
1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
hmaxF(u)dx

and
I∞(u) =

1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
h∞F(u)dx.

Moreover, Lemma 2.2 guarantees that

m∞(a) = inf
u∈S(a)

I∞(u), mϵ(a) = inf
u∈S(a)

Iϵ(u), mmax(a) = inf
u∈S(a)

Imax(u).

Then, according to Corollary 2.7 and h∞ < hmax, we can immediately get

mmax(a) < m∞(a) < 0. (3.1)

Now, we fix 0 < ρ1 = 1
2 (m∞(a)− mmax(a)).

Lemma 3.1. limϵ→0+ mϵ(a) ≤ mmax(a). Hence, there exists ϵ0 > 0 such that mϵ(a) < m∞(a) for all
0 < ϵ < ϵ0.
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Proof. Let u0 ∈ S(a) satisfying Imax(u0) = mmax(a). A simple calculus gives that

mϵ(a) ≤ Iϵ(u0) =
1
2

∫
RN

|∇u0|2dx +
1
q

∫
RN

|∇u0|qdx −
∫

RN
h(ϵx)F(u0)dx.

Letting ϵ → 0+ and applying (h3) we can get

lim sup
ϵ→0+

mϵ(a) ≤ lim
ϵ→0+

Iϵ(u0) = Imax(u0) = mmax(a).

According to (3.1), we obtain mϵ(a) < m∞(a) for ϵ small enough.

The following two lemmas will be used to prove (PS)c condition for Iϵ at some levels.

Lemma 3.2. Assume that (un) ⊂ S(a) is a minimizing sequence with Iϵ(un) → c and c < mmax(a)+
ρ1 < 0. If un ⇀ u in X, then u ̸= 0.

Proof. Firstly, we assume the conclusion is false, i.e., u ≡ 0. Then, we have

c = mϵ(a) = Iϵ(un) + on(1) = I∞(un) +
∫

RN
(h∞ − h(ϵx)) F(un)dx + on(1).

According to (h2), there exist some constants ξ, R > 0 such that

h∞ ≥ h(x)− ξ, |x| > R.

Thus, we have the following estimate

c = Iϵ(un) + on(1) ≥ I∞(un) +
∫

BR/ϵ(0)
(h∞ − h(ϵx)) F(un)dx − ξ

∫
Bc

R/ϵ(0)
F(un)dx + on(1).

Recalling that (un) is bounded in X, then for some constant C > 0, there holds

∫
RN

F(un)dx ≤ C1

(∫
RN

|∇u|qdx
) νp,q p

q

+ C2

(∫
RN

|∇u|qdx
) νp1,q p1

q

≤ C.

By the fact of un → 0 in Ll(BR/ϵ(0)) when l ∈ [1, 2∗), one has

c = Iϵ(un) + on(1) ≥ I∞(un)− ξC > m∞(a)− ξC + on(1),

which combines with the arbitrariness of ξ > 0, we can get

c ≥ m∞(a),

which contradicts to the fact that c < mmax(a) + ρ1 < m∞(a). So, we can get that u ̸= 0.

Lemma 3.3. Assume that (un) ⊂ S(a) is a (PS)c sequence of Iϵ satisfying un ⇀ uϵ in X when
c < mmax(a) + ρ1 < 0, that is, as n → +∞,

Iϵ(un) → c and ∥Iϵ|′S(a)(un)∥ → 0.

Then there holds
lim inf
n→+∞

|un − uϵ|22 ≥ β,

where un ↛ uϵ in X and β > 0 independent of ϵ ∈ (0, ϵ0).
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Proof. Firstly, defining the functional Ψ : X → R with Ψ(u) = 1
2

∫
RN |u|2dx, we can see

S(a) = Ψ−1({a2/2}). According to [26, Proposition 5.12], there exist (λn) ⊂ R such that

∥I′ϵ(un)− λnΨ′(un)∥X′ → 0 as n → +∞.

(un) is bounded in X since Iϵ is bounded from below and coercive as Jµ, which ensures that
(λn) is bounded, then there exists λϵ such that λn → λϵ as n → +∞. Thus, we have

I′ϵ(uϵ)− λϵΨ′(uϵ) = 0 in X′,

and
∥I′ϵ(vn)− λϵΨ′(vn)∥X′ → 0 as n → +∞,

where vn := un − uϵ. According to ( f3), we can get qF(t) ≤ f (t)t when t ≥ 0. Then we have

0 > ρ1 + mmax(a)>c = lim inf
n→+∞

Iϵ(un) = lim inf
n→+∞

(
Iϵ(un)−

1
q
⟨I′ϵ(un), un⟩+

1
q

λna2
)
≥ 1

q
λϵa2,

which implies that

lim sup
ϵ→0

λϵ ≤
q(ρ1 + mmax(a))

a2 < 0.

Then, there is a constant λ∗ satisfying λϵ < λ∗ < 0, which is independent of ϵ. Therefore,∫
RN

|∇vn|2dx +
∫

RN
|∇vn|qdx − λϵ

∫
RN

|vn|2dx =
∫

RN
h(ϵx) f (vn)vndx + on(1),

and ∫
RN

|∇vn|2dx +
∫

RN
|∇vn|qdx − λ∗

∫
RN

|vn|2dx ≤
∫

RN
h(ϵx) f (vn)vndx + on(1).

According to ( f1), we get f (t) < εt, ∀ε > 0 if t small enough, which combines with ( f2) to
give ∫

RN
f (vn)vndx ≤ C2

∫
RN

|vn|p1dx + ε
∫

RN
|vn|2dx ≤ C2

∫
RN

|vn|p1dx.

So, we obtain∫
RN

|∇vn|2dx +
∫

RN
|∇vn|qdx + C0

∫
RN

|vn|2dx

≤ hmax

∫
RN

f (vn)vndx ≤ C2hmax

∫
RN

|vn|p1dx + on(1)

for some constant C0 > 0 independent of ϵ ∈ (0, ϵ0). Since vn ↛ 0 in X, we can assume that
lim infn→+∞ ∥vn∥X > C > 0. Thus, there holds

lim inf
n→+∞

|vn|p1
p1 ≥ C3 (3.2)

for some constant C3 > 0. By (2.2), we can deduce

C3 ≤ lim inf
n→+∞

|vn|p1
p1 ≤ C(lim inf

n→+∞
|vn|2)(1−νp1,q)p1 Kνp1,q p1 , (3.3)

where K > 0 is independent of ϵ ∈ (0, ϵ0) with ∥vn∥ ≤ K for all n ∈ N. Then, combining with
(3.2), and (3.3), we achieve the proof.
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Next, we consider 0 < ρ < min{ 1
2 , β

a2 }(m∞(a)− mmax(a)).

Lemma 3.4. Assume that 0 < ϵ < ϵ0 and c < mmax(a) + ρ. Then, Iϵ restricted to S(a) satisfies the
(PS)c condition.

Proof. Firstly, we can get that (un) is bounded by Lemma 2.2, then let (un) ⊂ S(a) be (PS)c

sequence of Iϵ with un ⇀ uϵ, where uϵ ̸= 0 by Lemma 3.2 and c < mmax(a) + ρ. Set vn =

un − uϵ. If vn → 0 in X, the proof is complete. If vn ↛ 0 in X and |uϵ|2 = b, by Lemma 3.3, we
have

lim inf
n→+∞

|vn|22 ≥ β (3.4)

for some β > 0 which is independent of ϵ ∈ (0, ϵ0).
Let |vn|2 = dn → d ≥ β

1
2 , we have a2 = b2 + d2. From dn ∈ (0, a) for n large enough, we

can deduce

c + on(1) = Iϵ(un) = Iϵ(vn) + Iϵ(uϵ) + on(1) ≥ m∞(dn) + mmax(b) + on(1).

Applying Lemma 2.4(i) and inequality (2.5), letting n → +∞, we get

mmax(a) + ρ > c ≥ m∞(d) + mmax(b) ≥
d2

a2 m∞(a) +
b2

a2 mmax(a).

Then

ρ ≥ d2

a2 (m∞(a)− mmax(a)) ≥ β

a2 (m∞(a)− mmax(a)),

which is contradicted to the fact of ρ < β
a2 (m∞(a)− mmax(a)). Then, it holds vn → 0 in X, that

is, un → uϵ in X, which implies that uϵ ∈ S(a) and

−∆uϵ − ∆quϵ = λϵuϵ + h(ϵx) f (uϵ), x ∈ RN .

4 Multiplicity result

In the following, we do some technical stuff. Let ρ0, r0 > 0, ej be defined in (h3), satisfying:

• Bρ0(ei) ∩ Bρ0(ej) = ∅ for i ̸= j and i, j ∈ {1, . . . , l}.

•
⋃l

i=1 Bρ0(ei) ⊂ Br0(0).

• K ρ0
2
=

⋃l
i=1 B ρ0

2
(ei).

Set κ : RN → RN with

κ(x) :=

{
x, if |x| ≤ r0,

r0
x
|x| , if |x| > r0.

Now we consider the function Gϵ : X\{0} → RN with

Gϵ(u) :=

∫
RN κ(ϵx)|u|2dx∫

RN |u|2dx
,

Then, we will get the existence of (PS) sequences of Iϵ, which is restricted to S(a) by the
next two lemmas.
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Lemma 4.1. Decreasing ϵ0 if necessary, there exists a positive constant δ0 < ρ such that

Gϵ(u) ∈ K ρ0
2

, ∀ϵ ∈ (0, ϵ0),

where u ∈ S(a) and Iϵ(u) ≤ mmax(a) + δ0.

Proof. We assume that the conclusion is false, so there exist δn → 0, un ∈ S(a) and ϵn → 0
such that

Iϵn(un) ≤ mmax(a) + δn

and
Gϵn(un) /∈ K ρ0

2
.

Firstly, we know
mmax(a) ≤ Imax(un) ≤ Iϵn(un) ≤ mmax(a) + δn,

then,
Imax(un) → mmax(a), as n → ∞.

We will analyze the following two cases by Proposition 2.5.
(i) un → u in X, where u ∈ S(a). According to the Lebesgue dominated convergence

theorem, we can deduce that

Gϵn(un) =

∫
RN κ(ϵnx)|un|2dx∫

RN |un|2dx
→

∫
RN κ(0)|u|2dx∫

RN |u|2dx
= 0 ∈ K ρ0

2
,

which contradicts to Gϵn(un) /∈ K ρ0
2

for n large.

(ii) There exists a sequence vn(·) = u(·+ yn) with |yn| → +∞ and (yn) ⊂ RN , which is
convergent in X for some v ∈ S(a). Then, we can also study the following two cases:

When |ϵnyn| → +∞, we can deduce that

Iϵn(un) =
1
2

∫
RN

|∇vn|2dx +
1
q

∫
RN

|∇vn|qdx −
∫

RN
h(ϵnx + ϵnyn)F(vn)dx → I∞(v).

Since Iϵn(un) ≤ mmax(a) + δn, there holds

mmax(a) ≥ I∞(v) ≥ m∞(a),

which contradicts to (3.1).
When ϵnyn → y for some y ∈ RN , we get

Iϵn(un) =
1
2

∫
RN

|∇vn|2dx +
1
q

∫
RN

|∇vn|qdx −
∫

RN
h(ϵnx + ϵnyn)F(vn)dx → Ih(y)(v),

then we obtain
mh(y)(a) ≤ mmax(a). (4.1)

If h(y) < hmax, Corollary 2.7 implies that mh(y)(a) > mmax(a), which contradicts to (4.1). Thus,
it holds h(y) = hmax, which means y = ei for some i = 1, . . . , l. Then we have

Gϵn(un) =

∫
RN

κ(ϵnx)|un|2dx∫
RN

|un|2dx
=

∫
RN

κ(ϵnx + ϵnyn)|vn|2dx∫
RN

|vn|2dx
→

∫
RN

κ(y)|v|2dx∫
RN

|v|2dx
= ei ∈ K ρ0

2
,

which contradicts to Gϵn(un) /∈ K ρ0
2

for n large.
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Next, we introduce some notations:

• θi
ϵ := {u ∈ S(a); |Gϵ(u)− ei|≤ρ0},

• ∂θi
ϵ := {u ∈ S(a); |Gϵ(u)− ei| = ρ0},

• ηi
ϵ := infu∈θi

ϵ
Iϵ(u),

• η̃i
ϵ := infu∈∂θi

ϵ
Iϵ(u).

Lemma 4.2. Let 0 < δ0 < ρ < min{ 1
2 , β

a2 }(m∞(a)− mmax(a)). Then, there holds

ηi
ϵ < mmax(a) + ρ and ηi

ϵ < η̃i
ϵ, ∀ϵ ∈ (0, ϵ0).

Proof. By Proposition (2.5), we set that

mmax(a) = Imax(u), I′max(u) = 0,

where u ∈ S(a). Let ui
ϵ : RN → R be ui

ϵ(x) = u(x − ei/ϵ) for 1 ≤ i ≤ l. By direct calculation,
we get

Iϵ(ui
ϵ(x)) =

1
2

∫
RN

|∇u|2dx +
1
q

∫
RN

|∇u|qdx −
∫

RN
h(ϵx + ei)F(u)dx,

which implies that
lim sup

ϵ→0
Iϵ(ui

ϵ(x)) ≤ Imax(u) = mmax(a). (4.2)

If ϵ → 0+, there holds

Gϵ(ui
ϵ) =

∫
RN

κ(ϵx)|ui
ϵ|2dx∫

RN
|ui

ϵ|2dx
=

∫
RN

κ(ϵx + ei)|u|2dx∫
RN

|u|2dx
→ ei.

Then we can infer that ui
ϵ ∈ θi

ϵ when ϵ is small enough. Moreover, by (4.2),

Iϵ(ui
ϵ(x)) ≤ mmax(a) +

δ0

4
, ∀ϵ ∈ (0, ϵ0).

From this, decreasing ϵ0 if necessary,

ηi
ϵ ≤ mmax(a) +

δ0

4
, ∀ϵ ∈ (0, ϵ0).

Then,
ηi

ϵ ≤ mmax(a) + ρ, ∀ϵ ∈ (0, ϵ0),

showing the first inequality.
If there holds u ∈ ∂θi

ϵ, i.e.,

u ∈ S(a) and |Gϵ(u)− ei| = ρ0 >
ρ0

2
,

which implies Gϵ(u) /∈ K ρ0
2

. Then, combining with Lemma 4.1, we have

Iϵ(u) > mmax(a) +
δ0

2
, ∀u ∈ ∂θi

ϵ, ∀ϵ ∈ (0, ϵ0),

and so,

η̃i
ϵ ≥ mmax(a) +

δ0

2
, ∀ϵ ∈ (0, ϵ0),

from which it follows that
ηi

ϵ < η̃i
ϵ, ∀ϵ ∈ (0, ϵ0).
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4.1 Proof of Theorem 1.1

By Ekeland’s variational principle, we can get that there exists a sequence (ui
n) ⊂ S(a) such

that
Iϵ(ui

n) → ηi
ϵ

and
Iϵ(v)− Iϵ(ui

n) ≥ − 1
n
∥v − ui

n∥, ∀v ∈ θi
ϵ with v ̸= ui

n

for each i ∈ {1, . . . , l}. Then, we get ui
n ∈ θi

ϵ \ ∂θi
ϵ for n large enough by Lemma 4.2.

Given v ∈ Tui
n
S(a) = {w ∈ X :

∫
RN ui

nwdx = 0}, we can define the path σ : (−ξ, ξ) → S(a)
with

σ(t) = a
(ui

n + tv)
|ui

n + tv|2
,

where ξ > 0. It is obvious to know that σ ∈ C1((−ξ, ξ), S(a)) and we have

σ(t) ∈ θi
ϵ\∂θi

ϵ, ∀t ∈ (−ξ, ξ), σ(0) = ui
n and σ′(0) = v.

Then we get

Iϵ(σ(t))− Iϵ(ui
n) ≥ − 1

n
∥σ(t)− ui

n∥

for t ∈ (−ξ, ξ), which implies that

Iϵ(σ(t))− Iϵ(σ(0)))
t

=
Iϵ(σ(t))− Iϵ(ui

n)

t

≥ − 1
n

∥∥∥∥σ(t)− ui
n

t

∥∥∥∥
= − 1

n

∥∥∥∥σ(t)− σ(0)
t

∥∥∥∥ , ∀t ∈ (0, ξ).

Taking the limit of t → 0+, we have

⟨I′ϵ(u
i
n), v⟩ ≥ − 1

n
∥v∥.

Then, we can replace v by −v to deduce

sup{|⟨I′ϵ(u
i
n), v⟩| : ∥v∥ ≤ 1} ≤ 1

n
,

which implies that

Iϵ(ui
n) → ηi

ϵ and ∥Iϵ|′S(a)(u
i
n)∥ → 0 as n → +∞,

which means (ui
n) ⊂ S(a) is a (PS)ηi

ϵ
sequence of Iϵ. Combining with Lemma 3.4 and ηi

ϵ <

mmax(a) + ρ, we can infer that there is ui such that ui
n → ui in X. So, we have

ui ∈ θi
ϵ, Iϵ(ui) = ηi

ϵ and Iϵ|′S(a)(u
i) = 0.

According to our assumptions, we have

Gϵ(ui) ∈ Bρ0(ei), Gϵ(uj) ∈ Bρ0(ej)
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and
Bρ0(ei) ∩ Bρ0(ej) = ∅ for i ̸= j,

which means ui ̸= uj for i ̸= j while 1 ≤ i, j ≤ l. Thus, for any ϵ ∈ (0, ϵ0), Iϵ has at least l
nontrivial critical points, i.e.,

−∆ui − ∆qui = λiui + h(ϵx) f (ui), ∀i ∈ {1, 2, . . . , l},

which ensures∫
RN

|∇ui|2dx +
∫

RN
|∇ui|qdx −

∫
RN

λi|ui|2dx −
∫

RN
h(ϵx) f (ui)uidx = 0.

Combining with Iϵ(ui) < 0, we have

0 > Iϵ(ui)− 1
q

( ∫
RN

|∇ui|2dx +
∫

RN
|∇ui|qdx −

∫
RN

λi|ui|2dx −
∫

RN
h(ϵx) f (ui)uidx

)
=

(
1
2
− 1

q

) ∫
RN

|∇u|2dx +
1
q

∫
RN

λi|ui|2dx +
1
q

∫
RN

h(ϵx) f (ui)uidx −
∫

RN
h(ϵx)F(ui)dx

≥ 1
q

∫
RN

λi|ui|2dx,

which implies λi < 0. This proves the desired result.
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